
Lelantus: Towards Confidentiality and Anonymity of
Blockchain Transactions From Standard Assumptions

Aram Jivanyan

Zcoin
aram@zcoin.io

Version: 2019.04-beta-07

Abstract. We propose Lelantus1, a new anonymous payment system which ensures both
transaction confidentiality and anonymity with small proof sizes, short verification times and
without requiring a trusted setup. Inspired by the Zerocoin protocol, Lelantus extends the orig-
inal Zerocoin functionality to support confidential transactions while also significantly improv-
ing on the protocol performance. Lelantus proof sizes are almost 17 times smaller compared to
the original Zerocoin proof sizes. Moreover, we show how to support efficient aggregation of the
transaction proofs, so that the proof verification, while asymptotically linear, is very efficient
in practice. Lelantus builds on the techniques of Confidential Transactions, Zerocoin and One-
out-of-Many proofs and its efficiency is particularly well-suited for enabling private blockchain
transactions with minimal trust required while employing well-studied cryptographic assump-
tions.

Keywords: Zero-knowledge Proofs, Confidential Transactions, Zcoin, One-out-of-Many Proofs,
Double-blinded commitments, Bulletproofs

1 Introduction

For cryptocurrency payments to be truly private, transactions have to have two properties: (a)
confidentiality, i.e., hiding the transferred amounts, and (b) anonymity, i.e., hiding the identities of
the sender and/or receiver in a transaction. To address the lack of confidentiality in transactions,
Gregg Maxwell [6] introduced the concept of Confidential Transactions (CT) in which all transaction
amounts are hidden from public view using a commitment to the amount. This design, however, does
not ensure transaction anonymity, a highly desirable privacy feature for financial transactions. Other
cryptographic constructions which do offer transaction anonymity, such as the Zerocoin [15] and
Zerocash [13] protocols, bring with them significant drawbacks. Zerocoin enables users to generate
coins with no prior transaction history which can then be spent anonymously without disclosing the
source. However, this construction works only with fixed denominated coins and hence does not hide
transaction amounts. Zerocash provides a very efficient private transaction system which is capable
of hiding transaction values, their origins, and destinations. Its hard-to-beat efficiency and advanced
privacy features, though, come at the price of reliance on knowledge of exponent assumptions and a
trusted setup process, necessitating the user’s trust in the correctness of this setup.

The goal of this paper is to provide a practical transaction scheme ensuring both anonymity and
confidentiality, based on an efficient implementation which relies only on standard cryptographic
assumptions and does not require a trusted setup process.

1 In Greek mythology, Lelantus was one of the younger Titans who was moving unseen.

1.1 Our Contribution

Our work builds upon the Confidential Transaction protocol of Greg Maxwell, the Zerocoin Pro-
tocol, and One-out-of-Many Proofs (Sigma) by Groth and Kohlweiss [4]. We achieve transaction
anonymity with a Zerocoin setup which is implemented through one-out-of-many proofs over gener-
alized Pedersen commitments as is discussed in [4]. Except for the coin unique serial number, which
is explicitly revealed during the spend operation in order to prevent the double-spending of the coin,
the commitment will also hide the monetary value assigned to that coin. The user will be able to
sum up the transactions using the homomorphic properties of the underlying commitment scheme.
Next, we provide a transaction balance proof which ensures that the transaction’s input and output
values add up and no coins are generated out of thin air. The main challenge in this type of setup
is that the transaction input commitments which help to provide a balance proof (as it is done in
CTs), cannot be explicitly exposed. We have observed that one-out-of-many proofs used to generate
the proofs of valid spends without revealing the transaction origins already encode necessary infor-
mation about the coin values in order to generate a zero-knowledge balance proof.
The resulting scheme has numerous advantages over the original Zerocoin protocol:

– It does not require a trusted setup process and is still based on standard cryptographic assump-
tions.

– The need for fixed denominations is removed. In fact, the protocol allows mints of arbitrary
amounts and partial spends of any amount less or equal to the amount minted.

– Transaction amounts are hidden.
– A single transaction can contain simultaneous spends and output multiple coins.
– Reduction of proof sizes and proof generation times.
– It enables efficient batching of the verification of transaction proofs.
– Enables direct payments to recipients.

1.2 Related Works and Comparison

The below table illustrates how Lelantus compares with other mainstream cryptocurrency protocols,
namely with Monero, Zerocoin and Zerocash.

Anonymity Trusted Cryptographic Proof Proof Verification
Set Size Setup Assumptions Size(KB) Time(s) Time(ms)

Monero 10 No Well-tested 2.1 1 47
Zerocash 232 Yes Relatively New 0.3 1-20 8
Zerocoin 10,000 Yes Well-tested 25 0.2 200

Lelantus 1 214 No Well-tested 1.5 1.5 13
Lelantus 2 216 No Well-tested 1.5 6 38

Table 1. The security properties and efficiency considerations for different privacy solutions.

