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Abstract. A decision graph is a well-studied classifier and has been
used to solve many real-world problems. We assumed a typical scenario
between two parties in this study, in which one holds a decision graph
and the other wants to know the class label of his/her query without
disclosing the graph and query to the other. We propose a novel protocol
for this scenario that can obliviously evaluate a graph that is designed
by an efficient data structure called the graph level order unary degree
sequence (GLOUDS). The time and communication complexities of this
protocol are linear to the number of nodes in the graph and do not include
any exponential factors. The experiment results revealed that the actual
runtime and communication size were well concordant with theoretical
complexities. Our method can process a graph with approximately 500
nodes in only 11 s on a standard laptop computer. We also compared
the runtime of our method with that of previous methods and confirmed
that it was one order of magnitude faster than the previous methods.

Keywords: Decision graph· Homomorphic encryption· GLOUDS.

1 Introduction

Classification is a central topic in machine learning (ML), which is aimed at
training a classifier on a set of labeled samples so that the trained classifier
can correctly assign one of the class labels to an input query, and has been
successfully applied to various real-world problems such as credit scoring, drug
discovery, and disease diagnostics [17,20,22].

One of the typical online services using ML is a classification service where a
service provider has a trained classifier and a user can obtain classification results
for his/her data. In fact, software platforms that easily achieve such scenario are
already available [1–3], which enables service providers to publish the applica-
tion programming interfaces (APIs) of the trained classifiers on the cloud server.

∗This is the full version of ICISC2018 paper.



2 H. Sudo et al.

Although both service providers and service users can benefit from such classi-
fication services, there are certain privacy concerns about the data. A natural
scenario for an online classification service is for a user to send his/her query (an
input to a classifier) to a server and the server to return the classification results
based on the classifier. Suppose the online service involves disease diagnostics,
where the input to the classifier includes the user’s private information such as
health records and genetic information. The server’s classifier also includes data
on donors’ private information because the classifier was trained on private data.
Various model-inversion attacks are possible [15, 16] in this scenario; they can
infer sensitive information being used for training by accessing the trained clas-
sifier. Therefore, it is necessary to conceal both the user’s query and the server’s
classifier.

We focused on a decision graph (DG) as a classifier and tackled the problem
of private evaluations of the decision graphs. A decision graph is an efficient data
structure for the classification rules. It is also described as a decision diagram [7]
in the logic synthesis literature and as a branching program (BP) [23] in com-
puter science theory. Compared to complex models such as neural networks, the
decision graph is easier to interpret and is therefore often preferred for problems
like clinical diagnosis where the interpretation of decision-making is important.
We assumed the underlying graph was a binary graph and defined a binary de-
cision graph (BDG) as follows. BDG is a rooted directed acyclic graph (DAG)
that consists of a set of nodes of in-degree ≥ 1 and the out-degree of two or zero.
A node with the out-degree of zero is called a leaf and has a class label. Each
internal node contains a split function that decides whether a query that reaches
the node should visit a node connected to the right edge or the node connected
to the left edge, depending on the corresponding attribute of the query. We as-
sumed in our study that each split function computed whether or not the input
was greater than a threshold t.

The problem setup for this study was as follows: one party (Server) has a
BDG and the other party (Client) wants to obtain a classification result. Client’s
input is a private attribute vector, x = (x0, . . . , xn−1). The length of the vector
and the ordering of the attributes are common information between Server and
Client. Client only knows common information and the height of the graph
(maximum path length from a root node to a leaf). After computation, Client
learns the classification result (a class label); he/she does not learn anything
more than what he/she already knows.

1.1 Related Works

Many studies have addressed the problem of private evaluation of classifiers [13,
21, 32]. Brickell et al. [6] and Barni et al. [4] respectively proposed methods
which combine Yao’s garbled circuit [36] and additively homomorphic encryption
(AHE) for private evaluation of the BDG. We will present a detailed comparison
of our method with those approaches in Section 4.3. Mohassel et al. [25] have
also proposed a method of private evaluation of BDG; however, they assumed
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that a user knew all the outputs of all split functions of a server’s internal nodes,
which differs from our scenario.

Since the decision graph is regarded as a generalized form of a decision tree
(DT), we also describe a series of studies for a private evaluation of DTs. Bost et
al. [5] proposed a secure decision tree evaluation protocol as part of their work.
Their method evaluated a decision tree as a polynomial of Boolean variables
using leveled fully homomorphic encryption. Although this method improved
efficiency compared to other conventional methods, it still suffered from the
problem of computation and communication costs. A recent work by Wu et
al. [35] achieved more practical computational time and communication size.
Their method was only based on AHE and performed efficiently for shallow
trees; however, it did not perform well for the evaluation of deep trees because
of its exponential time and communication complexity for the height of the
trees. Cock et al. [10] proposed a protocol that achieved time complexity that
was similar to Wu et al.’s algorithm and improved runtime by using arithmetic
sharing to avoid heavy modular exponentiation. However, their protocol assumed
a different problem setup where a trusted initializer participated in the protocol
to generate multiplication triplets. The trusted initializer could be removed, but
the additional costs of generating the multiplication triplets by the two parties
was exponential to the height of the tree, which greatly deteriorated the runtime.
Tai et al. [30] formulated a decision tree evaluation as a compact linear function
to attain a protocol in which time complexity was only dependent on the number
of internal nodes and was independent of the exponential of the tree height.

Protocols for DTs can theoretically be applied to private evaluations of BDG
if the underlying graph is transformed into a tree. However, the number of nodes
in the tree, that is equivalent to the graph, becomes very large. As we will discuss
in Subsection 2.4, two in-coming edges to an internal node cause a copy of all
the subordinates of the node on transformation, which leads to the exponential
growth in total tree size.

We also noted that a BDG achieved accurate predictions while it achieved
lower model complexity than DT [19, 26, 27, 29], and it even achieved consider-
ably improved generalization [29]. A BDG with 3,000 nodes achieved the same
accuracy as a DT with 22,000 nodes in the classification of a Kinect dataset in
a study by Shotton et al. [29].

1.2 Our Contribution

The five main contributions of this paper are summarized below:

– We propose an efficient protocol for the oblivious evaluation of a BDG.
More precisely, the protocol allows two parties, one holding a BDG T , and
the other holding an attribute vector, x, to determine the class label of x,
without revealing T and x to the other party in a semi-honest setting.

– The time and communication complexities of our protocol are linear to the
number of nodes and the height of T and exclude any exponential factors.



4 H. Sudo et al.

– The DAG of the BDG in our protocol is represented by a look-up vector
V , and the other party obliviously refers to V . We demonstrate how the
length of V is reduced by using a succinct data structure called GLOUDS to
achieve linear complexity. We also propose an efficient design principle for V
by exploiting the GLOUDS algorithm to further decrease the length of V .

– An oblivious evaluation of a split function in each internal node is conducted
before graph traversal. We propose a novel protocol called eROT that enables
the correct edges to obliviously be chosen during traversal.

– We implemented our protocol and tested it on BDGs of various sizes; we
found that its actual runtime and communication size were concordant with
the theoretical complexities. We also compared the runtime and communi-
cation size of our protocol to those in previous studies [4, 6] to confirm that
our protocol was an order of magnitude faster.

