
SoK: Off The Chain Transactions
Lewis Gudgeon

Imperial College London
l.gudgeon18@imperial.ac.uk

Patrick McCorry
King’s College London

patrick.mccorry@kcl.ac.uk

Pedro Moreno-Sanchez
TU Wien

pedro.sanchez@tuwien.ac.at

Arthur Gervais
Imperial College London, Liquidity Network,

Lucerne University of Applied Sciences and Arts
a.gervais@imperial.ac.uk

Stefanie Roos
TU Delft

s.roos@tudelft.nl

Abstract—Blockchains have the potential to revolutionize mar-
kets and services, yet, currently exhibit high latencies and fail
to handle loads comparable to those managed by traditional
custodian financial systems. Layer-two protocols, built on top of
(layer-one) blockchains, avoid disseminating every transaction to
the whole network by sending transactions off-chain and instead
utilize the blockchain only as a recourse for disputes. The promise
of layer-two protocols is to complete transactions in sub-seconds,
reduce fees, and allow blockchains to scale.

With this Systematization of Knowledge, we are the first to
structure the complete rich and multifaceted body of research on
layer-two transactions. Categorizing the research into payment
and state channels as well as commit-chains, we provide a
comparison of the protocols and their properties. We contribute
a systematization of the associated synchronization and routing
protocols along with their privacy and security aspects. Contrary
to common belief in the blockchain community, we show that
layer-two can scale blockchains; that layer-two protocols are
secure without full collateralization; that privacy of layer-two
transaction is not granted by default; and that fees depend on
the transmitted transaction value. The SoK clears the layer-two
fog, highlights the potential of layer-two solutions and identifies
their unsolved challenges and promising avenues of future work.

I. INTRODUCTION

The advent of blockchains over a decade ago [1]–[4] spurred
rapid and extensive innovation across different scientific dis-
ciplines. Blockchains offer a mechanism through which mu-
tually mistrusting entities can cooperate in the absence of a
trusted third party. However, the use of broadcast in those
non-custodial protocols limits their scalability to about ten
transactions-per-second (tps) [5], [6], compared to custodian
payment systems with thousands of tps [7]. Scaling limita-
tions and transaction latencies have led to a rich literature
corpus exploring different blockchain scaling solutions: (i)
alternative blockchain consensus architectures [8]–[17], (ii)
sharding [18]–[20] and (iii) side-chains [21], some of which
were systematized in related work [22].

Layer-two protocols are an orthogonal scaling solution.
Contrary to the prior-mentioned solutions, layer-two proto-
cols scale blockchains without changing the layer-one trust
assumptions and they do not introduce additional consensus
mechanisms. Backward compatibility is crucial for widely
adopted blockchains, because once deployed, a blockchain’s
consensus mechanism is challenging to modify due to its

decentralized structure. Consensus changes might even lead
to different, forked systems [23]. Layer-two protocols enable
users to perform so-called off-chain transactions through pri-
vate communication, rather than broadcasting the transaction
on the (parent) blockchain. This optimization reduces the
transaction load on the underlying blockchain and is fully
backward compatible. The theoretical transaction throughput
is only bounded by the communication bandwidth and latency
of the involved parties. Off-chain transaction security can be
guaranteed via allocated collateral, e.g. in payment channel
designs [24]–[27] or by offering delayed transaction finality
in commit-chain proposals [28].

A. This Systematization of Knowledge

A rich body of literature has emerged on off-chain protocols,
proposing payment [24]–[27], [29], state [30] and virtual [31]
channels, payment channel networks (PCNs) [27], [29] and
related routing protocols [32]–[37], channel rebalancing [38]
and channel factories [39] constructions, commit-chains [28],
[40], channel hubs [41], [42], privacy-enhancing channels [41],
[43]–[45]. However, the sources of information about layer-
two protocols are highly disparate. Moreover, in part due to the
rapid pace of advancement in the blockchain field, we observe,
mostly outside academia, a frequent under-specification of
constructions and their adversarial assumptions. This makes it
exceedingly difficult to discern thought-through concepts from
marketing activities. We aim to clear the fog surrounding layer-
two protocols, equipping newcomers to this inaccessible field
with a concise reference, and inform the directions of future
work. This SoK provides a systematic overview of layer-two
systems and identifies the complete set of proposed layer-two
protocol types. We scrutinize the following myths.
Myth 1: blockchains cannot scale significantly — either in

terms of throughput and computational complexity —
without advances at layer-one, such as through novel or
more efficient consensus mechanisms.

Myth 2: layer-two solutions can only be secure if the off-
chain transaction volume is fully collateralized.

Myth 3: by default, off-chain transactions offer privacy.
Myth 4: blockchain transaction fees depend on their size or

computational complexity, not on the transaction value.

Fig. 1. Suggested blockchain layers. Layer-two channels and commit-chains
operate without additional consensus mechanism and transact payments, state,
and spawn networks.

This SoK is structured as follows. Section II outlines the
necessary background followed by different layer-two design
classes, channels in Section III and commit-chains in Sec-
tion IV. Section V considers the anonymity and privacy aspects
of layer-two protocols, Section VI covers security properties
and we conclude the paper in Section VII.

II. BLOCKCHAINS AND OFF-CHAIN TRANSACTIONS

This section establishes the necessary background and iso-
lates the blockchain components relevant to layer-two. The
background presented here is necessarily not a complete
overview of blockchain-related concepts, which have been
surveyed in others SoK [22], [46]. We distinguish between
four different layers within a blockchain system: the hardware,
layer-zero, layer-one and layer-two (cf. Figure 1).

a) Hardware Layer: Trusted Execution Environments
(TEE) substitute the need for a blockchain clock with a
trusted hardware assumption, thus enabling efficient protocols
at other layers such as off-chain payments [47], [48], the
removal of dispute processes and backward compatibility [49].
TEE (e.g. Intel SGX) execute sensitive or security-critical
application code within enclaves [50], [51], tamper-proof from
the operating system or other higher-privileged software.

b) The Network Layer: The network layer, or layer-zero,
is typically a peer-to-peer layer on which blockchain nodes
exchange information asynchronously [52]. The network layer
is of utmost importance to the scalability [53], [54], secu-
rity [5] and privacy [55] of a blockchain. An efficient layer-
zero enables higher transaction throughput and stronger re-
silience against malicious actors [5]. Blockchain miners, who
write transactions to the blockchain, are connected through
dedicated miner P2P networks (e.g. Fibre [56]), in addition to
the public blockchain P2P network.

c) The Blockchain Layer: Layer-one hosts an immutable
append-only chain of blocks that accumulates transactions
from parties in a network [46]. Each transaction encodes
an update of the state of the blockchain. A transaction can
exchange digital assets between parties or invoke an applica-
tion (i.e. smart contract). The integrity of the blockchain is

ensured by means of a consensus algorithm executed across
participants. Consensus algorithms rely on e.g. the compu-
tationally expensive Proof-of-Work (PoW) [1], [17], [57]–
[59] or a large number of alternatives [12], [13], [60]–[64].
Blockchains can be permissionless or permissioned depending
on whether participation is open or restricted. We focus
on permissionless blockchains as permissioned blockchains
lack the non-custodial property, but layer-two concepts apply
equally to permissioned blockchains. Crucial for the design of
layer-two protocols is the scripting language of the underlying
blockchain. Bitcoin-like blockchains are based on a restricted
Script language [1] and operate via a set of Unspent Transac-
tion Outputs (UTXO), while other blockchains support Turing-
complete languages enabling highly expressive smart con-
tracts [2]. Layer-two protocols typically assume two properties
from the blockchain layer: integrity (i.e. only valid transactions
are added to the ledger) and eventual synchronicity with an
upper time-bound (i.e. a valid transaction is eventually added
to the ledger, before a critical timeout).

d) The Off-chain Layer: We define off-chain or layer-
two protocols as protocols that i) do not publish every trans-
action on the blockchain immediately (contrary to on-chain
transactions) and ii) entirely rely on the consensus algorithm
of a parent-chain. Off-chain protocols come in two flavors.
Channels are formed between n coequal parties whereas
commit-chains rely on one central but untrusted intermediary.
Side-chains [21] do not classify as layer-two due to having
their own consensus algorithm.

III. CHANNELS

A channel establishes a private peer-to-peer medium, gov-
erned by pre-set rules, e.g. a smart contract, allowing the
involved parties to consent to state updates unanimously by
exchanging authenticated state transitions off-chain. We pro-
vide an overview of state-of-the-art channel constructions in
Table I where we distinguish between two channel techniques:

• Payment channels: Off-chain payment interactions.
• State channel: Off-chain arbitrary interactions.
Payment channels emerged [24] to support rapid one-way

payments, then transitioned towards bi-directional channel de-
signs [27], where both parties can issue and receive payments.
State channels [30] generalize the concept to support the
execution of arbitrary state transitions.

A. Channel Overview

A channel allows n parties to agree, via unanimous con-
sent, to a new state of a previously agreed smart contract.
A channel’s lifetime consists of three phases: (i) channel
establishment, (ii) transition and (iii) disputes1.

a) Channel Establishment: All parties cooperatively
open a channel by locking collateral on the blockchain (cf.
Figure 2). The funds can only be released by unanimous
agreement or through a pre-defined refund condition.

1While earliest channel protocols differ slightly from the above three-part
state replacement technique, they nonetheless fit within the framework of
unanimous consent coupled with the local verification of state transitions.

Fig. 2. Payment channel funding (UTXO model) and off-chain transaction.

b) Channel Transitions: Once the channel is open, all
parties can update the channel’s state in a two-step process.
First, one party proposes a new state transition by sending
a signed command and the new statei to all other par-
ties. Each party computes the state transition as statei ←
Tα(statei−1, cmdα), where Tα denotes the transition function
for application α and cmdα denotes a given command relevant
to application α. Second, all other parties re-compute the state
transition to verify the proposed state before signing it and
sending their signature to all other parties.

c) Channel Disputes/Closure: If an honest party does not
receive n signatures before a local timeout, it assumes that
there has been a disagreement about the proposed state. The
honest party may trigger a layer-one dispute and enforce a new
state transition without the cooperation of the other parties.

We generalize [30], [31] the properties and security guar-
antees for responsive parties offered by channels:

Unanimous Establishment: A channel is only considered
open if all n parties agree to its establishment.

Unanimous Transition: A transition on layer-two, i.e. with-
out an on-chain dispute, requires all n parties to agree.

Balance Security: An honest party can always withdraw the
agreed balance from the channel with an on-chain dispute.

State Progression: A party can at anytime enforce an off-
chain state transition on-chain, the state machine thus
always reaches a terminal state.

TABLE I
OVERVIEW OF DIFFERENT CHANNEL DESIGN PROPOSALS.

Channel Throughput Dispute Watchtower Security
technique bottleneck mechanism storage proofs

RbI

Spilman [24], [65] Payment Sender deposit Closure O(1) 5
Raiden [29] Payment Network Closure O(1) 5

RbI & Time Lock

DMC [26] Payment Channel resets Closure O(1) 5

RbR

Lightning [27] Payment Network Closure O(N) 5

RbV

Sprites [30] State Network Command O(1) 3
PISA Sprites [66] State Network Command O(1) 5

Perun [31] State Network Closure O(1) 3
Counterfactual [67] State Network Command O(1) 5

Kitsune [68] State Network Closure O(1) 5

Fig. 3. Payment channel update (UTXO model), invalidate outdated state.

B. State Replacement Overview

Channel constructions are inherently based on state replace-
ment techniques (cf. Figure 3). These techniques assume that
participants in a channel are rational and follow the strategy
with the highest payoff (e.g. a user publishes an older state
if it represents a payment of higher value for this user).
To be applicable for the wide range of protocols used to
realize channels, the following section discusses generic state
transitions. We distinguish four state replacement techniques:

• Replace by Incentive (RbI). A sender shares newly au-
thorized states with a receiver. A rational receiver only
signs and publishes the state that pays the highest amount.