Lelantus markedly improves the original Zerocoin protocol’s performance while enabling a key
feature for anonymous transactions: confidentially transferring arbitrary amounts. From the table
above it becomes evident that the proof sizes and verification times of SNARK-based constructions
are hard to beat. This unmatched performance, however, is dearly bought with having to rely on
knowledge of exponent assumptions. Lelantus provides strong privacy and competitive performance

while still relying on standard cryptographic assumptions. At the same time, it offers significantly
better anonymity than Monero while also being more efficient due to the smaller transaction sizes
and shorter verification times.

Organization of the paper: In Section 2 we provide a basic cryptographic background. Next,
we discuss the underlying building blocks, data structures and algorithms used to construct our
confidential payment system. In section 4 we detail all algorithmic constructions used in the pro-
tocol. Section 5 describes efficient batching and precomputation techniques for 1-out-of-N proofs to
accelerate the verification of transaction blocks. Section 6 shows how Lelantus can support direct
anonymous payments on the blockchain. In Section 7 we discuss performance analysis of the scheme
and show benchmarks data.

2 Cryptographic Background

2.1 Commitments

A non-interactive commitment scheme is a pair of probabilistic polynomial time algorithms (G;Com).
All algorithms in our schemes get a security parameter λ as input written in 1λ. The setup algorithm
ck ← G(1λ) generates a commitment key ck which specifies the message space Mck, a randomness
space Rck and a commitment space Cck. The commitment algorithm combined with the commit-
ment key specifies a function Comck : Mck x Rck −→ Cck. Given a message m ∈ Mck the sender

picks uniformly at random r
R←− Rck and computes the commitment C = Comck(m; r). We require

the commitment scheme to be both hiding and binding. Informally, a non-interactive commitment
scheme (G;Com) is hiding if a commitment does not reveal the committed value. Formally, we
require for all probabilistic polynomial time state full adversaries A

Pr[ck ← G(1λ); (m0,m1)← A(ck); b← {0, 1}; c← Comck(mb) : A(c) = b] ≈ 1

2

where A outputs (m0,m1)←Mck. If the probability is exactly 1
2 we say the commitment scheme is

perfectly hiding.

A non-interactive commitment scheme (G;Com) is strongly binding if a commitment can only be
opened to one value. Formally we require

Pr[ck ← G(1λ); (m0, r0,m1, r1)← A(ck) : (m0, r0) 6= (m1, r1) ∧ Comck(m0; r0)

= Comck(m1; r1)] ≈ 0

where A outputs (m0,m1) ← Mck and (r0, r1) ← Rck. If the probability is exactly 0 we say the
commitment scheme is perfectly binding.

The Pedersen commitment scheme [8] is perfectly hiding and computationally strongly binding
additively homomorphic commitment scheme under the discrete logarithm assumption. The key
generation algorithm G outputs a description of a cyclic group G of prime order p and random
generators g and h. The commitment key is ck = (G, p, g, h). To commit to m ∈ Zq the committer
picks randomness r ∈ Zp and computes Comck(m; r) = gm · hr.

The Pedersen commitment scheme can be generalized for multiple messages, i.e. given messages
m1,m2, ...,mn one can create a single commitment of the form

Com(m1,m2, · · ·mn; r) = hrgm1
1 gm2

2 · · · gmnn
In our protocol, we use a private case of generalized Pedersen commitment scheme referred as double-
blinded commitment which utilize three different group generators g, h1, h2 and uses two different
random factors r1, r2 for committing to the given message m as Commck(m; r1, r2) = gmhr11 h

r2
2

Generalized Pedersen commitment scheme is computationally strongly binding, perfectly hiding
and has homomorphic properties. In particular, for all correctly generated parameters the following
equation holds

Commck(m; r1, r2) + Commck(m′; r′1, r
′
2) = Commck(m+m′; r1 + r′1, r2 + r′2)

Note: We will henceforth refer to the Pedersen commitment for value m using randomness r as
Com(m; r). A double-blinded commitment for value m using random values r1 and r2 is denoted as
Comm(m; r1, r2).

2.2 1-out-of-N (Σ) Proofs for a Commitment Opening to 0

A Σ-protocol is a special type of 3-move interactive proof system that allows a prover to convince a
verifier that a statement is true. In the first move the prover sends an initial message to the verifier,
then the verifier picks a random public coin challenge x← 1λ and next, the prover responds to the
challenge. Finally, the verifier takes the initial message, the challenge, and the challenge response
to check the transcript of the interaction and decide whether the proof should be accepted or rejected.