The rest of the paper is organized as follows. Section 2 describes important
building blocks for the proposed method and the security model that was as-
sumed for this study. We detail our method in Section 3, evaluate it on various
datasets in Section 4, and compare it with the previous methods in Section 4.3.
Section 5 concludes the paper.

2 Preliminary

2.1 Notation

We denote vector v as (v0, . . . , vn−1) and the i-th element of v as v[i]. The
{a0, . . . , an−1} represents a set of size n. The {ai}n−1i=0 stands for {a0, . . . , an−1}.
We define the “rotation” of a vector as: given n dimensional vector v, the r-
rotation of v results in vector v̂, each of whose elements is v̂[(i+ r)mod n] = v[i].
The 〈P (x)〉 returns 1 if predicate P (x) is true given x, otherwise 0. The notation,
r ∈R A, means r is a uniformly chosen random value from a set A. We define λ-
bit unary representation of x ∈ {0, . . . , λ−1} as a λ-bit vector that has 1 at x-th
least significant bit and has 0 at the other bits, and denote it as UNARYλ(x).

2.2 Additively Homomorphic Encryption

We used a semantically secure additively homomorphic public-key encryption
scheme in our protocol and especially assumed a lifted-ElGamal cryptosystem [11]
with plaintext space Zp whose message in a ciphertext is located in the exponent.
The public-key encryption scheme is equipped with three algorithms:

1. KeyGen: outputs a public/private key pair (pk, sk).
2. Encpk(m): outputs a ciphertext [[m]], by encrypting a plaintext m, with pk.
3. Decsk([[m]]): outputs a plaintext m, by decrypting a ciphertext [[m]], with sk.

[[m]] represents a ciphertext of a plaintextm. Likewise, [[v]] represents a ciphertext
vector, each of whose elements is an encryption of each element of a vector v.
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A public key of AHE has ⊕, ⊗, 	 operations on ciphertexts described as
follows. Given two plaintexts m1,m2, we can compute [[m1 +m2]] = [[m1]]⊕ [[m2]]
by using ⊕ operation. We can also compute multiplication by a constant k (
[[k ·m]] = k ⊗ [[m]] ). Negation on a ciphertext is represented by 	[[m]].

In our setting, the user generates and holds a public/private key pair (pk, sk),
and the server only receives a public key pk so that only the user can decrypt
ciphertexts and the server can only conduct encryption and additively homo-
morphic computation.

2.3 Oblivious Transfer

Oblivious transfer (OT) is a secure two-party protocol between a sender and
a chooser. A chooser in 1-out-of-N OT specifies an index i ∈ {0, . . . , N − 1},
and only obtains the i-th element of the sender’s vector v, without disclosing i
to the sender (i.e., the sender learns nothing). We denote the execution of OT
with an index i, and a vector v by OTN1 (i,v). While there are several efficient
implementations that achieve OTN1 functionality, we use simple protocols based
on additively homomorphic operation which require O(N) computational cost
and communication size (as for the implementation detail, see Appendix A.)

2.4 GLOUDS

The graph level order unary degree sequence (GLOUDS) [14] is the succinct
data structure of a DAG, which is a query-time efficient data structure that uses
the space close to information-theoretic lower bound. GLOUDS regards a DAG
as an integration of a spanning tree and “non-tree” edges that are not included
in the tree, and introduces the idea of “shadow nodes”, which are duplicates of
non-tree nodes (nodes with incoming edges > 1) to virtually treat a graph as
a tree, while it avoids unnecessary copies of nodes. When we transform a DAG
into an equivalent tree, it is necessary to repeat copying of a subtree rooted from
a non-tree node for all the incoming edges to the node, which causes exponential
growth in total tree size. Since GLOUDS generates as many shadow nodes as
the number of non-tree edges, it is considered to be efficient when there are not
too many non-tree edges.

More precisely, GLOUDS consists of a trit (0,1,2) sequence B of length N
and an auxiliary vector H, where N is the sum of the number of nodes and the
number of edges + 1. The nodes in the DAG are numbered in level order (from
top to bottom and left to right) and the root is numbered 0. The nodes are visited
in level order during construction of GLOUDS. When each node is visited, 0 is
stored in B, and all the children of the node are stored in left-to-right order. If a
child is already observed, a trit 2 is stored in B, and 1 otherwise. The root node
is considered as a child of an unshown supernode, and hence 1 is stored in B as
the first element (i.e., B[0] = 1). H memorizes numbers of shadow nodes in the
order in which they appear in B as 2. For the case of the DAG in Figure 1, after
storing B[0] = 1, B[1] = 0 is stored when the node “0” is visited. Since the node
“1” and “2” are the children of the node “0” and they are not observed, B[2] = 1
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and B[3] = 1 are stored. Similarly, B[4] = 0, B[5] = 1 and B[6] = 1 are stored
for the visit of the node “1”, and B[7] = 0, B[8] = 2 and B[9] = 1 are stored for
the visit of the node “2”. Note that B[8] = 2 because the node “4”, which is the
left child of the node “2”, is already observed. 4 is recorded in H[0] = 4. After
visiting all the nodes, B and H are described as B = 10110110210110210000
and H = [4, 7]. Either 1 or 2 in vector B corresponds to any one of the nodes
in the DAG, and 0 is regarded as a delimiter between groups of siblings. Note
that 0 is also considered as a parent node of a right-neighbour group of siblings;
therefore, the same node appears more than once in B.

Here, we define two operations on sequence B as:

Definition 1 Operations on trit sequence B

Rankc(B, p): returns the number of c ∈ {0, 1, 2} in the prefix B[0, p) (0 ≤ p < N)
Selectc(B, i): returns the position of the i-th c ∈ {0, 1, 2} in B (i starts from 0.)

One can move from a position p in B that stores a trit 1 or 2 (a parent node),
to another position p′ (x-th child of the node) by carrying out the equation below.

p′ =

{
Select0(B,Rank1(B, p)) + x (if B[p] = 1)

Select0(B,H[Rank2(B, p)]) + x (if B[p] = 2)
(1)

For simplicity, we let SelRan(B, p) be the first term of Eq. 1. The SelRan(B, p)
computes a position in B of the left delimiter of B[p]’s children. Since the siblings
are stored sequentially, one can specify the x-th child by adding an offset x to
SelRan(B, p). Figure 1 has an example of SelRan. For example, let us consider
the case of p = 2. B[2] corresponds to the node “1”. The children of the node
“1” are “3” and “4”, and they correspond to B[5] and B[6]. SelRan(B, 2) returns
4 and B[4] = 0 is the left delimiter of them. We define a map of a position in B
and a node id, such that ID(p) returns id of the node that corresponds to B[p].
For example, ID(2) = 1 and ID(4) = 1. Note that ID(p) = ID(SelRan(B, p)).
GLOUDS can be regarded as a generalization of the level order unary degree
sequence (LOUDS) [18], which is a succinct data structure for ordered trees;
hence, our protocol can be immediately applied to DT.