• Replace by Time Lock (RbT). Every state is associated
with a time lock2, which decrements every time the
state changes. The state with the lowest time lock is
considered the latest state, as it can be accepted into the
blockchain before all previously authorized states. Once a
channel closes, the state that is included in the blockchain
deprecates all other states.

• Replace by Revocation (RbR). All parties collectively
authorize a new state before revoking the previous state.
Upon dispute, the blockchain provides a time period for
parties to prove that the published state is a revoked state.

• Replace by Version (RbV). States have a monotonic
increasing counter representing the state version. Upon
dispute, the authorized state with the highest state version
is considered the latest state. A new state replaces a
previous state if it has a larger version number.

For RbI and RbT , the latest state can only be written to the
blockchain once. RbR and RbV introduce a dispute process
where the counter-party can provide evidence that a state
submitted to the blockchain is invalid. After the dispute, the
off-chain contract can either be re-deployed to the blockchain
(i.e. closure dispute, cf. Section III-D1) or a set of commands
can be executed via the blockchain (i.e. command dispute,
cf. Section III-D2). The introduction of a dispute process
introduces a new assumption critical to the channel’s security;
the always online assumption [66] (cf. Section VI). Watching
services mitigate the assumption by allowing users to delegate
their responsibility of raising disputes to a third party.

2Time locks define either absolute time expressed as a blockchain block
height, or relative time expressed as the number of blocks that must elapse
after a transaction is included in the blockchain.

C. Payment Channels

We here present the evolution of payment channel designs.
1) Replace by Incentive: Spilman [65] presented the first

major step towards secure (unidirectional) payment channels
based on the RbI mechanism, implemented in Bitcoinj [24],
[25]. This channel allows a sender to issue payments to a
recipient, but the recipient cannot send the funds back through
the same channel. To create a channel, the sender locks a
deposit on-chain. The deposit can be refunded (i.e. the channel
closed) if one of the following two conditions are met: (i)
the sender retrieves their deposit after time t or (ii) both the
sender and receiver authorize the release of the deposit. The
channel state is represented as the balance of funds of both
parties within the channel. To issue a payment, the sender
signs a new state that monotonically decrements the sender’s
balance and monotonically increments the receiver’s balance.
The signature and the new state are sent to the receiver who
can either (i) immediately sign and publish on-chain the new
state to claim the payment, or (ii) wait for a new state from the
sender that pays more coins. For the recipient, it is safe to wait
for new states from the sender, because the on-chain deposit
cannot be refunded to the sender until time t is reached3. The
sender can continuously send new payments to the receiver
until either the sender’s balance is depleted or the receiver
decides to close the channel before time t. When closing the
channel, a rational receiver publishes the latest received state
to settle with the highest amount of coins. To our knowledge,
unidirectional payment channels are the only type of channel
that allow the sender to remain safely offline, without the
risk of losing funds. The throughput (number of transactions)
of a unidirectional payment channel is limited by the size
of the sender’s deposit and the smallest denomination of the
cryptocurrency asset. A deposit of e.g. 1 coin allows at most
108 transfers assuming a minimum denomination of 10−8.

A pair of RbI channels can be combined to support
bidirectional payments [29]. Unlike single RbI channels, the
sender increments coins owed to the receiver and the value
can go beyond the sender’s deposit. When the channel is
closed, the smart contract computes the offset of the coins
owed in both RbI channels before sending each party their
final balance.

2) Replace by Time Lock: In a UTXO-based blockchain,
RbT allows the construction of bidirectional payment chan-
nels. Each state update is associated with a time lock, which
prevents the transaction’s acceptance into the blockchain,
until some predefined time in the future. When the payment
direction within the channel changes, the time lock associated
to the new state update is decremented by an amount ∆, the
safety time gap (cf. Figure 4). While RbT enables rapid micro-
payments, this mechanism suffers from notable limitations.
The party receiving the final state update must be online at
precisely time t to claim and publish the latest payment on the
blockchain. If the latest state does not get accepted within ∆
time (i.e. due to blockchain congestion), the counterparty has

3Note that the blockchain acts as coarse time-stamping service.

Fig. 4. Time lock-based payment channels in an UTXO model. Lowest time
lock transactions are included on-chain first.

an opportunity to broadcast an older state update, attempting
to reverse the final payment. The choice of ∆ and the number
of payment direction changes limit the channel’s transaction
throughput ceiling.

To alleviate these concerns, Decker and Wattenhofer [26]
propose Invalidation Trees combining RbI and RbT , known
as Duplex Micropayment Channels (DMC). Bidirectional pay-
ments (or duplex payments) are processed via a pair of RbI
payment channels. When one channel exhausts its supply of
coins, the channels can be reset by destroying the current
state and re-creating a suitable state update for the pair of
one-way payment channels in an off-chain manner via an
invalidation tree. Each node in the tree has a time lock, and
the branch with the lowest time lock is first accepted into the
blockchain before the other branches. An alternative version
of DMC [39] proposes to remove the channel’s fixed expiry
time and support n parties. There exists an inherent trade-off
between the number of channel resets and the branch nodes
required to broadcast in the event of a dispute. The worst-
case dispute requires the entire branch to be published with
n + 2 states, given n nodes in the invalidation tree and two
RbI channels. Parties must be online during the safety time
gap to ensure the latest branch is written to the blockchain.

3) Replace by Revocation: Poon and Dryja propose
Lightning channels to overcome the previous state replace-
ment channel throughput limitations and to remove expiry
times [27], [69] (cf. Figure 5). We refer to Lightning channels
as RbR, because both parties agree on the channel’s new state
before revoking the old state. To revoke, both parties exchange
revocation secrets (i.e. a preimage of a hash) and retain
those during the channel’s lifetime. A penalty mechanism
discourages parties from broadcasting older states. If one party
broadcasts a revoked state, the blockchain accepts within a
time-window proofs of maleficence from the other party. A
successful dispute grants the winning party all coins of the
channel. RbR is the first channel design to require both parties
to remain online and fully synchronized with the blockchain
to observe malicious closure attempts. Unfortunately, RbR
introduces unfavorable implications for third-party watching
services (cf. Section VI). With N being the number of channel
updates, RbR entails O(N) storage as the watching service
must store evidence for every in-channel update to prove an
authorized state as revoked.

Fig. 5. Payment channel construction based on a punishment scheme [27]. If
a malicious channel party (1) attempts to close the channel with an outdated
state, the other channel party can (2) dispute the closure, and (3) reject the
fraudulent closure. The honest party (4) receives the total channel balance.

4) Replace by Version (UTXO-blockchains): Decker et
al. propose Eltoo [70] to support RbV for UTXO-based
blockchains through the use of floating transactions, i.e. trans-
actions attachable to an output of any preceding transaction.
With the possibility of linking established updates, the Eltoo
technique utilizes state numbers to impose time ordering on
the updates and supports the storing of temporary state. As
with Lightning channels, there is no expiry time and no
limitation on the channel’s throughput. Its closure dispute
process is similar to that of state channels (cf. next Section)
and there is no penalty for publishing replaced states. Watching
services can verify a newly received state with O(1) storage
costs, requiring only the state with the largest state number.

D. State Channels

State channels extend the payment channel concept towards
the execution of arbitrary applications and typically involve
two smart contracts: one for the state channel itself and one for
the to be executed application. Known state channels rely upon
RbV as the state replacement technique and thus entail O(1)
storage requirements for watching services. To the best of
our knowledge, only Sprites [30] and Perun [31] offer formal
security proofs. We distinguish state channels among closure
disputes and command disputes.

1) Closure Disputes: In a closure dispute, one party triggers
a dispute to close the channel and to continue the application’s
execution exclusively on layer-one. Perun proposes two-party
state channels that support installing/uninstalling application
smart contracts off-chain [31]. Its dispute process focuses on
a single application and enforces a fixed time window for
involved parties to submit collectively authorized states for the
application with the largest version (i.e. RbV). After the time
window, any party can resolve the dispute. This re-deploys and
continues the application’s smart contract with its current state
on the blockchain [31]. To install an application, both parties
collectively sign the application’s new state, the number of
coins allocated to it, and its initial version. To uninstall the
application, both parties authorize a state that terminates it

and de-allocates the coins. The coins are only unlocked based
on the outcome of the conditional application smart contract.
Kitsune [68] relies on the same closure dispute process but is
designed to support n parties and relies on an existing smart
contract on the blockchain.

2) Command Disputes: A command dispute aims to exe-
cute a specific command on the parent-chain, and then resume
execution off-chain. The channel thus does not close and
can continue its off-chain execution after the command exe-
cutes [30]. The blockchain grants a pre-determined time win-
dow to collect commands from each party and all commands
execute after the dispute process expires. After the dispute,
the state version increments, and the new state transition is
considered the newest channel state. Note that a state with a
newer RbV version can cancel the dispute process.

PISA [66] reduces Sprite’s [30] dispute costs by allowing
parties to submit a hash of the state. Arbitrum [71] removes
the overhead for an honest party to send the full state to
the blockchain, instead the honest party can assert the hash
of a new state alongside the command and its input. Coun-
terfactual’s [67] (and others [72]) command dispute process
allows the execution of multiple commands by extending
the dispute process expiry time depending on the number of
commands [67]. While Counterfactual allows parties to install
and uninstall multiple applications off the chain, it is restricted
to two parties and turn-based applications.

E. Channel Hierarchy
Aiming to reduce the number of required on-chain transac-

tions, the approaches introduced here increase the flexibility
of channels with regard to applications and participants.

a) Multiple Applications: Dziembowski et al. [73] and
Counterfactual [67] explore the possibility of installing and
uninstalling applications off-chain (i.e. without on-chain fee).
This allows parties to execute multiple concurrent applications
(e.g. tic-tac-toe, poker and bi-directional payments). Such
modular channels maintain a set of application instances and
each instance operates on an individually allocated collateral.
Application instances are isolated from each other (even in
case of disputes) and based on RbV. Collateral is unanimously
assigned to one application and cannot be used simultaneously
for other applications for security reasons.

b) Channel Factories: Burchert et al. [39] propose the
concept of a channel factory for Bitcoin, whereby n parties
lock coins into a n-party deposit that is then re-allocated to a
set of pair-wise payment channels. Each party may maintain
one or more pair-wise channels to facilitate transactions.
Whenever two parties want to establish a direct channel, all
parties cooperatively agree to create a new re-allocation of
pair-wise payment channels by jointly updating the n-party
deposit. This re-allocation of pair-wise channels can be built
using DMC [39], while Ranchal-Pedrosa et al. [74] replace
DMC with Lightning channels.

F. Channel Synchronization
The channel designs discussed in the previous section are

limited to the direct interaction among connected parties. This

brings forth a new question of whether it is possible for two
(or more parties) to avoid setting up a new direct channel
on the parent blockchain (and thus avoid prohibitive fees) if
there is a path of channels that connect them on the network.
To facilitate synchronizing a payment (or executing a smart
contract) across a path of channels, we present conditional
transfers. Those allow the sender to lock coins into a transfer
such that the receiver can only claim the funds if a condition is
satisfied before an expiry time. As we cover in the following,
channel synchronization requires every hop along the path to
set up conditional transfers with their counterparty. It is crucial
that all synchronization techniques guarantee no counterparty
risk and atomicity of the transaction, such that no honest
parties along the path are at risk of coin loss (or theft).

a) Hashed Time-Locked Contracts (HTLC): HTLC [26],
[75] enable cross-channel synchronization by allowing A to
lock x coins from A and B’s channel that are only redeemable
if the contract’s conditions are fulfilled. The conditions of
the contract HTLC(A, B, y, x, t) rely on a collision-resistant
hash function H , a hash value y = H(S), where S is chosen
uniformly at random, the amount of coins x and a timeout t.
If B produces a value S such that H(S) = y before timeout
t expires, B gets the locked x coins. Otherwise, if timeout t
expires, the locked x coins go back to A. Let’s assume that
A wants to send a payment to C using B as intermediary and
there exist a channel between A, B and B, C. The receiver
C generates a secret S and provides the initial sender, A,
with the hash of the secret H(S). A can then establish a
HTLC with B, the next hop, which B may spend under the
condition that he can provide A with the preimage of H(S)
before a set expiry date, generally expressed in number of
blocks. Should B fail to provide the requested input in time,
A is able to commit a refund transaction on-chain. B then
constructs a similar HTLC with C with two main differences:
(i) the lock period of the HTLC output is reduced, thereby
ensuring that B has enough time to claim the funds from the
previous hop; and (ii) the amount of coins locked in this HTLC
is reduced. The difference in locked coins corresponds to the
service fee charged by B for the forwarding of the payment.
As C is the final receiver, C can safely reveal S to B, who
then has a sufficient period of time. HTLCs can be used for
paths of an arbitrary number of channels and are integrated in
Lightning [27] and DMCs [26].

A key concern for HTLCs is whether sufficient collateral
is available when setting up a path. Every hop along the path
includes an additional time-delay to ensure the hop can always
retrieve their coins from the previous hop after sending their
coins to the next hop. The longer the payment path, the more
collateral must be reserved. In the worst-case, the collateral
cost is θ(l2X∆), where l is the number of channels, X is the
payment amount and ∆ is the time that an on-chain transaction
takes longer than an off-chain exchange.

b) Global Preimage Manager: Miller et al. [30] intro-
duce a PreimageManager smart contract that allows a single
dispute to atomically finalize the synchronized transfer for all
hops along the path. This reduces the collateral lock up time

for synchronizing a payment across l channels to θ(lX∆).
The smart contract accepts the preimage of a hash and stores
it alongside a timestamp. All parties along the path introduce
a new conditional transfer that asserts the transfer is only
considered complete if the preimage x of hash h = H(x) was
published in the PreimageManager before time t. A single
dispute at any position along the path can use the published
value x before time t to reach an agreement about the new
state. Interestingly, all channels along the payment route can
re-use the same condition for their transfer without waiting for
each other. Sprites converts disputes as local events in each
channel to a single global event, guaranteeing that all channels
share the same worst-case expiry time.

c) Scriptless Multi-Hop Locks: HTLC-based synchro-
nization protocols are limited to connect channel constructions
with the same hash function (e.g. SHA256). HTLCs also suffer
from the severe wormhole attack, which prevents users from
successfully executing the synchronization protocol and allows
an adversary to steal the synchronization reward [76].

A Multi-Hop Lock (MHL) [76] is an alternative synchro-
nization mechanism that enables cross-channel synchroniza-
tion. Like a HTLC, a MHL allows A to lock x coins in A and
B’s channel that can only be released if a set of conditions
are fulfilled. The crux of MHL is that the cryptographic
hardness condition is no longer encoded in the underlying
blockchain’s scripting language (and thus it is called scriptless
in the blockchain folklore). The scriptless locks stem from
Poelstra [77] who provided a way to embed certain contracts
into Schnorr signatures. Malavolta et al. [76] formalized this
construction, proposed alternative constructions relying on
ECDSA signatures and one-way homomorphic functions and
enabled the combination of locks with different signatures in
one payment path. This approach enables interoperable [78]
locks across all blockchains that support a digital signature
scheme to authorize transactions. Moreover, this approach
provides provable security, privacy guarantees and solves the
wormhole attack (cf. Section VI). The conditions of MHL(A,
B, x, m, pk, t) depend on a message m, a public key pk of
a given signature scheme and a timeout t. If B produces a
valid signature σ of m under pk before timeout t expires, B
receives the locked x coins. Otherwise, if timeout t expires,
the locked x coins are returned to A.

d) Virtual channels: Path intermediaries in a channel
synchronization are required to remain online and explicitly
confirm all mediated transactions. Dziembowski et al. [31],
[73] address these shortcomings with the introduction of
virtual channels that support payment and state transitions. All
intermediaries along the route can lock coins for a fixed period
of time and both parties can treat the path as a new virtual
channel connecting them directly. In this manner, A and B
can transact without interacting with intermediaries along the
path, thus reducing the transaction latency. Virtual channels are
limited by the need to recursively set up a new virtual channel
for every intermediary along the path. It is the intermediary’s
responsibility to ensure the channels close appropriately.

e) Trusted Execution Environments: An alternative layer-
two technique is to leverage trusted execution environments
(TEE), e.g. Intel SGX [79]. Teechain [47] and Teechan [48]
synchronize payments across channels using TEEs. TEE en-
able expressive and off-chain smart contracts on restricted
Bitcoin-based blockchain [49]. Tesseract [80] proposes to
construct a scalable TEE based cross-chain cryptocurrency
exchange. Trusting a TEE to provide integrity naturally over-
comes many obstacles of non-TEE protocols:

No collateral lockup: TEEs absorb the trust requirements,
otherwise guaranteed via on-chain collateral.

Interoperability: The computation at the TEE can encode the
logic and transaction format required for any blockchain.

Parallelized Disputes: TEEs can emulate the logic of global
preimage manager to enable parallel disputes.

No wormhole attacks: TEEs follow the protocol definitions
and pay honest users for their synchronization service.

Note that besides the shifted trust assumptions towards
the CPU manufacturer, TEEs suffer from their own security
concerns such as rollback [51] and side-channel attacks [81].

1) Observations: We outlined several methods for condi-
tional transfers to synchronize transactions across a path of
channels with different tradeoffs between complexity and trust
assumptions. While TEEs can reduce protocol complexity,
they introduce new trust assumptions and attack vectors.

G. Routing

If A wants to pay B using a set of intermediate channels, it
is necessary to first find one or several paths of open channels
from A to B. If the payment only utilizes a single path,
all channels need to have sufficient collateral to conduct the
payment. If the payment is split over multiple paths, it is
necessary to divide the payment in such a manner that channels
on each path can handle the partial payment. In this section, we
introduce routing algorithms, i.e. algorithms for finding paths
in a network of payment or state channels. For simplicity, we
use the example of payment channels throughout the section.
The protocols, however, do apply to state channels.

Existing network routing algorithms for data transmission
experience unique challenges when applied to PCNs. The goal
of data routing algorithms is the transfer of data from one
node to another, i.e. routing changes the state of nodes by
transferring information. Node links and bandwidth capacities
in data networks moreover are not considered private infor-
mation. Retransmission of data is an inherent feature of e.g.
TCP, and typically doesn’t induce significant economic losses
to either sender or receiver.

In contrast, the goal of a payment channel routing algorithm
is to change the state of the traversed channels to secure
the asset delivery from sender to receiver. Depending on the
transaction amount, certain channels may not be suitable to
route a payment, and channel balances are thus an obstacle that
routing algorithms have to account for. An executed channel
transaction permanently alters the state of all channels along
the path. Further parameters, such as bandwidth and network

latencies moreover influence a channel path’s delay charac-
teristics. To protect user privacy, only the total capacity of a
channel is disclosed, not the distribution of funds among the
two channel participants. Channel transactions might therefore
fail and the routing algorithms attempt different execution
paths until one succeeds. PCN routing algorithms, therefore,
have to account for the unique characteristic of channels to
provide satisfactory path recommendations4. We summarize
five crucial properties routing algorithms for payment channels
should satisfy [32]–[34].
Effectiveness: Given a PCN snapshot and the channel bal-

ances, the algorithm should find paths which maximize
the success probability of a payment. The algorithm
should remain effective when channel balances change.

Efficiency: The overhead of path discovery should be low in
latency, communication and computation. Changes of the
PCN topology should entail a low update overhead cost.

Scalability: The routing algorithm should remain effective
and efficient for large-scale PCNs and high transaction
rates.

Cost-Effectiveness: The algorithm should find paths with
low transaction fees. The fees of a layer-two transaction
should be inferior to a layer-one transaction.

Privacy: Routing paths should be found without disclosing
transaction values (i.e. value privacy) and the involved
parties (i.e. sender and receiver privacy).

We distinguish between two classes of routing algorithms:
global routing and local routing. In global, or source routing,
each node maintains a local snapshot of the complete PCN
topology. In local routing, the algorithm operates on local in-
formation, i.e. is only aware of the node neighbors with which
it established channels with. We summarize the performance
of algorithms presented in related work in Table II.

1) Routing Algorithm Details: In the following, we de-
scribe each algorithm in detail and focus on the aspects
of effectiveness, efficiency, and scalability. As outlined in
Table II, only one algorithm class explicitly considers cost-
effectiveness. While others like SpeedyMurmurs [33] implic-
itly achieve low fees by selecting short paths if fees are
homogeneous, the algorithm design and evaluation do not
include this aspect. Similarly, only SilentWhispers [32] and
SpeedyMurmurs [33] introduce concrete notions of privacy
(cf. Section V). Some algorithms involve the use of onion
routing [29], [34], [36], which requires the random selection
of nodes in a path to achieve its anonymity guarantees [83].
As routing algorithms do not select nodes randomly, it remains
unclear if onion routing provides privacy in the context of
payment channels (cf. Section V for our privacy observations).

a) Global View: Lightning [27] and Raiden [29] use
Source Routing [35], in which the source of a payment
specifies the complete route for the payment. If the global
view of all nodes is accurate, source routing is highly effective
because it finds all paths between pairs of nodes. However, by

4Note that Tor-like routing is inappropriate, as Tor assumes a random relay
selection, which wouldn’t account for channel capacities.

TABLE II
ROUTING ALGORITHMS FOR MULTI-HOP PAYMENTS.

Global View Local View

Lightning [27]/Raiden [29] SpiderNetwork [34] Flare [37] cRoute [82] SilentWhispers [32] SpeedyMurmurs [33]

Effectiveness Snapshot High High High High Medium High
Dynamic Medium High NA1 High Low Low

Efficiency Latency Low Low/High2 High High High Low
Communication Low Low/High2 High High High Low

Computation High High Low Low High Low
Update High High NA1 Low High Low

Scalability Nodes Low Low NA1 ?3 High High
Transactions High High NA1 High Low Low

Cost-Effectiveness Considered 3 5 5 5 5 5

Privacy Guarantees 5 5 5 5 3 3

1 Dynamic behavior not specified. 2 High for on-chain re-balancing, otherwise low. 3 No evaluation, only tested for 77 nodes.

default source routing does not consider channel balances, and
routing decisions might contain channels with low balances or
implicitly turn bidirectional channels into unidirectional ones,
reducing the available routes over time in a dynamic PCN.

SpiderNetwork [34] improves the effectiveness of source
routing in a dynamic PCN by introducing three key modifi-
cations: i) the choice of the routes includes a bias towards
routes that optimize the balance, ii) routing includes on-chain
rebalancing, meaning that nodes deposit additional coins to
improve the balance, and iii) routing relies on a packet-
switched network, i.e. instead of routing a complete payment,
the algorithm splits the payment into constant-size units and
routes each of them individually. SpiderNetwork is therefore
highly effective even when balances are constantly changing,
at the cost of higher latencies if on-chain rebalancing is used.

By pre-computing paths locally, algorithms based on a
global view exhibit low latencies and communication over-
heads. However, the local memory costs to store the ever-
complete snapshot and computation costs for finding paths
(and solving an optimization problem cf. SpiderNetwork) are
high. The same holds for the overhead resulting from opening
or closing a channel on-chain, and these overheads increase
super-linearly in the number of nodes and limit scalability.

b) Local View: Algorithms based on local informa-
tion use well studied concepts: (i) distributed hash tables
(DHTs) [84], (ii) flow algorithms [85], (iii) landmark rout-
ing [86] and (iv) network embeddings [87].