10110110210110210000

GLOUDS 𝐻: [4, 7]

DAG
SelRan vector

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

1 1 4 7 4 10 13 7 13 16 10 17 18 13 18 19 16 17 18 19

0

1 2

43

7 8

5

6

Fig. 1: Example of a BDG, corresponding GLOUDS and SelRan vector.
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2.5 BDG and Efficient Design Principle of a Look-up Vector by
GLOUDS

BDG consists of a rooted DAG and a set of split functions {Spliti}m−1i=0 , where m
is the number of internal nodes. Given an attribute X ∈ Z, a split function that
is assigned to an internal node performs a greater than operation: Spliti(X ) =
〈ti < X〉 to choose either a right or left child.

BDG in our protocol is mainly represented by a look-up vector v of length
N (also referred to as the SelRan vector), and a vector of ciphertexts [[o]] that
encrypts an offset vector o of length N . v represents the DAG, and o represents
outputs of all the split functions taking a query (a set of attributes). Both v and
[[o]] are held by the party holding the BDG, and the other party traverses the
BDG by obliviously referring to those vectors. v and o are described as:

v[i] =

{
SelRan(B, i) (if B[i] 6= 0)

i (else)
and o[i] =

{
〈θ[i] < Xi〉+ 1 (if τ [i] = I)

0 (else)
,

where Xi is a user’s attribute for the split function that is associated with node
ID(i), τ is a type vector storing the types of each position and θ is a threshold
vector. τ [i] = L(eaf) if node ID(i) is a leaf, τ [i] = Z(ero) if node ID(i) is not
a leaf and B[i] = 0. τ [i] = I(nternal) otherwise. θ[i] is a threshold of a split
function that is associated with node ID(i) when τ [i] = I. θ[i] is set to empty
otherwise. v[p] returns the position of the left delimiter of node ID(p)’s children
and o[p] returns the choice of a child. Therefore, one can compute the position
of next node in B by:

p′ = v[p] + o[p].

Note that the outputs of split functions include both parties’ privacy; hence, the
two parties need to jointly compute [[o]] without revealing their private parame-
ters. We will describe how this is accomplished in Subsection 3.4. v and o allow
self-loop at positions {i | B[i] = 0, 0 ≤ i < N} by setting v[i] = i and o[i] = 0.
If one reaches such position i and node ID(i) is a leaf, one can stay on the same
leaf to conceal the path length from the root toward each leaf. The self-loop
at a non-leaf node can avoid incorrect traversal. The party holding BDG also
prepares label vector z. z[i] is set to a class label associated with node ID(i)
if τ [i] = L and B[i] = 0. Otherwise, z[i] is a random value within the possible
range of class labels.

Figure 2 has an example of these data structures that represent a BDG.
The nodes and edges that are colored in orange show an example of a traversal
from the root node to the node 7 when 〈t0 < x0〉 = 1, 〈t2 < x2〉 = 0 and
〈t4 < x4〉 = 0. The corresponding elements in the table in Figure 2 are also
colored in orange. The traversal starts by referring to v[0] = 1 to know the
next position is v[0] + d0 = 3. Similarly, one can know the next position by
v[3] + d2 = 8, and visits the node 7 by v[8] + d4 = 14. Finally, one reaches the
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position v[14] + 0 = 18 where a self-loop is allowed, and stays at the position
while computing v[18] + 0 = 18.

𝒊 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

ID 0 0 1 2 1 3 4 2 4 5 3 6 7 4 7 8 5 6 7 8

𝐵 1 0 1 1 0 1 1 0 2 1 0 1 1 0 2 1 0 0 0 0

𝒗 1 1 4 7 4 10 13 7 13 16 10 17 18 13 18 19 16 17 18 19

𝒛 𝒓𝟎 𝒓𝟏 𝒓𝟐 𝒓𝟑 𝒓𝟒 𝒓𝟓 𝒓𝟔 𝒓𝟕 𝒓𝟖 𝒓𝟗 𝒓𝟏𝟎 𝒓𝟏𝟏 𝒓𝟏𝟐 𝒓𝟏𝟑 𝒓𝟏𝟒 𝒓𝟏𝟓 𝒛𝟎 𝒛𝟏 𝒛𝟐 𝒛𝟑

𝝉 I Z I I Z I I Z I L Z L L Z L L L L L L

𝜽 𝒕𝟎 𝒕𝟏 𝒕𝟐 𝒕𝟑 𝒕𝟒 𝒕𝟒

𝒐 𝒅𝟎 0 𝒅𝟏 𝒅𝟐 0 𝒅𝟑 𝒅𝟒 0 𝒅𝟒 0 0 0 0 0 0 0 0 0 0 0

𝑑1 = t1 < 𝑥1 + 1
𝑑2 = t2 < 𝑥2 + 1

𝑑0 = t0 < 𝑥0 + 1

𝑑4 =
t4 < 𝑥4 + 1

𝑑3 =
t3 < 𝑥3 + 1

0

1 2

43

7 8

5

𝑧0

𝑧2 𝑧3

6

𝑧1

Fig. 2: Example of representation of BDG by data structures described in Sub-
section 2.5. The vectors at the bottom of the figure represent the BDG on the
left side of the figure. ri is a random value.

It is possible to design more space-efficient SelRan vector and auxiliary vec-
tors. Due to the space limitation, we will describe how we design such vectors in
Subsection 3.5.

2.6 Security definition

Our security definition follows the ideal/real simulation paradigm [8], which is a
mental experiment that proves security by comparing a real execution and ideal
execution, which is secure by definition. In an ideal execution, an incorruptible
trusted party participates in the protocol in addition to the two parties. The
trusted party computes the desired function and distributes the results to the
participants receiving inputs from the participants through a perfectly private
channel.

We formulate the definition of security in the presence of a semi-honest
adversary. We denote the view of the server during an execution of a proto-
col π as viewπS(x, y), where x is the input from the user and y is the input
from the server. Similarly, the view of the user is denoted as viewπU (x, y). Let
outputπS(x, y), outputπU (x, y), be the outputs of the server and the user, respec-
tively. The security of a protocol π, which computes functionality f = (fS , fU )
in the presence of a semi-honest adversary, is defined as follows [8]:

Definition 2 Protocol π is secure if there exist probabilistic polynomial-time
algorithms S1 and S2 such that

{(S1(x, fS(x, y)), f(x, y))}x,y∈{0,1}∗
c≡ {(viewπS(x, y), outputπ(x, y))}x,y∈{0,1}∗ ,

(2)

{(S2(y, fU (x, y)), f(x, y))}x,y∈{0,1}∗
c≡ {(viewπU (x, y), outputπ(x, y))}x,y∈{0,1}∗ .

(3)

When the functionality f is deterministic, we can use the following simpler
definition:
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Definition 3 Protocol π is secure if correctness is satisfied as follows

{outputπ(x, y)}x,y∈{0,1}∗
c≡ {f(x, y)}x,y∈{0,1}∗ , (4)

and if there exist S1 and S2 such that

{S1(x, fS(x, y))}x,y∈{0,1}∗
c≡ {viewπS(x, y)}x,y∈{0,1}∗ , (5)

{S2(y, fU (x, y))}x,y∈{0,1}∗
c≡ {viewπU (x, y)}x,y∈{0,1}∗ . (6)

3 Method

3.1 Problem Setting

We assumed a user had a private attribute vector x, and a server had a private
BDG T , in our protocol. Both x and T must be concealed from the other party.
The user and the server participate in the two-party secure BDG evaluation
protocol. The user only obtains an output of BDG T (x), while he/she gains no
information about the server’s private information except for T (x). The server
obtains nothing. We assumed the user and the server shared three kinds of
information: (1) length of the SelRan vector, (2) height of the BDG, and (3)
length of the attribute vector. We considered a standard adversarial model in
this work: a semi-honest model [8], in which even a corrupted party adheres to
the specifications of a protocol.