Flare [37] leverages the Kademlia DHT [84]. Kademlia in
its original form opens new channels between strategically
chosen nodes, which is expensive in terms of latency and on-
chain fees. Flare, therefore, uses a modified Kademlia version
that replaces direct channels with multi-hop paths, which does
not require opening new channels. This modification results in
longer routes, higher latencies and communication overheads
compared to traditional DHTs. The likely most significant
limitation of Flare is its inability to support topology changes.

Celer [82]’s routing relies on a flow algorithm, cRoute. An
optimization problem is formulated based on local conges-
tion with solutions guided by the congestion gradients. The
algorithm is effective and keeps channels balanced. As the
evaluation of cRoute only considers 77 nodes [82], we cannot

make conclusive statements about its scalability, related work
indicates problems with efficiency and scalability [33], [85].

SilentWhispers [32] implements landmark routing, where
landmarks are dedicated nodes. Each node keeps track of
the neighbor to contact to reach all landmarks. A payment
between two nodes first traverses the path from the sender to
the landmark and then from the landmark to the receiver. Using
multiple landmarks in combination with multi-party compu-
tation enables payments to be split over multiple paths in a
privacy-preserving manner. Each node periodically recomputes
how to reach the landmarks to account for topology changes.
However, as recomputation is not necessary for every topology
change, the costs of updates are lower than source routing. The
evaluation of SilentWhispers on a real-world dataset reveals
low effectiveness and moderate latencies in comparison to
other algorithms [33]. Multi-party computation, required for
each transaction, involves computation costs and results in low
scalability when increasing the number of transactions.

Aiming to overcome the drawbacks of SilentWhispers,
SpeedyMurmurs [33] uses embedding-based routing and a
protocol for handling topology updates locally. Nodes express
their position in a rooted spanning tree through coordinates and
locally choose the next node in a payment path by considering
all adjacent channels with sufficient balance. Among these
channels, nodes then select the channel to the node with
the coordinate closest to the recipient’s coordinate. While the
coordinate assignment results from the underlying spanning
tree, the path can contain channels that are not part of
the spanning tree. In this manner, SpeedyMurmurs exhibits
high effectiveness and low latencies for a static PCN. As
SpeedyMurmurs blocks funds while conducting payments,
high transaction frequencies might be affected due to locked
funds. If a channel opens or closes, only descendants in the
underlying spanning tree have to adjust their coordinates,
which typically results in an overhead that is logarithmic in
the network size [88]. However, SpeedyMurmurs does not
consider balances, which results in low effectiveness due to
insufficient balances in a dynamic PCN [34], [82].

c) Deadlocks: Deadlocks may arise on concurrent pay-
ments that proactively block deposits on channels [89]. For
instance, assume that A and B conduct concurrent payments

and both choose paths that contain the channels c1 and c2.
Furthermore, c1 and c2 have sufficient collateral to complete
either but not both payments. Now, if A’s payment blocks
funds of c1 before B’s payment does and B’s blocks funds of
c2 first, both payments fail. In the context of source routing,
a suggested solution [89] is to design a global partial order <
on the set of channels, while it is unclear how to adapt the
proposal to routing protocols relying on a local view.

d) Multi-path Routing: Networks typically spawn multi-
ple paths from a node A to a node B that routing may find.
Existing algorithms fall under the following categories: (i)
single-path routing algorithm [27], (ii) multi-path routing that
explicitly split the payment over several paths [32], [33]) and
(iii) packet-switched routing that routes each unit of payment
individually [34]. A partial evaluation indicates that packet-
switched networks provide the best performance with regard to
effectiveness [90]. The evaluation is limited to source routing
and does not evaluate packet-switching for alternative routing
algorithms. These results indicate that packet-switched routing
algorithms is a promising direction of future research.

To our knowledge, no routing algorithm fulfills all desired
criteria. Algorithms requiring a global view have inherent scal-
ability issues. Algorithms based on a local view are scalable
but are bound to provide lower effectiveness and efficiency.
While the existing algorithms exhibit low performance or lack
in-depth evaluations, they represent the first application of key
routing concepts to payment and state channel. In particular,
there is no inherent reason why coordinate-based routing
algorithms cannot achieve high effectiveness in dynamic PCN
settings. Future research accounting for channel balances may
have the potential to overcome such issues. Rebalancing
algorithms that transfer funds along circular paths are also
an approach worth further investigation [38].

H. Watching Services

To alleviate the online assumption of PCN users, related
work proposes to outsource the responsibility of issuing
challenges to third-party watching services [66], [91], [92].
Users outsource their latest state to the watching service
before parting offline. Watching services then act on behalf
of the users to secure their funds. Users can still verify
the correct behavior of watching services and punish them
(e.g. by keeping pre-allocated collateral) in case of non-
compliance. Monitor [91] provides watching services within
the Lightning Network. WatchTower [92] is designed for Eltoo
and requires O(1) storage but is currently not compatible
with Bitcoin’s consensus rules. PISA [66] provides watching
services for state channels, requires O(1) storage and is the
only proposal suitable for a financially accountable third party.
PISA instances provide receipts to offline users, who can burn
their security deposit if they misbehave. DCWC [93] enables
users to engage multiple watching services, increasing the
probability of at least one honest watcher protecting the offline
user’s interests.

I. Payment Channel Hubs

Related work [94] observes that layer-two systems benefit
from centralized (but non-custodial) star-topologies to reduce
(i) collateral lockup costs and to (ii) simplify routing com-
plexities. A payment channel hub (PCH) is essentially a node
in a PCN that maintains many channels with different peers.
Having a network with multiple interconnected PCHs should
result in a lower average path length. A reduced path length
implies a reduction in collateral cost and route discovery com-
plexity. Still PCHs face significant locked capital requirements
for each channel. For example, a PCN node with 1M channels,
each channel sending on average $1000 of transaction volume,
requires the hub to lock up a total of $1B. Rebalancing
operations are only possible via costly and slow parent-chain
transactions. Moreover, user-onboarding is a costly process,
a PCN node with 1M users would require 1M parent-chain
setup transactions (costing more than $100k on Ethereum).

J. Observations
Myth 1 insights: The mentioned results suggest that
blockchains can scale further by leveraging layer-two tech-
nologies and thus without changes to the underlying layer
one. However, PCNs experience limitations and their scala-
bility properties have not yet been quantified appropriately.

All layer-two protocols should consider scalability in terms
of the number of nodes, the total number of channels of the
network, the distribution of the number of channels per node,
the cumulative number of transactions in the network and the
distribution of values of those transactions.
Myth 4 insights: While layer-one transaction costs are quan-
tified by their size (on UTXO blockchains), or computational
complexity (on smart contract blockchains), the transaction
costs on layer-two are primarily correlated to the transaction
value (in $). The higher a layer-two transaction value, the
more on-chain collateral needs to be reserved, locking up
potentially considerable amounts of funds in advance.

IV. COMMIT-CHAINS

In contrast to channels, commit-chains are maintained by
one single party that acts as an intermediary for transactions.
Hence, commit-chains serve a similar purpose as payment
channel hubs but with protocols specifically optimized for
this scenario. In the following, we provide an overview of
commit-chains before describing two pioneer commit-chains
proposals: NOCUST [28], an account-based commit-chain,
and Plasma [40], a UTXO-based commit-chain. In Table III,
we provide an overview of the properties of NOCUST and
Plasma Cash [95] (a simplified Plasma variant).

A. Overview

Similar to PCHs, a commit-chain relies on a centralized
but untrusted intermediary that facilitates the communication
among transacting parties. The operator is responsible for
collecting commit-chain transactions from the users and pe-
riodically submits a commitment to all collected transactions

to the parent-blockchain. Unlike channels, commit-chains do
not rely on a three-state model (opening, live, dispute/closure
phase), but rather on an always ongoing state once launched.
After an operator has launched a commit-chain, users can join
by contacting the operator. They can then conduct transactions
that are recorded on the commit-chain. Users can anytime
withdraw or exit their assets to the parent chain.

a) Periodic Checkpoint Commitments: Commit-chain
users may need to periodically return online to observe the
on-chain checkpoint commitment, which can be instantiated
as a Merkle tree root or a Zero Knowledge Proof (ZKP) [28],
[96]. Merkle root commitments do not self-enforce valid
state transitions and therefore require users to participate in
challenge-response protocols if a commitment is invalid. In
contrast, ZKPs enforce consistent state transitions on-chain,
thus reducing potential operator misbehaviour. Currently, there
exists no efficient method to instantiate commit-chains on
blockchains without highly expressive scripting languages.

b) Data Availability: As commit-chain data is not broad-
casted for efficiency reasons, users must retrieve/maintain data
required to (partially) exit a commit-chain, commonly referred
to as the data availability requirement. Data availability chal-
lenges may challenge a commit-chain operator to provide the
necessary data or halt the operator upon misbehavior [28],
allowing users to exit with their last confirmed balance.

c) Centralized but Untrusted Intermediary: The central-
ized operator may become a point of availability failure,
but not of custody of funds. The operator may thus censor
commit-chain transactions, encouraging mistreated users to
exit anytime and move towards another commit-chain.

d) Eventual Transaction Finality: Unlike previously dis-
cussed layer-two protocols, the intermediary commit-chain
operator does not require on-chain collateral to securely route
a payment between two commit-chain users. In this setting,
commit-chain transactions do not offer instant transaction fi-
nality (as in channels), but eventual finality after commit-chain
transactions are recorded securely in an on-chain checkpoint.

e) Reduced Routing Requirements: Because a commit-
chain can potentially host millions of users, few statically con-
nected commit-chains are envisioned to spawn stable networks
with low routing complexity. However, we are not aware of
any proposals for atomic cross commit-chain transactions.

We generalize the security properties for users as follows:
Free Establishment: Users join a commit-chain without on-

chain transaction by requesting an operator signature [28].
Agreed Transition: A commit-chain transaction is agreed by

at least the sender and the commit-chain operator.
Balance Security: Honest users can always withdraw agreed

balances from the commit-chain with an on-chain dispute.
State Progression: User can anytime enforce an off-chain

state transition on-chain.
Commitment Integrity: Users may verify the integrity for

commitments and force the commit-chain operator to
seize operation (and rollback to the latest commitment).

Unlike channels, state progression is not a default security
property for commit-chains, because they only offer eventual

finality, unless off-chain transactions are secured by additional
collateral [28]. In the worst case, transactions remain uncon-
firmed if the next commitment is invalid or not provided.

B. NOCUST

NOCUST [28] is an account-based commit-chain where an
on-chain address is associated to a commit-chain account. The
NOCUST on-chain contract expects to periodically receive a
constant-sized commitment to the state of the commit-chain
ledger from the operator, containing each user’s account in the
collateral pool. The commitment to this (potentially) large state
is constructed such that it is efficient to prove and verify in the
smart contract that a user’s commit-chain account was updated
correctly by the operator, such that transfers, withdrawals
and deposits can be securely enacted. Users can deposit any
amount of coins within the contract, and perform commit-
chain payments of any denomination towards other users. TEX
extends NOCUST to support atomic commit-chain swaps [97].

NOCUST proposes free establishment, wherein a user can
join the commit-chain without on-chain transaction and imme-
diately receive commit-chain transactions. Regarding agreed
transition, a transaction within NOCUST is enacted with the
signature of the sender and the operator to deter potential
double-spend scenarios. NOCUST provides balance security
towards honest users, even if the operator and all other
commit-chain users collude. A transaction is considered final,
when the sender and operator agree to the payment, and the
payment is committed within the periodic on-chain checkpoint.
NOCUST only offers state progression, if the operator stakes
collateral towards the recipient. To this end, NOCUST spec-
ifies a mechanism to allocate collateral towards all commit-
chain users within a constant-sized on-chain commitment,
enabling instant transaction finality for the specified amounts.
The allocated collateral is re-usable after each checkpoint.
The transaction throughput is only limited by the operator’s

TABLE III
COMMIT-CHAIN PROPERTIES AND OPERATIONAL COSTS. PLASMA DATA

FROM DISCUSSIONS WITH KONSTANTOPOULOS [95].