3.2 Overview of Our Protocol

Our protocol is composed of two phases: a comparison and an evaluation phase.

Comparison phase: Construct offset vector The server eventually con-
structs and stores the encrypted offset vector without decrypting user inputs in
this phase. The user and the server securely calculate split functions associated
with nodes to achieve this purpose. The server stores all the decisions on which
branch will be selected as ciphertexts. We used a secure comparison protocol to
calculate split functions.

Evaluation phase: Compute class label on BDG Two parties descend from
the root to a leaf in the evaluation phase by recursively referring to the SelRan
vector and [[o]] constructed in the comparison phase. After a leaf is reached, the
user retrieves a label associated with the leaf from the label vector z.

We will first describe several secure two party protocols that will be building
blocks in Subsection 3.3, and then explain how to construct the comparison
phase and evaluation phase in detail in Subsection 3.4. Our protocol can be
seen as a sequential composition of the two protocols, Comparison Phase and
Evaluation Phase. Therefore, security of our protocol is obvious if the underlying
two protocols are secure.
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3.3 Building Blocks

Comparison Protocol A two-party secure comparison protocol that securely
computes 〈x < y〉, is required to calculate split functions in Comparison phase.
We used a variant [34] of the DGK comparison protocol [12] in our implemen-
tation, which is based on additively homomorphic encryption.

While problem settings of comparison protocols vary, we assumed the follow-
ing setting: a user and a server had a plaintext input x and y. Only the server
acquired the encrypted comparison result [[〈x < y〉]]. Since we simply used the
protocol and did not modify it, we will not go into details about the specifica-
tion of the comparison protocol here. When x and y are ` bit integers, the time
complexity and communication of both the user and the server are O(`) in the
DGK comparison protocol.

Recursive Oblivious Transfer The user recursively accesses the server’s
SelRan vector v, in the evaluation phase, i.e., the user repeats querying an el-
ement of v and sets the next query depending on the query result. Not only
queries but also intermediate results sent from the server need to be hidden to
protect private information for both parties. We used a known secure two-party
protocol called recursive oblivious transfer (ROT) [28,31] for this problem.

Assuming a server has a plaintext vector v of length N and a user specifies
a query p0, ROT ensures that the user obtains v[v[. . .v[p0] . . .]] and the server
obtains nothing after an arbitrary number of iterations. ROT consists of σ steps,
where σ is a common parameter between the user and the server. Except for the
initial and the last steps, rest of the steps repeat the same protocol. The initial
step computes the next position starting from the initial position p0 specified by
the user. At the end of the initial step, the user and the server gain shares of the
next position p1 = v[p0]. The k-th step (k = 1, . . . , σ − 2) updates the position
using the shares of the k-th position pk. i.e., the user and the server gain shares
of the next position pk+1 = v[pk], p′k+1 and rk+1 where rk+1 ∈R Z is a random
value. In the last step, the final value v[pσ] is not divided into shares and only
the user knows the value.

For convenience, we denote (p′k+1, rk+1) ← ROT(p′k, rk,v) for the k-th step
of ROT, which takes shares of a query pk (i.e., p′k, rk), and a vector v as inputs,
and outputs p′k+1 to the user and rk+1 to the server. The initial step can also
be represented by this notation by setting 0 to r0. We describes the detailed
procedure of ROT in Appendix B for self-containment. The time complexity and
communication size of one round in ROT is O(N) on both the user and the
server sides due to the cost of OT.

eROT The main goal of eROT is recursive references to the offset vector o when
it is encrypted. Specifying a query p0, the user obtains o[o[. . .o[p0] . . .]] after an
arbitrary number of iterations, and the server obtains nothing. To achieve this
goal, we assumed a server had an N × λ ciphertext matrix Ω, instead of [[o]].
Each row Ω[i] is meant to represent o[i]. More concretely, Ω[i] is a vector, each
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of whose elements is an encrypted bit of UNARYλ(o[i]). For example, o[i] = 0 is
represented by Ω[i][0] = [[1]], Ω[i][1] = [[0]] and Ω[i][2] = [[0]] when λ = 3.

Initial (0-th) step:

1. The server generates a random value r1 ∈R Z, and prepares a vector u′

whose i-th element is masked by r1: u′[i] =
⊕λ−1

j=0 (Ω[i][j] ⊗ (j + r1)mod N )
(namely, u[i] = [[o[i]]],u′[i] = [[(o[i] + r1)mod N ]].) The server stores r1.

2. The user (chooser) and the server (sender) engage in OTN1 (p0,u
′). The user

obtains (p1 + r1)mod N decrypting u′[p0] = [[(p1 + r1)mod N ]].

k-th (k = 1, . . . , σ − 2) step:

The user holds p′k = (pk + rk)mod N and the server holds rk.

1. The server generates a random value rk+1 ∈R Z. Then, the server prepares

a vector u′ whose i-th element is masked by rk+1: u′[i] =
⊕λ−1

j=0 (Ω[i][j] ⊗
(j + rk+1)mod N ). The server stores rk+1.

2. The server rotates u′ by rk elements to obtain û′.
3. The user (chooser) and the server (sender) engage in OTN1 (p′k, û

′), and the
user obtains (pk+1 + rk+1)mod N decrypting u′[pk] = [[(pk+1 + rk+1)mod N ]].

Last step:

The server does not mask u[i](=
⊕λ−1

j=0 (Ω[i][j] ⊗ j mod N )) in the last step to
send a true value to the user.

1. The server rotates u by rσ−1 elements to obtain û.
2. The user (chooser) and the server (sender) engage in OTN1 (p′σ−1, û), and

the user obtains u[pσ−1] = [[pσ]]. The user obtains o[o[. . .o[p0] . . .]] = pσ by
decrypting [[pσ]].

For convenience, we denote (p′k+1, rk+1)← eROT(p′k, rk,Ω) for the k-th step
of eROT, which takes shares of a query pk (i.e., p′k, rk) and a matrix Ω as inputs,
and outputs p′k+1 to the user and rk+1 to the server. The initial step can also
be represented by this notation setting from 0 to r0.

Since the major part of the time complexity is the inner product and OT, the
time complexity on the server side in one round is O(Nλ). The time complexity
on the user side is O(N) per iteration. The communication size per iteration is
O(N) due to the communication size for OT.

We state that the following security theorem is established for eROT.

Theorem 1. eROT is secure in the semi-honest setting.

Proof. Correctness: Each row of Ω is an unary representation of a value, and
hence conducting u′[i] =

⊕λ−1
j=0 (Ω[i][j]⊗(j+r)mod N ) correctly yields an encryp-

tion of (p+r)mod N , where p is the value stored at Ω[i]. Therefore, by performing
the initial step of eROT, the two parties can obtain shares (p1 + r1)mod N and
r1 of the true position p1. In the k-th step, the user’s input p′k = (pk + rk)mod N

to OT is a share of the true position pk, and the two parties can obtain a cor-
rect element by rotating u′ by rk before conducting OT. After decrypting the
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encrypted value obtained by OT, the user knows the share of the next position
pk+1. In the last step, the server does not mask u′ and, therefore by induction
it holds that the protocol correctly outputs o[o[. . .o[p0] . . .]] to the user.
Security: All the messages are exchanged by OT. Considering that secure OT
is used, it is guaranteed that no information of the user is leaked to the server.
Security against a semi-honest user is established by secret sharing. Shares of
intermediate results received by the user are indistinguishable from uniformly
distributed random values due to the property of modular addition. Thus, a
semi-honest user cannot acquire any information from intermediate results. ut

3.4 Secure BDG Evaluation Using GLOUDS and AHE

Comparison Phase The server and the user construct an encrypted matrix
Ω, which corresponds to offset vector o. The comparison phase ensures that no
information from the server or the user will be disclosed, other than the number
of comparisons. The following describes how we constructed Ω. The detailed
algorithm is provided in Algorithm 1.

Construction of F : Each split function is associated with one of positions {j | τ [j] =
I∧0 ≤ j < N}. The server and the user conduct a secure comparison protocol in
Step (1) of Algorithm 1 to securely compute all the comparison results between
attributes and thresholds. The server finally constructs a flag matrix F . We do
not need to compute F [j] if τ [j] 6= I.

Construction of W : The server constructs a matrix W , each of whose rows is
an encrypted 2-bit unary vector that represents an output of a split function.

Construction of Ω: The server constructs Ω in Step (3) based on W and τ . To
make an encryption of UNARY3(〈θ[j] < Xj〉+1), we set Ω[j][0] = [[0]] if τ [j] = I.
If τ [j] 6= I, Ω[j] stores UNARY3(0). Note that the lengths of rows of Ω can be
reduced to 1 when τ [j] 6= I (because the offset is 0). This is because the server
knows the offsets that do not rely on any user information and can minimize the
bit length. To use the reduced form of the offset matrix, we modify the inner
product in each step of eROT to

⊕uj

j=0(Ω[i][j] · (j + r)mod N ), where uj ∈ {1, 3}
is the length of the row. As a result, we can also reduce the time complexity to
O(N), where N is the length of GLOUDS.

Also note that the calculation of an offset can be omitted when the node is
a shadow node. A new type of position for shadow nodes should be defined to
do that to distinguish them from other internal nodes.

We state that the following security theorem is established for Algorithm 1.

Theorem 2. Algorithm 1 is secure in the semi-honest setting.

Proof. Correctness: When an attribute Xj is less than an threshold θ[j],
(W [j][1],W [j][2]) becomes ([[1]], [[0]]), otherwise ([[0]], [[1]]) assuming the correct-
ness of the underlying secure comparison protocol. Therefore, all the rows of Ω
satisfy the condition that they represent offsets in encrypted unary vectors.
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Algorithm 1 Detailed description of comparison phase

– Public inputs: length of GLOUDS (N); height d; length of attribute vector (n)
– Private input of server: threshold vector θ; type vector τ
– Private input of user: attribute vector x

Step (1): Server and User conduct comparison protocol coorperatively and Server
obtains [[〈θ[j] < Xj〉]]. Xj is an element of attribute vector corresponding
to the position j. Server constructs a flag matrix F .

for j ∈ {0, . . . , N − 1} do
if τ [j] = I then
F [j][0]← [[1]], F [j][1]← [[〈θ[j] < Xj〉]], F [j][2]← [[0]]

Step (2): Server constructs W from F

for j ∈ {0, . . . , N − 1}, k ∈ {1, 2} do
if τ [j] = I then
W [j][k]← F [j][k − 1]⊕ (	F [j][k]) . [[UNARY2(〈θ[j] < Xj〉)]]

Step (3): Server constructs an encrypted offset matrix Ω based on W .

for j ∈ {0, . . . , N − 1} do
if τ [j] = Z or τ [j] = L then
Ω[j][0]← [[1]], Ω[j][1]← [[0]], Ω[j][2]← [[0]] . [[UNARY3(0)]]

else if τ [j] = I then
Ω[j][0]← [[0]], Ω[j][1]←W [j][1], Ω[j][2]←W [j][2]

. [[UNARY3(〈θ[j] < Xj〉+ 1)]]

Security: We have assumed that the underlying secure comparison protocol
is secure in the semi-honest setting. Since the procedures after the secure com-
parison protocol only require server side operations on ciphertext, the security
of the comparison phase is guaranteed by the security of the secure comparison
protocol.

Evaluation Phase This section describes the evaluation phase in which the
participants securely descend a BDG using ROT and eROT.

We need to recursively refer to v and Ω by starting from an initial position
p0 = 0 to move from the root to the leaf. The next position pi+1, given a starting
position pi on GLOUDS, which corresponds to the child, is calculated by adding
the pi-th elements of a SelRan vector v, and an encrypted offset matrix Ω. The
next iteration will be executed after the next position pi+1 is set.

The private information of both parties must simultaneously be protected.
There are two main security requirements: (1) the server should not know the
positions specified by the user or the results of the protocol, and (2) v and Ω
held by the server should be concealed from the user. We used ROT and eROT
to recursively refer to v and Ω concealing private information. Algorithm 2
describes the details of the evaluation phase satisfies the previously explained
functionality and security requirements.
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Algorithm 2 Detailed description of evaluation phase

– Public input: length of GLOUDS (N); height d
– Private input of server: SelRan vector v, encrypted offset matrix Ω, label vector z

Step (1): Initialization

B conducts: r1 ← 0, r2 ← 0, r′ ← r1 + r2

A conducts: p′0 ← 0

Step (2): Update the position in GLOUDS by iterating ROT, eROT.

for k = 0 to d− 1 do
Server and User engage in ROT and eROT.
(β′k+1, r1)← ROT(p′k, r

′,v), (ω′k+1, r2)← eROT(p′k, r
′,Ω)

B conducts: r′ ← (r1 + r2)mod N

A conducts: p′k+1 ← (β′k+1 + ω′k+1)mod N

Step (3): Get the output of BDG T (x) from z using OTN
1 (p′d,z).

First, the server and the user start initialization in Step (1). The server sets
r1 = r2 = r′ = 0. The r1, r2 store random values used in the previous iterations
of ROT and eROT, and r′ is sum of r1 and r2 modulo N . The user sets the
initial position p′0 = 0. The two parties engage in ROT and eROT in Step (2)
to update the position on GLOUDS by recursively referring to v and Ω. The
(β′k+1, r1) and (ω′k+1, r2) correspond to random shares of v[pk+1] and an offset
o[pk+1], which can be recovered by using the server’s random values r1, r2, and
rotating look-up vectors (without knowing these values due to the security of
OT). Since the position of the x-th child is determined by SelRan(B, p) + x, the
next query is p′k+1 = (β′k+1 + ω′k+1)mod N . This iteration is conducted d times
regardless of the depth of a leaf, which should be reached. It should be noted
that a position is fixed once it is reached at a position in B with trit 0, which
ensures that the last position is in the position that corresponds to the leaf due
to the definition of v and Ω. Finally, the user obtains the output of the BDG
T (x) from z using OTN1 (p′d, z) in Step (3).