General properties Plasma Cash [95] NOCUST [28]

Security proofs 5 3
Offline transaction reception 3 3
Fungible payments 5 3
Clients can remain offline 5 5(online each eon)
Safe mass exit 3 3
Instant transaction finality 5 3(with collateral)
Token support 3 3
Non-Fungible tokens 3 5
Provably Consistent State (ZKP) 5 3
Commit-Chain Swaps 5 3 [97]

Costs

Parent-chain commit Low Low
Deposit (parent → commit-chain) Low Low
Withdraw (commit → parent-chain) Low Low
Dispute initiation Low Low
Dispute answer Low Low
User storage High Low
User verification High Low
User bandwidth Low Low

bandwidth and computational throughput, and independent of
the checkpoint commitment interval. While NOCUST users
are not required to be constantly online, they are expected to
monitor the blockchain at regular time intervals to observe the
checkpoint commitments for commitment integrity. Each user
is only required to verify their respective balance proof by
requesting data directly from the operator and comparing it
to the locally stored state. In the case of any misbehavior,
a user can always issue a challenge using the NOCUST
smart contract to force the operator to promptly answer this
challenge with valid information. If the operator responds to
the challenge with invalid information (or does not respond),
users have an accountable proof of misbehavior. To strengthen
the operator’s integrity, NOCUST supports a provably consis-
tent mode of operation through the use of zkSNARKS. As
such, the underlying smart contract validates layer-two state
transitions and the operator is not able to commit to invalid
state transitions, without being halted by the smart contract.

C. Plasma

Plasma [40] is a high-level specification of a UTXO-based
commit-chain. Following the initial proposal, a variety of
alternatives are informally discussed [98]–[102]. We only
discuss Plasma Cash [95] as it is the most comprehensive
working draft. In this system, all coins are represented as
serial numbers and every transfer allocates a new owner for the
respective coin. A coin is minted with an on-chain deposit and
cannot be merged or splitted with another coin on the commit-
chain. This limitation reduces the practical applicability as a
payment system (but is helpful for non-fungible tokens) and
several coins may be required to facilitate a single transfer.
Plasma Cash therefore resembles classical e-cash protocols
[103], [104] with fixed coin denomination.

In terms of agreed transition, a transfer is incomplete until
the recipient has verified the entire coin transaction history
(which needs to be transmitted off-chain), the transaction is
included in a hash commitment in the parent-chain and the
hash commitment’s pre-image is shared with the user. Plasma
Cash doesn’t specify a mechanism for free establishment, but
should support this feature similar to NOCUST. While there is
no mechanism to challenge the integrity of a hash commitment
by the operator to achieve commitment integrity, all users
can detect invalid commitments and it is expected that they
eventually withdraw their coins from the commit-chain. If
an operator commits to an invalid coin transfer and tries to
withdraw it, the coin’s owner can also issue a withdrawal for
the same serial number based on a previous hash commitment.
If the operator cannot prove to the parent-chain that the coin
was spent, then their invalid transfer withdrawal is cancelled,
and the rightful owner receives the coins. In addition, if a party
tries to withdraw an already spent coin, then the coin’s current
owner can prove to the blockchain that it was already spent.
Thus, it appears that Plasma Cash achieves balance security
as an honest party can always withdraw their coins from the
commit-chain, even if an invalid commitment is posted. In
addition, the owner must keep the entire transaction history

for each coin and confirm all transactions are confirmed in the
commit-chain. Finally, each commitment can only include a
single transfer per coin as the operator is not trusted to prevent
double-spends and thus the transaction throughput relies on
the on-chain commitment frequency. Plasma Cash does not
specify a method to provide state progression.

D. Observations

Contrary to channels, commit-chains allow transaction re-
cipients to remain offline at the time of payment, approaching
similar usability properties as layer-one transactions. Their
properties allow for a reduction in the required layer-two col-
lateral, however, require smart contract enabled blockchains.

Myth 1 insights: Commit-chains have shown to be able to
scale PoW blockchains by several orders of magnitude [28].
They clearly trade decentralization for a more centralized
(but non-custodial) architecture.

Myth 2 insights: Due to periodic checkpoints in commit-
chains, delayed transaction finality is secure without collat-
eral of the intermediate operator [28]. Operator collateral is
“re-usable” [28] after each checkpoint, potentially reducing
the locked capital and on-chain costs of PCHs.

V. ANONYMITY AND PRIVACY

Layer-one transaction anonymity and privacy is extensively
studied [105]–[108], uncovering that blockchain pseudonymity
does not entail strong privacy guarantees. A public blockchain
allows an adversary to link sender and receiver of pay-
ments as well as trace back the origin of coins, break-
ing the unlinkability and untraceability properties. Privacy-
focused blockchains [109], [110] build upon cryptographic
techniques [111]–[113] to obfuscate on-chain information.
Unfortunately, side-channel information (e.g. usage patterns)
enable linkability and traceability attacks [109], [114]–[116].
As off-chain transactions only have a minimal blockchain
footprint, one might believe they provide privacy-by-design.

Achieving privacy and unlinkability of layer-two transac-
tions is not trivial [43], [117]. The creation of a channel
associates a permanent pseudonym (e.g. public keys), while
synchronization among channels (cf. Section III-G) may re-
veal the pseudonym of the cooperating parties. Furthermore,
naive route discovery among two channels with a disjoint set
of participants might require the knowledge of the (partial)
topology for the channel network. In HTLC payments (cf.
Section III-F), the intermediate channels on the path use the
same cryptographic condition y = H(R). An adversary on
the path can observe the channel updates (i.e. share the same
condition y) and can deduce who is paying to whom.

A. Layer-Two Privacy Notions

We differentiate between (i) an off-path adversary, which
only has access to the blockchain; and (ii) an on-path adver-
sary, which additionally participates in the layer-two protocol.

1) Payment Hub Privacy: A PCH (cf. Section III-I) or
commit-chain (cf. Section IV) operator may have access to me-
diated transaction amounts and sender/receiver pseudonyms. In
such a setting, we consider the following privacy notions.
Payment Anonymity [43]: In the absence of side channels,

the receiver of a payment, possibly in collusion with a
set of malicious senders, learns nothing about an honest
sender’s spending pattern.

Unlinkability [41]: The operator cannot link the sender and
the receiver of a given payment among the set of all
feasible sender-receiver pairs.

2) Multi-Hop Privacy: We consider the following privacy
properties for routed payments (cf. Section III-G).
(Off-path) Value Privacy [117]: An adversary not involved

in a payment does not learn the transacted value.
(On-path) Relationship Anonymity [117]: Given two pay-

ments between two pairs of honest sender and receiver,
the adversary (who might control some of the interme-
diate channels) cannot tell which sender paid to which
receiver with a probability higher than 50%.

Unlike other payment networks such as credit net-
works [32], [118], existing privacy notions in PCNs do not
consider link privacy (e.g. whether an adversary can determine
the existence of a payment channel between two users) or
whether it is possible to infer the (partial) topology of a PCN.

B. Privacy Enhancing Protocols

While related work covers layer-one transaction privacy
extensively [110], [119]–[126], it is as yet unclear if such
techniques are applicable to layer-two protocols. Instead, the
literature proposes layer-two tailored privacy proposals. We
distinguish among (i) hub-based and (ii) multi-hop payment
protocols.

1) Privacy Enhancing Payment Channel Hubs:
a) TumbleBit: TumbleBit [41] is a unidirectional PCH

relying on an untrusted intermediary, a Tumbler. The Tumbler
issues anonymous vouchers that users can exchange for coins.
A key aim of TumbleBit is to prevent an adversary from
linking a payment from a particular payer to a particular
payee (an unlinkable payment hub). However, the collusion
between the Tumbler and the payee in combination with timing
analysis can considerably reduce the number of potential
payers. Similarly, side channels (e.g. a unique product price)
allows to narrow the set of feasible sender-privacy pairs.
Particular threats that are not addressed by the current design
are: (i) intersection attacks [127] correlate information across
different time periods, (ii) abort attacks gain information about
other parties through abort of transactions, and (iii) n − 1
attacks where the tumbler refuses all but one payment.

b) Bolt: Bolt [43] aims to offer privacy-preserving pay-
ment channels such that multiple payments on a single channel
are unlinkable to each other. Assuming the channels are
indeed funded with anonymized capital (e.g. using anonymized
assets [110]), Bolt payments are anonymous.

2) Privacy Enhancing Multi-Hop Payment Protocols:

a) Rayo and Fulgor [117]: : Unlinkable HTLC [117],
is a cryptographic primitive that ensures that a HTLC in a
payment path is built upon a different and unrelated hash
value. Each intermediate user is provided with two hash values
yi := H(xi) and yi+1 := H(xi ⊕ xi+1) and the value
xi+1. The intermediate user is also provided with a ZKP
that the preimage of yi+1 is the same as the one of yi, just
skewed by the value xi+1. Rayo and Fulgor achieve the same
functionality as HTLC but prevent linkability of payments.

b) Anonymous MHL (AMHL): : Unlike Rayo and Fulgor,
AMHL protocol embeds the synchronization condition within
a public key, improving upon Rayo and Fulgor on efficiency
and privacy (i.e. the synchronization condition does not ex-
plictly appears on the transaction).

C. Observations
Myth 3 insights: While the default transaction privacy on
layer-two is likely better than on layer-one, layer-two trans-
actions cannot by default be considered private.

TumbleBit achieves unlinkability but not payment
anonymity. BOLT does not support Bitcoin but offers stronger
privacy guarantees. Even in the simplified PCH setting, it
seems that tradeoffs between privacy and compatibility are
required. Multi-hop payment protocols do not enforce single
hop privacy guarantees (e.g a user learns predecessor and
successor in a payment path) at the gain of global privacy
guarantees such as value privacy and relationship anonymity.
As demonstrated in AMHL, it is possible to achieve privacy
guarantees and backwards compatibility with most existing
blockchains. State channels and commit-chains demonstrate
interesting functionalities based on the expressiveness of rich
scripting languages. These protocols, however, to date do
not aim at providing anonymity and privacy guarantees from
the commit-chain operator. Instead, privacy is considered an
orthogonal and open research problem.

VI. SECURITY

Blockchains experienced the thorough study of their con-
sensus [5], [128] and network [129] security. Security is
fundamental to distributed ledgers, as the shift of trust assump-
tions from a single custodian to a decentralized non-custodial
network only prevents the loss of funds if the system’s security
properties are sound. Layer-two research undoubtedly benefits
from this body of literature but also requires the introduction of
new requirements, trust assumptions and adversarial models.

A. Security Threats

a) Hot Wallets: Channels require unanimous agreement
for state updates and thus need all involved parties to be
online with access to their signing keys. Keeping keys online
in a hot wallet, i.e. a list of private signing keys, is critical
— parties become prime targets for adversaries. This may
potentially limit the capacity of PCN as channel operators must
exercise caution about the number of coins they are willing to
risk. While parties in commit-chains face similar challenges,
the commit-chain operator is not required to stake assets

to facilitate payments (when providing delayed transaction
finality) — and receivers in e.g. NOCUST can moreover
remain offline at the time of payment.

b) Online Assumption: One concern for layer-two pro-
tocols is the assumption that parties remain online and fully
synchronized with the PCN and blockchain. With the excep-
tion of RbI and RbT , channel designs require parties to watch
for malice closures with outdated states. For commit-chains,
users are required to either surface online in periodic intervals
(i.e. each eon in NOCUST) or to watch the blockchain
continuously for malicious exits [98]. If parties fail to monitor
the layer-two protocol, the commit-chain operator can perform
execution forks [66] to steal the offline user’s assets. Watching
services alleviate the online assumption (cf. Section III-H).

c) Blockchain Reliability and Mass Exits: Layer-two
designs assume that the underlying blockchain accepts trans-
actions eventually. Miners include transactions based on fees
and under network congestion, transaction fees can grow from
several cents to $50 [130]. Under congestion, parties may
fail to meet deadlines to settle disputes and for PCN/PCH
this might result in unfairly closed channel states. Under a
mass exit (e.g. when many users close channels), blockchain
users might enter in a bidding-war for their on-chain exit
transactions to confirm. Commit-chain operators are single
points of availability failure and require, if halted, all users to
withdraw their assets. Contrary to PCN, commit-chains do not
require a deadline for users to withdraw their coins, mitigating
the transaction fee bidding war. A NOCUST operator is forced
by the smart contract to halt given one successful dispute by a
user, allowing all users to exit fairly. A Plasma Cash operator is
not halted, even if operator’s misbehavior is provably reported.

d) Consistency Proofs: Many layer-two protocols rely on
challenge-response protocols to detect and prove misbehavior
using the blockchain as a recourse for disputes. An alternative
strategy to enforce consistency of an off-chain protocol is to let
the blockchain verify a succinct proof attesting to consistency
of the second layer’s state. While ZKPs [131] suffer from ex-
pensive on-chain verification costs (approximately 650k gas on
Ethereum) per proof [132], they can attest to potentially large
state transitions which otherwise would require significant on-
chain resources. For commit-chains, zkSNARKS were shown
to enforce consistent checkpoints [28], leaving data availability
of the external ledger as the remaining challenge vector.

e) Security of Synchronizing Protocols: One concern
with HTLCs-based protocols is the wormhole attack [76] that
allows an adversary situated in a multi-hop payment path to
steal transaction fees by excluding the honest users from the
successful completion of a payment. The adversary thereby
forces the honest user to lock coins during the payment commit
and bypasses the user during the release phase of a payment.
The Lightning Network is currently vulnerable and the AMHL
protocol is being considered to mitigate this issue [133].

Another concern with synchronizing payments, the Ameri-
can Call option, is that an adversary can set up a multi-hop
payment and not release the trigger to finalize the payment.
As a result, the coins are locked up until the transfer’s expiry

time and the adversary can perform this lock-up for free as all
coins are refunded. Thus there is a loss of opportunity cost as
the coins are locked up.

B. Layer-Two Security Notions

Formal security studies focus on the notion of balance se-
curity, both in the payment-hub [41], [43] and multi-hop [117]
settings. This notion intuitively defines that layer-two proto-
cols must achieve two properties: (i) the adversary cannot
extract more funds than previously allocated in the channel’s
funding; (ii) honest users do not lose funds even when other
parties collude. As with privacy, this security notion has been
formalized in both paradigms: cryptographic games and the
UC framework. BOLT and TumbleBit are the two payment-
hub systems with formal security guarantees, while Rayo &
Fulgor, AMHL and Perun provide formal security guarantees
in the multi-hop setting. NOCUST provides a thorough study
of balance security for commit-chains.

C. Observations

The security guarantees of layer-two transactions rely not
only on the parent chain’s consensus guarantees and on-chain
security collateral. Data availability concerns and blockchain
congestion threats introduce a new dimension of game-
theoretic challenges that are not considered by current formal
definitions. For instance, current UC definitions consider the
blockchain as ideal components, which disregards the mass-
exit concern.
Myth 4 insights: Pre-allocated on-chain collateral enables
layer-two protocols to offer near instant finality for off-
chain transactions. Note that the more intermediate nodes
a payment path entertains, the more collateral needs to be
locked for atomic payment execution. Once a payment path
is discovered, the dominant transaction fee costs are thus
the collateral interest rates and associated security risks —
not the transaction size (in bytes).

VII. CONCLUSION

This SoK discusses that, contrary to common beliefs, layer-
two protocols enable blockchains to scale without modification
on the base layer (cf. Myth 1). Those performance improve-
ments, however, result in different security guarantees for
off-chain payments than on-chain transactions. Interestingly,
commit-chains enable secure off-chain transaction without

TABLE IV
COMPARISON OF LAYER-TWO TRANSACTION DESIGNS.

Channel Channel Hub Commit-Chain

Topology Mesh Star Star
Lifecycle 3-phase 3-phase Periodic commit
Compatibility Any chain Any chain Smart Contract chain
Privacy value privacy, payment anonymity, 5

relationship anonymity unlinkability
Offline TX Reception 5 5 3
Mass-Exit Security 5 5 3(payments)
TX Finality Instant Instant Delayed or Instant
Instant TX Collateral Full Full Reusable [28]
Delayed TX Collateral NA NA 0
Collateral Allocation O(n) on-chain O(n) on-chain O(1) on-chain [28]
User On-Boarding On-chain TX On-chain TX Off-chain [28]

collateralizing the full off-chain transaction volume (cf. Myth
2). Although off-chain transactions are not recorded on the
public blockchain, they cannot be considered private by default
and entail a number of unsolved privacy issues (cf. Myth
3). We explicitly lay out the shift in transaction costs from
transaction size (in bytes) to transaction value (cf. Myth
4). In this paper, we lower the barrier to entry to study
layer-two protocols and objectively compare the three major
design categories channels, channel hubs and commit-chains
in Table IV. Finally, we derive open challenges, summarized
in the Appendix, that would greatly enrich the state-of-the-art
knowledge.

ACKNOWLEDGMENTS

The authors would like to thank Alexei Zamyatin and Sam
Werner for their valuable feedback on earlier paper versions.

This work has been partially supported by the Austrian
Research Promotion Agency through the Bridge-1 project
PR4DLT (grant agreement 1380869); by EPSRC Standard
Research Studentship (DTP) (EP/R513052/1); by COMET K1
SBA, ABC; by Chaincode Labs; by the Austrian Science Fund
(FWF) through the Lisa Meitner program; by the Ethereum
Foundation, Ethereum Community Fund and Research Insti-
tute.

REFERENCES

[1] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” 2008,
available at: https://bitcoin.org/bitcoin.pdf.

[2] G. Wood, “Ethereum: A secure decentralised generalised transaction
ledger,” Ethereum project yellow paper, vol. 151, pp. 1–32, 2014.

[3] “Zcash,” available at: https://z.cash/.
[4] “Litecoin,” available at: https://litecoin.org/.
[5] A. Gervais, G. O. Karame, K. Wüst, V. Glykantzis, H. Ritzdorf,

and S. Capkun, “On the security and performance of proof of work
blockchains,” in Conference on Computer and Communications Secu-
rity. ACM, 2016, pp. 3–16.

[6] K. Croman, C. Decker, I. Eyal, A. E. Gencer, A. Juels, A. Kosba,
A. Miller, P. Saxena, E. Shi, E. G. Sirer et al., “On scaling decentralized
blockchains,” in International Conference on Financial Cryptography
and Data Security. Springer, 2016, pp. 106–125.

[7] VISA, “Visa inc. at a glance,” 2015, available at: https://usa.visa.com/
dam/VCOM/download/corporate/media/visa-fact-sheet-Jun2015.pdf.

[8] A. Kiayias, A. Russell, B. David, and R. Oliynykov, “Ouroboros:
A provably secure proof-of-stake blockchain protocol,” in Annual
International Cryptology Conference. Springer, 2017, pp. 357–388.

[9] V. Buterin, “Slasher: A punitive proof-of-stake algorithm,”
2014, available at: https://blog.ethereum.org/2014/01/15/
slasher-a-punitive-proof-of-stake-algorithm/.

[10] Anon., “Casper,” 2018, available at: https://github.com/ethereum/
casper.

[11] A. Miller, A. Juels, E. Shi, B. Parno, and J. Katz, “Permacoin:
Repurposing bitcoin work for data preservation,” in Symposium on
Security and Privacy, 2014, pp. 475–490.

[12] T. Hønsi, “Spacemint-a cryptocurrency based on proofs of space,” IACR
Cryptology ePrint Archive, 2017.

[13] “Sawtooth,” 2019, available at: https://intelledger.github.io/
introduction.html.

[14] E. K. Kogias, P. Jovanovic, N. Gailly, I. Khoffi, L. Gasser, and B. Ford,
“Enhancing bitcoin security and performance with strong consistency
via collective signing,” in USENIX Security Symposium, 2016, pp. 279–
296.

[15] L. Luu, V. Narayanan, K. Baweja, C. Zheng, S. Gilbert, and P. Saxena,
“Scp: A computationally-scalable byzantine consensus protocol for
blockchains,” IACR Cryptology ePrint Archive, vol. 2015, p. 1168,
2015.

[16] R. Pass and E. Shi, “Hybrid consensus: Efficient consensus in the
permissionless model,” in 31 International Symposium on Distributed
Computing, 2017, p. 6.

[17] I. Eyal, A. E. Gencer, E. G. Sirer, and R. Van Renesse, “Bitcoin-ng:
A scalable blockchain protocol,” in Symposium on Networked Systems
Design and Implementation), 2016, pp. 45–59.

[18] Anon., “Sharding roadmap,” 2019, available at: https://github.com/
ethereum/wiki/wiki/Sharding-roadmap.

[19] L. Luu, V. Narayanan, C. Zheng, K. Baweja, S. Gilbert, and P. Saxena,
“A secure sharding protocol for open blockchains,” in Conference on
Computer and Communications Security. ACM, 2016, pp. 17–30.

[20] A. E. Gencer, R. van Renesse, and E. G. Sirer, “Service-oriented
sharding with aspen,” arXiv preprint arXiv:1611.06816, 2016.

[21] A. Back, M. Corallo, L. Dashjr, M. Friedenbach, G. Maxwell,
A. Miller, A. Poelstra, J. Timón, and P. Wuille, “Enabling
blockchain innovations with pegged sidechains,” URL: http://www.
opensciencereview. com/papers/123/enablingblockchain-innovations-
with-pegged-sidechains, 2014.

[22] S. Bano, A. Sonnino, M. Al-Bassam, S. Azouvi, P. McCorry, S. Meik-
lejohn, and G. Danezis, “Consensus in the age of blockchains,” arXiv
preprint arXiv:1711.03936, 2017.

[23] “Bitcoin cash,” 2008, available at: https://www.bitcoincash.org.
[24] M. Hearn, “Micro-payment channels implementation now in bitcoinj,”

2013, available at: https://bitcointalk.org/index.php?topic=244656.0.
[25] Anon., “bitcoinj,” 2019, available at: https://bitcoinj.github.io/.
[26] C. Decker and R. Wattenhofer, “A fast and scalable payment network

with bitcoin duplex micropayment channels,” in Symposium on Self-
Stabilizing Systems. Springer, 2015, pp. 3–18.

[27] J. Poon and T. Dryja, “The bitcoin lightning network: scalable off-
chain instant payments,” 2016, available at: https://lightning.network/
lightning-network-paper.pdf.

[28] R. Khalil, A. Gervais, and G. Felley, “Nocust–a securely scalable
commit-chain,” 2018, available at: https://eprint.iacr.org/2018/642.pdf.

[29] B. T. AG, “Raiden network,” 2019, available at: https://raiden.network/.
[30] A. Miller, I. Bentov, R. Kumaresan, and P. McCorry, “Sprites:

Payment channels that go faster than lightning,” arXiv preprint
arXiv:1702.05812, 2017.

[31] S. Dziembowski, L. Eckey, S. Faust, and D. Malinowski, “Perun:
Virtual payment channels over cryptographic currencies,” in Symposium
on Security and Privacy, 2019.