We state that the following security theorem is established for Algorithm 2.

Theorem 3. Algorithm 2 is secure in the semi-honest setting.

Proof. Correctness: Due to the way the look-up vector v and Ω are con-
structed, it is obvious that the evaluation phase can correctly compute v[pk] +
o[pk] in k-th step, if v and Ω are not randomized. v is randomized by r1 and Ω
(i.e., o) is randomized by r2. Since following equation is established by consid-
ering the property of modular addition,

{p′k+1 − r′}mod N = {(β′k+1 − r1) + (ω′k+1 − r2)}mod N

= v[pk] + o[pk] = pk+1,
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p′k+1 = (β′k+1 +ω′k+1)mod N and r′ = (r1 + r2)mod N are the shares of pk+1, hence
one can obtain shares of v[pk+1] and o[pk+1] by conducting ROT and eROT with
the same arguments p′k+1 and r′. The label corresponding to the leaf is obtained
by OT in Step (3). Therefore, by induction it holds that the evaluation phase
correctly outputs T (x).

Security: Since the functionality of the evaluation phase is deterministic, we
can state Definition 3 for the analysis. In the following, we prove Eqs. (5) and
(6) are established. We assume to use OT protocol described in the Appendix A.

Security against semi-honest server:
Algorithm S1 can be constructed as follows:

1. It outputs a dummy query vector consisting of N ciphertexts [[0]] to simu-
late each step of ROT and eROT. Note that in Algorithm 2, the user sends
only one ciphertext vector that represents r′, and the server uses the same
ciphertext for ROT and eROT. Therefore it is sufficient for S1 to generate N
ciphertexts.

2. It repeats Step 1 for d times.
3. It output a dummy query vector consisting of N ciphertexts [[0]] to simulate

OT in the final step.

Since all the messages received by the server are ciphertexts, the view of the
server and the outputs of the simulator are computationally indistinguishable
by a standard hybrid argument due to the semantic security of the underlying
public-key encryption scheme. Thus, Eq. (5) is established.

Security against semi-honest user:
In the evaluation phase, two types of OT protocol is used. OTA is used in

ROT and Step (3) in Algorithm 2 and OTB is used in eROT. Note that OTA
sends only a single ciphertext to the user while OTB sends N ciphertexts to the
user. See Appendix A for more details about OTA and OTB . Algorithm S2 can
be constructed as follows:

1. S2 simulates 0-th round of Step (2) in Algorithm 2. It generates a dummy
intermediate of ROT [[b]], where b ∈R [0, N), and a dummy intermediate of
eROT [[v]] = [[(w0, . . . , wN−1)]] where w0 ∈R [0, N) and w1, . . . , wN−1 ∈R Zp.
It stores p1 = (b+ w0)mod N

2. S2 simulates k-th round of Step (2) in Algorithm 2. It generates a dummy
intermediate of ROT [[b]], where b ∈R [0, N), and a dummy intermediate of
eROT [[v]] = [[(w0, . . . , wN−1)]] where wpk ∈R [0, N) and {wi | i 6= pk ∧ i ∈
{0, . . . , N − 1}} ∈R Zp. It stores pk+1 = (b+ wpk)mod N .

3. It repeats Step 2 for d− 1 times.
4. S2 generates [[T (x)]] to simulate Step (3) in Algorithm 2.

The additive secret share β′ received by the user in each iteration of ROT
is uniformly random over [0, N) due to the property of modular addition. For
the intermediate of eROT in k-th round of Step (2) in Algorithm 2, the p′k-th
element ω′ is uniformly random over [0, N) and the other elements are uniformly
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random over Zp. p′k+1 = (β′+ω′)mod N and p′k+1-th element is uniformly random
over [0, N) in (k+1)-th round. Therefore, the distributions of the outputs of S2

and the view of the user are identical. Thus, Eq. (6) is established. ut

3.5 Reducing lengths of look-up vectors

The original GLOUDS supports a traversal both from a parent to its child and
from a child to its parent; however, in BDG, only one-way traversal, i.e., from a
parent to its child is necessary. Therefore, the SelRan vector includes redundant
information. This section describes how we designed the SelRan vector with
minimum required length for BDG evaluation. In fact, we could reduce the length
of the SelRan vector to the number of edges from the sum of the number of
edges and the number of nodes. This resulted in reduced computational and
communication costs in the evaluation phase, and these costs could be reduced
by half if a DAG of BDG is a tree.

The basic idea underlying our approach was to delete elements that did not
need to be visited. As you might have already noted, B[p] = 0 is not visited
during the traversal except for leaves, and when it corresponds to a leaf, the
move to trit 0 from trit 1 or 2 is redundant. Since we have as many such trits
in B as the number of all nodes in DAG, we can reduce such elements from
the SelRan vector. We constructed the look-up vector v in the following way.
First, we constructed two index data structure traversing nodes in level order
as in the construction of GLOUDS. Note that shadow nodes were not revisited.
Child nodes of visited nodes were stored in a vector u, while traversing. We
simultaneously constructed a dictionary s that mapped a visited node to the
index of u in which its children started to be lined up. The look-up vector v
was constructed by referring to u and s. The i-th element of v[i] should be
the position where the children of u[i] start to line up, viz., v[i] = s[u[i]].
Exceptionally, when the node associated with the i-th element is a leaf, v[i] = i.
The data structures to represent a BDG also needed to be modified. Thresholds
were stored in the positions associated with internal nodes, and labels were
stored in the positions corresponding to leaf nodes. There is an example of the
modified data structures representing a BDG in Figure 3.

Since the modified data structures were built with the same design principle
as that of the original, what was modified in the protocol was only the construc-
tion of the encrypted offset matrix. Specifically, each offset was decreased by 1.
Therefore, the algorithm for the comparison phase was modified as Algorithm 3.

3.6 Complexity

This subsection discusses the asymptotic time complexity and communication
complexity of our protocol. The majority of computational and communication
costs in the comparison phase are due to the comparison protocol and the con-
struction of an encrypted offset matrix. The time complexity of the comparison
protocol on the whole is O(`m) on the server side. It is O(`(n + m)) on the
user side by considering the encryption of an attribute vector and decryption
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Algorithm 3 Detailed description of modified comparison phase

– Public inputs: length of GLOUDS (N); height d; length of attribute vector (n)
– Private input of server: threshold vector θ; type vector τ
– Private input of user: attribute vector x

Step (1): Server and User conduct comparison protocol coorperatively and Server
obtains [[〈θ[j] < Xj〉]]. Xj is an element of attribute vector corresponding
to the position j. Server constructs a flag matrix F .

for j ∈ {0, . . . , N − 1} do
if τ [j] = I then
F [j][0]← [[1]], F [j][1]← [[〈θ[j] < Xj〉]], F [j][2]← [[0]]

Step (2): Server constructs W from F

for j ∈ {0, . . . , N − 1}, k ∈ {1, 2} do
if τ [j] = I then
W [j][k]← F [j][k − 1]⊕ (	F [j][k]) . Encryption of

UNARY2(〈θ[j] < Xj〉)
Step (3): Server construct an encrypted offset matrix Ω based on W .

for j ∈ {0, . . . , N − 1} do
if τ [j] = L then
Ω[j]← ([[0]], [[1]]) . Encryption of UNARY2(0)

else if τ [j] = I then
Ω[j]← (W [j]) . Encryption of UNARY2(〈θ[j] < Xj〉)

of intermediate results. The construction of an encrypted offset matrix requires
O(N) computational cost as the computational cost is linear to the sum of
the lengths of its rows. Therefore, the total time complexity of the comparison
phase is O(`m+N) on the server side and O(`(n+m)) on the user side. Since
an encrypted offset matrix is constructed offline, all of the communication cost
is required by the secure comparison protocol. The communication cost for the
server is O(`m) and that for the user is O(`n + m) in the comparison phase.
The time complexities of both the server and the user are O(dN) for the eval-
uation phase. This is because ROT and eROT require O(dN) computational
cost. The communication cost is also O(dN). We have summarized the time and
communication complexity in Table 1.

4 Experiments

We evaluated the efficiency of our protocol with experiments under various set-
tings. We implemented our protocol, which is secure against the semi-honest
model using the C++ library of elliptic curve Elgamal encryption [24]. We used
secp256k1 for the security parameters of lifted-Elgamal, which is secure at the
128-bit security level [9]. We used a standard desktop PC with a Xeon 3.40-GHz
processor for the server and a standard desktop PC with a Xeon 2.40-GHz pro-
cessor for the user (1 thread each). Both the server and the client were in the
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Fig. 3: Example of construction of modified data structures representing BDG.

Table 1: Time complexity and Communication of each phase of our method. (S:
Server; U: User) d is the height of a DAG, ` is the bit length of user’s and server’s
inputs, m is the number of split functions, n is the number of nodes in a DAG
and N is the length of B.

Phase Time Communication # rounds

Comparison(S) O(`m+N) O(`m) 2
Comparison(U) O(`(n+m)) O(`n)
Evaluation(S) O(dN) O(dN) d+ 1
Evaluation(U) O(dN) O(dN)

same local area network (LAN) in our experiments. Note that the look-up tables
were modified in the way described in Subsection 3.5 in the experiments.

4.1 Experiment on Simulated Dataset

First, we will present the results obtained from experiments on the simulated
dataset. The dataset was composed of pairs of BDGs and attribute vectors. We
varied the height d of the BDGs from 16 to 20 one by one, while fixing the number
of nodes to 1110 (the number of comparisons m was 557.) and the lengths of
attribute vectors n to 395. These parameters (except for d) were taken from
Brickell et al. [6] to enable performance to be later compared in Section 4.3.
Figures 4 plots the CPU time and communication size of the server and the
user in our protocol. We observed that even when height d was 20, our protocol
finished within a practical timeframe and communication size (27 s and 14MB).
We also confirmed that the CPU time and communication size of both the server
and the user were linear to d, which is consistent with theoretical complexity.

4.2 Experiments in Various Latency Network Environments

We also confirmed that runtime overhead caused by network latency was not
too large. We measured the runtimes of our protocol on the BDG with a depth
of 20 that was included in our simulated datasets by varying the latency of the
network by using the tc command of Linux. Figure 5 summarizes the results.
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Fig. 4: CPU time (s) of server and user, and communication size (MB) on
simulated datasets. We varied d from 16 to 20 while fixing other parameters
(m = 557, n = 95, and N = 1110.)

Fig. 5: Experimental results with BDG of d = 20, N = 1110,m = 557 and
n = 395 in various latency network environments. We varied delay from 0 to 300
by using the tc command and measured runtime of the protocol.
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Since our protocol requires d + 3 communication rounds, the increase in
runtime is relatively large. However, even when network latency is 300ms, the
runtime is about 1min. Additionally, the regional round trip times (RTTs) are
less than 45ms [33] (in these cases, the increase in runtime caused by network
latency will be 6 s at most), and even for the trans-Pacific, the RTTs are less
than 150ms.

4.3 Comparison to Conventional Methods

Brickell et al. [6] proposed a O(n+ `N + d) time BP (BDG) evaluation method
based on AHE and Garbled Circuit. [6] reported the performance of their pro-
tocol on a BDG (1107 nodes and 395 attributes) as 302 s in CPU time and
25MB in communication size. Since the exact topology of the BDG they used
was unshown, we conducted an experiment on BDGs that have the same num-
ber of nodes and attributes with various heights for fair comparison. The results
revealed that our method maintained 11 times better performance in runtime
(26 s) than that of [6] and required 1.8 times less communication size (14MB)
even when the DAG is as high as d = 20. Barni et al. proposed a privacy-
preserving evalution method of LBP which is a generalization of BP. The time
complexity of this method is O(n+m`′+d) where `′(> `) is bit length of thresh-
old. Barni et al.’s [4] performance on the ECG dataset (d = 4,m = 6 and n = 4)
was 6.8 s in computation (without network communication) and 0.1122MB in
communication size. The performance of our method with the same parameters
was about 8.85 times better (0.768 s) than [4] in terms of computational cost,
although our method incurred slightly more cost in communication (0.156MB).
Additionally, the security level in our experimental setting was higher than that
of [4, 6]. (They conducted experiment at a 80 bit security.)

4.4 Detailed Comparison with Methods Specialized in DT

We also conducted experiments on DTs trained using several real datasets used
by conventional methods [5, 30, 35]. Even compared to the methods specialized
in DT, the experimental results showed that the performance of our method
exceeds that of Bost et al.’s method [5] and is almost equivalent to those of Wu
et al.’s and Tai et al.’s methods [30,35].

The experimental results from Bost et al. [5] on the ECG dataset were 4.020 s
in computation (without network communication) and 3.555MB in communica-
tion size. Compared to Bost et al. [5], the runtime of our method was over 8 times
better than the computational time (0.768 s) of Bost et al. [5], and required 21
times lower communication size (0.156MB).

Table 2 summarizes the runtime and communication size of Tai et al. and
Wu et al. [30,35] and our protocol. Since the experimental environments of ours
and Wu et al.’s [35] were different, the numbers for our method in Table 2 were
adjusted by multiplying the ratio of CPU frequencies. The security level in our
experiments was equivalent to that of Tai et al. and Wu et al. [30,35]. Compared
to Wu et al.’s method [35], our protocol had an advantage on deep decision trees.
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Table 2: Experimenetal results on real datasets of [30, 35] and our method.
d, m and n respectively stands for a depth of a decision tree (without super
root in GLOUDS), the number of internal nodes and dimention of attributes. It
should be noted that for resutls of [30, 35], we used the numbers shown in the
paper [30, 35]. Their benchmarks are performed on 2.30 GHz CPU for a client
and 2.60GHz CPU for a server.