[32] G. Malavolta, P. Moreno-Sanchez, A. Kate, and M. Maffei, “Silen-
twhispers: Enforcing security and privacy in credit networks,” in
Network and Distributed System Security Symposium, 2017.

[33] S. Roos, P. Moreno-Sanchez, A. Kate, and I. Goldberg, “Settling
payments fast and private: Efficient decentralized routing for path-based
transactions,” 2018.

[34] V. Sivaraman, S. B. Venkatakrishnan, M. Alizadeh, G. Fanti, and
P. Viswanath, “Routing cryptocurrency with the spider network,” arXiv
preprint arXiv:1809.05088, 2018.

[35] C. A. Sunshine, “Source routing in computer networks,” SIGCOMM
Computer Communication Review, vol. 7, no. 1, pp. 29–33, 1977.

[36] Anon., “Lightning-onion,” 2018, available at: https://github.com/
lightningnetwork/lightning-onion.

[37] P. Prihodko, S. Zhigulin, M. Sahno, A. Ostrovskiy, and O. Os-
untokun, “Flare: An approach to routing in lightning network,”
2016, available at: https://bitfury.com/content/downloads/whitepaper
flare an approach to routing in lightning network 7 7 2016.pdf.

[38] R. Khalil and A. Gervais, “Revive: Rebalancing off-blockchain pay-
ment networks,” in Conference on Computer and Communications
Security. ACM, 2017, pp. 439–453.

[39] C. Burchert, C. Decker, and R. Wattenhofer, “Scalable funding of
bitcoin micropayment channel networks,” Royal Society open science,
vol. 5, no. 8, p. 180089, 2018.

[40] J. Poon and V. Buterin, “Plasma: Scalable autonomous smart contracts,”
2017, available at: https://plasma.io/plasma.pdf.

[41] E. Heilman, L. Alshenibr, F. Baldimtsi, A. Scafuro, and S. Goldberg,
“Tumblebit: An untrusted bitcoin-compatible anonymous payment
hub,” 2017.

[42] E. Heilman, S. Lipmann, and S. Goldberg, “The arwen trading proto-
cols.”

[43] M. Green and I. Miers, “Bolt: Anonymous payment channels for decen-
tralized currencies,” in Conference on Computer and Communications
Security. ACM, 2017, pp. 473–489.

[44] E. Heilman, F. Baldimtsi, and S. Goldberg, “Blindly signed contracts:
Anonymous on-blockchain and off-blockchain bitcoin transactions,”
in International Conference on Financial Cryptography and Data
Security. Springer, 2016, pp. 43–60.

[45] K. Atlas, “The inevitability of privacy in lightning
networks,” 2017, available at: https://www.kristovatlas.com/
the-inevitability-of-privacy-in-lightning-networks/.

[46] J. Bonneau, A. Miller, J. Clark, A. Narayanan, J. A. Kroll, and E. W.
Felten, “Sok: Research perspectives and challenges for bitcoin and
cryptocurrencies,” in Symposium on Security and Privacy. IEEE, 2015,
pp. 104–121.

[47] J. Lind, I. Eyal, F. Kelbert, O. Naor, P. Pietzuch, and E. G. Sirer,
“Teechain: Scalable blockchain payments using trusted execution en-
vironments,” arXiv preprint arXiv:1707.05454, 2017.

[48] J. Lind, I. Eyal, P. Pietzuch, and E. G. Sirer, “Teechan: Pay-
ment channels using trusted execution environments,” arXiv preprint
arXiv:1612.07766, 2016.

[49] P. Das, L. Eckey, T. Frassetto, D. Gens, K. Hostáková, P. Jauernig,
S. Faust, and A.-R. Sadeghi, “Fastkitten: Practical smart contracts on
bitcoin.”

[50] V. Costan and S. Devadas, “Intel sgx explained.” IACR Cryptology
ePrint Archive, vol. 2016, no. 086, pp. 1–118, 2016.

[51] S. Matetic, M. Ahmed, K. Kostiainen, A. Dhar, D. Sommer, A. Gervais,
A. Juels, and S. Capkun, “{ROTE}: Rollback protection for trusted
execution,” in {USENIX} Security Symposium, 2017, pp. 1289–1306.

[52] T. Neudecker and H. Hartenstein, “Network layer aspects of per-
missionless blockchains,” IEEE Communications Surveys & Tutorials,
2018.

[53] C. Decker and R. Wattenhofer, “Information propagation in the bitcoin
network,” in Conference on Peer-to-Peer Computing, 2013, pp. 1–10.

[54] U. Klarman, S. Basu, A. Kuzmanovic, and E. G. Sirer, “bloxroute:
A scalable trustless blockchain distribution network,” 2018,
available at: https://bloxroute.com/wp-content/uploads/2018/03/
bloXroute-whitepaper.pdf.

[55] A. Gervais, S. Capkun, G. O. Karame, and D. Gruber, “On the privacy
provisions of bloom filters in lightweight bitcoin clients,” in Computer
Security Applications Conference, 2014, pp. 326–335.

[56] “Bitcoin fibre,” 2019, available at: http://www.bitcoinfibre.org/.
[57] Y. Sompolinsky and A. Zohar, “Accelerating bitcoin’s transaction

processing. fast money grows on trees, not chains.” IACR Cryptology
ePrint Archive, vol. 2013, no. 881, 2013.

[58] S. D. Lerner, “Decor + hop: A scalable blockchain protocol,” available
at: https://scalingbitcoin.org/papers/DECOR-HOP.pdf.

[59] Y. Sompolinsky, Y. Lewenberg, and A. Zohar, “Spectre: A fast and
scalable cryptocurrency protocol.” IACR Cryptology ePrint Archive,
vol. 2016, p. 1159, 2016.

[60] F. Zhang, I. Eyal, R. Escriva, A. Juels, and R. Van Renesse, “{REM}:
Resource-efficient mining for blockchains,” in {USENIX} Security
Symposium, 2017, pp. 1427–1444.

[61] B. David, P. Gaži, A. Kiayias, and A. Russell, “Ouroboros praos:
An adaptively-secure, semi-synchronous proof-of-stake blockchain,” in
Conference on the Theory and Applications of Cryptographic Tech-
niques. Springer, 2018, pp. 66–98.

[62] I. Bentov, R. Pass, and E. Shi, “Snow white: Provably secure proofs
of stake.” IACR Cryptology ePrint Archive, vol. 2016, p. 919, 2016.

[63] M. Milutinovic, W. He, H. Wu, and M. Kanwal, “Proof of luck: an
efficient blockchain consensus protocol,” in Proceedings of the 1st
Workshop on System Software for Trusted Execution. ACM, 2016,
p. 2.

[64] M. Borge, E. Kokoris-Kogias, P. Jovanovic, L. Gasser, N. Gailly,
and B. Ford, “Proof-of-personhood: Redemocratizing permissionless
cryptocurrencies,” in 2017 IEEE European Symposium on Security and
Privacy Workshops (EuroS&PW). IEEE, 2017, pp. 23–26.

[65] J. Spilman, “[bitcoin-development] anti dos for tx replacement,” 2013,
available at: https://lists.linuxfoundation.org/pipermail/bitcoin-dev/
2013-April/002433.html.

[66] P. McCorry, S. Bakshi, I. Bentov, A. Miller, and S. Meiklejohn, “Pisa:
Arbitration outsourcing for state channels.” IACR Cryptology ePrint
Archive, vol. 2018, p. 582, 2018.

[67] J. Joleman, L. Horne, and L. Xuanji, “Counterfactual: Generalized state
channels,” 2018, available at: https://l4.ventures/papers/statechannels.
pdf.

[68] P. McCorry, C. Buckland, S. Bakshi, K. Wüst, and
A. Miller, “You sank my battleship! a case study to evaluate

state channels as a scaling solution for cryptocurrencies,”
2019, available at: https://pdfs.semanticscholar.org/284e/
2003a93836ae70c1af0ae922bd9d62473f75.pdf.

[69] P. McCorry, M. Möser, S. F. Shahandasti, and F. Hao, “Towards
bitcoin payment networks,” in Australasian Conference on Information
Security and Privacy. Springer, 2016, pp. 57–76.

[70] C. Decker, R. Russell, and O. Osuntokun, “Eltoo: A simple layer2
protocol for bitcoin,” 2018, available at: https://blockstream.com/eltoo.
pdf.

[71] H. Kalodner, S. Goldfeder, X. Chen, S. M. Weinberg, and E. W. Felten,
“Arbitrum: Scalable, private smart contracts,” in {USENIX} Security
Symposium, 2018, pp. 1353–1370.

[72] T. Close and A. Stewart, “Forcemove: an n-party state channel proto-
col,” 2018.

[73] S. Dziembowski, S. Faust, and K. Hostáková, “General state channel
networks,” in Conference on Computer and Communications Security.
ACM, 2018, pp. 949–966.

[74] A. R. Pedrosa, M. Potop-Butucaru, and S. Tucci-Piergiovanni, “Light-
ning factories,” 2019.

[75] B. Wiki, “Hashed timelock contracts,” 2019, available at: https://en.
bitcoin.it/wiki/Hashed Timelock Contracts.

[76] G. Malavolta, P. Moreno-Sanchez, C. Schneidewind, A. Kate, and
M. Maffei, “Anonymous multi-hop locks for blockchain scalability
and interoperability,” in Network and Distributed System Security
Symposium, 2019.

[77] A. Poelstra, “Lightning in scriptless scripts,” Mailing list post, https:
//lists.launchpad.net/mimblewimble/msg00086.html.

[78] A. Zamyatin, D. Harz, J. Lind, P. Panayiotou, A. Gervais, and W. Knot-
tenbelt, “Xclaim: Trustless, interoperable, cryptocurrency-backed as-
sets,” in IEEE Security and Privacy. IEEE, 2019.

[79] Intel, “Intel software guard extensions (intel sgx),” 2019, available at:
https://software.intel.com/en-us/sgx.

[80] I. Bentov, Y. Ji, F. Zhang, Y. Li, X. Zhao, L. Breidenbach, P. Daian, and
A. Juels, “Tesseract: Real-time cryptocurrency exchange using trusted
hardware.” IACR Cryptology ePrint Archive, vol. 2017, p. 1153, 2017.

[81] F. Brasser, U. Müller, A. Dmitrienko, K. Kostiainen, S. Capkun, and
A.-R. Sadeghi, “Software grand exposure:{SGX} cache attacks are
practical,” in 11th {USENIX} Workshop on Offensive Technologies
({WOOT} 17), 2017.

[82] M. Dong, Q. Liang, X. Li, and J. Liu, “Celer network: Bring internet
scale to every blockchain,” arXiv preprint arXiv:1810.00037, 2018.

[83] D. Goldschlag, M. Reed, and P. Syverson, “Onion routing for anony-
mous and private internet connections,” Communications of the ACM,
vol. 42, no. 2, pp. 39–40, 1999.

[84] P. Maymounkov and D. Mazieres, “Kademlia: A peer-to-peer informa-
tion system based on the xor metric,” in International Workshop on
Peer-to-Peer Systems. Springer, 2002, pp. 53–65.

[85] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin, Network flows. Cam-
bridge, Mass.: Alfred P. Sloan School of Management, Massachusetts,
1988.

[86] P. F. Tsuchiya, “The landmark hierarchy: a new hierarchy for routing in
very large networks,” in SIGCOMM Computer Communication Review,
vol. 18. ACM, 1988, pp. 35–42.

[87] C. H. Papadimitriou and D. Ratajczak, “On a conjecture related to
geometric routing,” Theoretical Computer Science, vol. 344, no. 1,
2005.

[88] S. Roos, M. Beck, and T. Strufe, “Anonymous addresses for efficient
and resilient routing in f2f overlays,” in Conference on Computer
Communications, 2016, pp. 1–9.

[89] S. Werman and A. Zohar, “Avoiding deadlocks in payment chan-
nel networks,” in Data Privacy Management, Cryptocurrencies and
Blockchain Technology, 2018.

[90] D. Piatkivskyi and M. Nowostawski, “Split payments in pay-
ment networks,” in Data Privacy Management, Cryptocurrencies
and Blockchain Technology, J. Garcia-Alfaro, J. Herrera-Joancomartı́,
G. Livraga, and R. Rios, Eds. Cham: Springer International Publishing,
2018, pp. 67–75.

[91] T. Dryja, “Unlinkable outsourced channel monitoring,” 2016,
available at: https://scalingbitcoin.org/transcript/milan2016/
unlinkable-outsourced-channel-monitoring.

[92] O. Osuntokun, “Hardening lightning, harder, better, faster stronger,”
2015, available at: https://cyber.stanford.edu/sites/g/files/sbiybj9936/f/
hardening lightning updated.pdf.

[93] G. Avarikioti, F. Laufenberg, J. Sliwinski, Y. Wang, and R. Watten-
hofer, “Towards secure and efficient payment channels,” arXiv preprint
arXiv:1811.12740, 2018.

[94] G. Avarikioti, G. Janssen, Y. Wang, and R. Wattenhofer, “Payment
network design with fees,” in Data Privacy Management, Cryptocur-
rencies and Blockchain Technology. Springer, 2018, pp. 76–84.

[95] G. Konstantopoulos, “Plasma cash: Towards more efficient plasma
constructions,” 2019, available at: https://github.com/loomnetwork/
plasma-paper/blob/master/plasma cash.pdf.

[96] R. C. Merkle, “A digital signature based on a conventional encryption
function,” in Conference on the theory and application of cryptographic
techniques. Springer, 1987, pp. 369–378.

[97] R. Khalil, A. Gervais, and G. Felley, “Tex–a securely scalable trustless
exchange.”

[98] “Plasma cash: Plasma with much less per-user data
checking,” 2018, available at: https://ethresear.ch/t/
plasma-cash-plasma-with-much-less-per-user-data-checking/1298.

[99] D. Robinson, “Plasma debit: Arbitrary-denomination payments
in plasma cash,” 2018, available at: https://ethresear.ch/t/
plasma-debit-arbitrary-denomination-payments-in-plasma-cash/2198.

[100] B. Rao, “Gluon plasma: a plasma variant for non-custodial exchanges,”
2018, available at: https://leverj.io/GluonPlasma.pdf.

[101] B. Jones and K. Fichter, “More viable plasma,” 2018, available at:
https://ethresear.ch/t/more-viable-plasma/2160.

[102] “Plasma snapp - fully verified plasma chain,” 2018, available at: https:
//ethresear.ch/t/plasma-snapp-fully-verified-plasma-chain/3391.

[103] D. Chaum, “Blind signatures for untraceable payments,” in Advances
in cryptology. Springer, 1983, pp. 199–203.

[104] B. Yang and H. Garcia-Molina, “Ppay: micropayments for peer-to-peer
systems,” in Proceedings of the 10th ACM conference on Computer and
communications security. ACM, 2003, pp. 300–310.

[105] G. O. Karame, E. Androulaki, M. Roeschlin, A. Gervais, and
S. Čapkun, “Misbehavior in bitcoin: A study of double-spending and
accountability,” ACM Transactions on Information and System Security
(TISSEC), vol. 18, no. 1, p. 2, 2015.

[106] E. Androulaki, G. O. Karame, M. Roeschlin, T. Scherer, and S. Capkun,
“Evaluating user privacy in bitcoin,” in International Conference on
Financial Cryptography and Data Security. Springer, 2013, pp. 34–
51.

[107] S. Meiklejohn, M. Pomarole, G. Jordan, K. Levchenko, D. McCoy,
G. M. Voelker, and S. Savage, “A fistful of bitcoins: characterizing
payments among men with no names,” in Proceedings of the 2013
conference on Internet measurement conference. ACM, 2013, pp.
127–140.

[108] R. Böhme, N. Christin, B. Edelman, and T. Moore, “Bitcoin: Eco-
nomics, technology, and governance,” Journal of Economic Perspec-
tives, vol. 29, no. 2, pp. 213–38, 2015.

[109] M. Möser, K. Soska, E. Heilman, K. Lee, H. Heffan, S. Srivastava,
K. Hogan, J. Hennessey, A. Miller, A. Narayanan et al., “An empirical
analysis of traceability in the monero blockchain,” Proceedings on
Privacy Enhancing Technologies, vol. 2018, no. 3, pp. 143–163, 2018.

[110] E. B. Sasson, A. Chiesa, C. Garman, M. Green, I. Miers, E. Tromer,
and M. Virza, “Zerocash: Decentralized anonymous payments from
bitcoin,” in Symposium on Security and Privacy. IEEE, 2014, pp.
459–474.

[111] N. T. Courtois and R. Mercer, “Stealth address and key management
techniques in blockchain systems.” in ICISSP, 2017, pp. 559–566.

[112] A. Bender, J. Katz, and R. Morselli, “Ring signatures: Stronger
definitions, and constructions without random oracles,” in Theory of
Cryptography Conference. Springer, 2006, pp. 60–79.

[113] U. Feige, A. Fiat, and A. Shamir, “Zero-knowledge proofs of identity,”
Journal of cryptology, vol. 1, no. 2, pp. 77–94, 1988.

[114] G. Kappos, H. Yousaf, M. Maller, and S. Meiklejohn, “An empirical
analysis of anonymity in zcash,” in USENIX Security Symposium, 2018,
pp. 463–477.

[115] A. Hinteregger and B. Haslhofer, “An empirical analysis of monero
cross-chain traceability,” CoRR, vol. abs/1812.02808, 2018. [Online].
Available: http://arxiv.org/abs/1812.02808

[116] A. Kumar, C. Fischer, S. Tople, and P. Saxena, “A traceability analysis
of monero’s blockchain,” in ESORICS, 2017, pp. 153–173.

[117] G. Malavolta, P. Moreno-Sanchez, A. Kate, M. Maffei, and S. Ravi,
“Concurrency and privacy with payment-channel networks,” in
Conference on Computer and Communications Security, ser. CCS ’17.

New York, NY, USA: ACM, 2017, pp. 455–471. [Online]. Available:
http://doi.acm.org/10.1145/3133956.3134096

[118] P. Moreno-Sanchez, A. Kate, M. Maffei, and K. Pecina, “Privacy
preserving payments in credit networks,” in Network and Distributed
Security Symposium, 2015.

[119] I. Miers, C. Garman, M. Green, and A. D. Rubin, “Zerocoin: Anony-
mous distributed e-cash from bitcoin,” in Symposium on Security and
Privacy, 2013, pp. 397–411.

[120] B. Wiki, “Bitcoin mixing,” 2018, available at: https://en.bitcoin.it/wiki/
Mixing service.

[121] ——, “Coin join,” 2019, available at: https://en.bitcoin.it/wiki/
CoinJoin.

[122] T. Ruffing, P. Moreno-Sanchez, and A. Kate, “Coinshuffle: Practical
decentralized coin mixing for bitcoin,” in European Symposium on
Research in Computer Security. Springer, 2014, pp. 345–364.

[123] T. Ruffing, P. Moreno-Sanchez, and A. Kate, “P2P mixing and unlink-
able bitcoin transactions,” in Network and Distributed System Security
Symposium, 2017.

[124] T. Ruffing and P. Moreno-Sanchez, “Valueshuffle: Mixing confidential
transactions for comprehensive transaction privacy in bitcoin,” in
BITCOIN Workshop, 2017, pp. 133–154.

[125] P. Moreno-Sanchez, T. Ruffing, and A. Kate, “Pathshuffle: Credit
mixing and anonymous payments for ripple,” PoPETs, vol. 2017, no. 3,
p. 110, 2017.

[126] J. H. Ziegeldorf, F. Grossmann, M. Henze, N. Inden, and K. Wehrle,
“Coinparty: Secure multi-party mixing of bitcoins,” in Proceedings of
the 5th ACM Conference on Data and Application Security and Privacy,
CODASPY 2015, San Antonio, TX, USA, March 2-4, 2015, 2015, pp.
75–86. [Online]. Available: https://doi.org/10.1145/2699026.2699100

[127] G. Danezis and A. Serjantov, “Statistical disclosure or intersection
attacks on anonymity systems,” in International Workshop on Infor-
mation Hiding, 2004.

[128] K. Wüst and A. Gervais, “Ethereum eclipse attacks,” ETH Zurich, Tech.
Rep., 2016.

[129] A. Gervais, H. Ritzdorf, G. O. Karame, and S. Capkun, “Tampering
with the delivery of blocks and transactions in bitcoin,” in Conference
on Computer and Communications Security. ACM, 2015, pp. 692–
705.

[130] R. Browne, “Big transaction fees are a problem for bitcoin but there
could be a solution,” 2017, available at: https://www.cnbc.com/2017/
12/19/big-transactions-fees-are-a-problem-for-bitcoin.html.

[131] E. Ben-Sasson, A. Chiesa, E. Tromer, and M. Virza, “Succinct non-
interactive zero knowledge for a von neumann architecture,” in 23rd
{USENIX} Security Symposium ({USENIX} Security 14), 2014, pp.
781–796.

[132] V. Buterin, “On-chain scaling to potentially 500 tx/sec through
mass tx validation,” 2018, available at: https://ethresear.ch/t/
on-chain-scaling-to-potentially-500-tx-sec-through-mass-tx-validation/
3477.

[133] C. Fromknecht, “2p-ecdsa: Two-party ecdsa multisignatures,” Github
project, https://github.com/cfromknecht/tpec,.

[134] A. Gervais, G. O. Karame, V. Capkun, and S. Capkun, “Is bitcoin a
decentralized currency?” IEEE security & privacy, vol. 12, no. 3, pp.
54–60, 2014.

[135] A. E. Gencer, S. Basu, I. Eyal, R. Van Renesse, and E. G. Sirer,
“Decentralization in bitcoin and ethereum networks,” arXiv preprint
arXiv:1801.03998, 2018.

[136] “Roll-up,” available at: https://github.com/barryWhiteHat/roll up.

APPENDIX

A. Open Challenges

Layer-Two Cost Quantification: A comprehensive study of
the real economic costs of layer-two transactions, ide-
ally comparing different channel, synchronization and
commit-chain proposals. Only if the layer-two transaction
fees and security concerns are inferior to the offered on-
chain, then it is rational to perform layer-two transactions.

Layer-One Congestion: Existing work mostly ignores the
threat of blockchain congestion. One future avenue would
be to design congestion-aware [68] layer-two protocols.

Cross Commit-Chain Payments and Routing: We are not
aware of work covering atomic payments across a more
decentralized network of commit-chains.

Private Commit-Chain: Contrary to selected payment chan-
nel hubs [41], [43], existing commit-chains do not provide
any privacy guarantees from the commit-chain operator.

Quantification of Layer-Two Decentralization: While re-
lated work discusses layer-one decentralization [134],
[135], no work has yet covered layer-two decentralization.

Channel Factories on Commit-Chains: Commit-chains
might enable to spawn payment channels among their
users (similar to the idea of virtual channels) potentially
foregoing costly channel initialization costs.

Compression-Chains: Compression-chain techniques such
as Roll-up [136] aim to reduce on-chain transaction
footprint. A transaction only requires 9 bytes on-chain,
while a ZKP certifies the validity of signatures. While
they might not be considered layer-two protocols and may
not scale to the same extent, they solve data-availability
concerns and strengthen the security properties. A thor-
ough analysis of compression-chains is missing.

Formal Security/Privacy: A systematic method to develop
security and privacy notions for layer-two protocols,
faithfully including their interaction with layer-one, con-
stitutes an interesting direction for future research.