Dataset d m n Method Run time (s) Comm. (MB)

Wu et al. 0.370 0.117
Heart disease 3 5 13 Tai et al. 0.250 0.140

Our method 0.474 0.166

Wu et al. 0.551 0.095
Credit screening 4 5 15 Tai et al. 0.270 0.160

Our method 0.491 0.186

Wu et al. 0.545 0.206
Breast cancer 8 12 9 Tai et al. 0.340 0.170

Our method 0.757 0.247

Wu et al. 4.08 1.91
Housing 13 92 13 Tai et al. 1.98 0.850

Our method 4.52 1.60

Wu et al. 16.6 17.8
Spambase 17 58 57 Tai et al. 1.80 0.920

Our method 3.74 1.54

When d = 17,m = 58, and n = 57, our method achieved about a 4 fold faster
runtime. The performance of [35] slightly exceeded that of our method in several
cases; however, the differences between the two methods in this experiment were
less than 0.5 s in runtime (housing). This was because our protocol had better
asymptotic complexities of computation and communication costs than those
of [35]. Table 3 summarizes the complexities of [35] and our method. Wu et al.’s
method [35] required exponential computational time and communication size
on the server side. The complexity of our method, on the other hand, was worse
than that of Tai et al. [30]. The computation and communication costs of Tai et
al.’s method [30] were linear to the number of internal nodes and did not depend
on the heights of trees, as listed in Table 3. However, the results summarized in
Table 2 indicates that in practice, our method only incurred slightly more costs
even for DTs, compared to the fastest secure method of DT evaluation, despite
its extensibility to BDGs.

Evaluation of DT Equivalent to BDG The methods specialized in DTs
can be used for BDGs by transforming a BDG into an equivalent DT, however,
their computational costs increase along with the increase of redundant nodes
and edges incurred by the transformation. Therefore, while the state-of-the-art
method by Tai et al. [30] performed slightly better than our method for DT
evaluation, its runtime became worse than our method’s runtime when it is
tested on complex BDGs.
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Table 3: Time and communication complexities of conventional methods [30,35]
and the proposed method. S: Server; U: User

Time Communication # rounds

Wu et al. [35](S) O(`m+ 2d) O(`m+ 2d) 3
Wu et al. [35](U) O(`(n+m) + d) O(`n+m)
Tai et al. [30](S) O(`m) O(`m) 2
Tai et al. [30](C) O(`(n+m)) O(`(n+m))
Proposed(S) O(`m+ dN) O(`m+ dN) d+ 3
Proposed(U) O(`(n+m) + dN) O(`n+m+ dN)

Table 4: Computational cost of each public
key operation.

time (ms)

⊕ 1.40619

⊗ 22.3278

Encpk 284.127

Decsk 103.976

3

Fig. 6: Abstract structure of
BDG used in the experiment on
BDGs

Let m′ be the number of nodes of the tree that is equivalent to such the BDG.
Then, the numbers of operations required for Tai et al’s method excluding those
of secure comparison protocol, which is a common part with our method, are as
follows; Addition: 4m′, Multiplication: 3m′, Encryption: m′, Decryption (aver-
age): m′/2. Our method requires (3d+ 5)N additions, (4d+ 6) multiplications,
N(d + 2) + d + 5 encryptions, 2(d + 2) decryptions in amount. We measured
computational costs of each operation in pre-experiment and summarized the
results in Table 4.

For example, let us consider BDGs that have the diamond-shaped structures
surrounded by arrows outlined in Figure 6. When the number of diamond is 6,
d is 20, m is 250, N is 494 and hence m′ is 15037, the number of the internal
nodes of the equivalent DT is 15037, which is 60 times larger than original BDG.
When the number of diamond is 6, we estimated the computational cost of Tai
et al’s method to be 6.15s (excluding 10.9s of DGK comparison protocol) and
our method is estimated to be 4.09s

5 Conclusion

We proposed an efficient protocol for evaluating BDGs, which was designed by
AHE and did not use heavy cryptographic primitives, such as fully homomor-
phic encryption. The protocol obliviously evaluated a look-up table that was
constructed based on GLOUDS to achieve linear time and communication com-
plexities. We also proposed a design principle for the look-up tables to further
reduce the table size. The results obtained from the experiments indicated that
the actual runtime and communication size were well concordant with theoreti-
cal complexities and that the runtime of our method was an order of magnitude
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faster than that in the previous approaches [4, 6]. We also confirmed that our
method was even faster for the DT evaluations compared to a previous approach
that specialized in DT [35] when the tree was deep. Our method demonstrated
a runtime in an experiment with BDGs that was faster than the state-of-the-art
method of DT evaluation [30] that took advantage of the fact that a graph with
information equivalent to that in a tree was much more compact than the tree.
These results confirmed the efficiency of our method, and we also hope that it
will contribute to secure utilization of valuable classifiers that aggregate knowl-
edge extracted from abundant data resources. Another remarkable feature of
our protocol is that it directly simulates step-by-step graph traversal, whereas
other efficient methods [30,35] reformulate the graph traversal as an evaluation
of polynomial equations. By using an additional look-up table, our protocol en-
ables traversals both to ascendant and to descendant. Such a feature could be
useful for various applications that require more complex graph traversal (i.e.
searching on DFA).
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A OT implementation

While there are several efficient implementations that achieve OTN1 functionality,
we use a simple three step protocol based on additively homomorphic operation.

1. The user prepares a binary query vector q, that consists of N − 1 zeros and
a one at the i-th element. The user sends [[q]] to the server.

2. The server computes inner product [[q ·v]] = [[v[i]]], and computes [[v[i]]]⊕ [[0]]
for a random ciphertext [[0]] of plaintext 0 and sends it to the user.

3. The user decrypts the result and obtains v[i].

This implementation requires O(N) computational cost and communication size
due to N encryptions (user), N multiplications (server), and a transmission of
N ciphertexts.

In principle, various OT protocols can be used for the eROT, however, this
implementation does not efficiently work for eROT, if it is implemented with the
lifted-Elgamal encrytption, because of its restriction on the message size. (i.e.,
the protocol needs to decrypt an encryption of a ciphertext.) In order to use
the encryption scheme like the lifted-Elgamal, here we also propose another OT
protocol in which the server masks all elements by using random values in the
range of plaintext of lifted-Elgamal encrytption except for the element the user
chose. The server can only keep a chosen element unmasked by creating masks
in the following manner: the server flips each bit of the query vector, multiplies
them by different random values, and then adds each element to each encrypted
message. The user only obtains the unmasked element. For further discussion in
Section 3.4, we call the first protocol OTA and the latter one OTB .

B Details of ROT

The detailed description of ROT is as follows:
Initial (0-th) step:

1. The server generates a random value r1 ∈R Z and prepares a vector v′ whose
i-th element is masked by r1 (v′[i] = (v[i] + r1)mod N ). The server stores r1.

2. The user (chooser) and the server (sender) engage in OTN1 (p0,v
′). The user

obtains v′[p0] = (p1 + r1)mod N .

k-th (k = 1, . . . , σ − 2) step:
The user holds p′k = (pk + rk)mod N and the server holds rk.
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1. The server generates a random value rk+1 ∈R Z, and the server prepares a
vector v′ whose i-th element is masked by rk+1 (v′[i] = (v[i] + rk+1)mod N ).
The server stores rk+1.

2. The server rotates v′ by rk elements to obtain v̂′.
3. The user (chooser) and the server (sender) engage in OTN1 (p′k, v̂

′). The user
obtains v′[pk] = (pk+1 + rk+1)mod N .

Last step:
The server does not mask v[i] so that a true value can be sent to the user.

1. The server rotates v by rσ−1 elements to obtain v̂.
2. The user (chooser) and the server (sender) engage in OTN1 (p′σ−1, v̂). The

user obtains v[pσ−1] = pσ.