Jens Groth [4] provided a Σ-protocol for knowledge of 1-out-of-N commitments C0, . . . , CN−1 being
a commitment to 0, or more precisely a Σ-protocol for the relation

R = {(ck, (C0; . . . ;CN−1); (l, r) | ∀i : Ci ∈ Cck ∧ l ∈ {0, . . . , N − 1} ∧ r ∈ Zp ∧ Cl = Comck(0, r))}

This protocol was further optimized in [5] to reduce proof sizes and fasten proof generation. We will
leverage the construction provided in [4] to build a Σ-proof for 1-out-of-N double-blinded commit-
ments opening to 0, which can be formalized as follows:

R = {(ck, (C0; . . . ;CN−1); (l, r1, r2) |
∀i : Ci ∈ Cck ∧ l ∈ {0, . . . , N − 1} ∧ r ∈ Zp ∧ Cl = Comck(0, r1, r2))}

We require Σ-protocol to be complete, sound and zero-knowledge in the following sense: [4]

– Perfect Completeness: If the prover knows a witness w for the statement s then they should be
able to convince the verifier. Formally, for any (s, w) ∈ R we have Pr[Verify(ck, s,Prove(ck, s, w))] =
1 meaning that the verifier will accept all valid transcripts.

– Special honest verifier zero-knowledge (SHVZK): The Σ-protocol should not reveal any-
thing about the prover’s witness. This is formalized as saying that given any verifier challenge x
it is possible to simulate a protocol transcript.

– n-Special Soundness: If the prover does not know a witness w for the statement, they should
not be able to convince the verifier. This is formalized as saying that if the prover can answer
n different challenges satisfactorily, then it is possible to extract a witness from the accepting
transcripts. For any statement s and from n accepting transcripts {a, xi, zi}ni=1 for the s ∈ LR
with distinct challenges xi, the witness w can be extracted s.t. (s;w) ∈ R.

2.3 Bulletproofs

Bulletproofs are a powerful scheme for providing short and aggregatable range proofs.

Formally, let v ∈ Zp and let V ∈ G be a Pedersen commitment to v using randomness γ. Then
the proof system will convince the verifier that v ∈ [0, 2n − 1]. In other words, the proof system
proves the following relation

R = {g, h ∈ G,V, n; v, γ ∈ Zp | V = gvhγ ∧ v ∈ [0, 2n − 1]}

Bulletproofs are interactive protocols which can be made non-interactive by using the Fiat-Shamir
heuristic in the random oracle model. For the original protocol details, we refer to the paper [7].

In the Appendix B we will show how Bulletproofs can work with V being a double-blinded commit-
ment to the value v using two random values γ1 and γ2. Or in other words, we will provide a proof
system for the following relation.

R = {g, h ∈ G,V, n; v, γ1, γ2 ∈ Zp | V = gvhγ11 h
γ2
2 ∧ v ∈ [0, 2n − 1]}

The resulting protocol also provides perfect completeness, SHVZK, and witness-extended emulation
as defined in [7].

2.4 Generalized Schnorr Proofs

Generalized Schnorr proofs are zero-knowledge arguments for the following relation

R = {g, h ∈ G, y ; s, t ∈ Zp | y = gsht }

The protocol is depicted in the diagram below.

Prover(g,h,y,(s,t)) Verifier(g,h, y)
Computes

s0, t0,←R Zp u
u = gs0ht0 ∈ G −−−−−−−→

x← {0, 1}λ
←−−−−−−−−−

s1 = s0 − x · s ∈ Zp Accepts if and only if

t1 = t0 − x · t ∈ Zp
s1,t1−−−→ u = yxgs1ht1

Verifying the completeness of the protocol is straightforward. It can be converted into a non-
interactive protocol that is secure and special honest-verifier zero-knowledge in the random oracle
model using the Fiat-Shamir heuristic [17].

3 Lelantus Construction

Lelantus is a decentralized anonymous payment scheme that allows direct anonymous payments
of arbitrary amounts. In this section we provide overview of the underlying building blocks, data
structures and algorithms used to construct our confidential payment system.

3.1 Data Structures and Algorithms

Lelantus is exploiting the following data structures and algorithms.

Coins. A coin is the encrypted representation of abstract value to which we associate the following
data:

– A coin value V .
– A public key Q which corresponding witness q is referred as a spending key. When the coin is

spent or used as an input to a future join-split transaction, the prover proves his ownership over
the coin by signing the transaction by this spending key.

– A coin serial number S, which is generated from the coin’s public key Q. The coin’s serial number
is revealed during the spend in order to prevent double-spending of the coin.

– A coin commitment denoted as C. This commitment is a double-blinded commitment to the
coin serial number S using the coin value V and also a randomly generated blinding factor R.
The coin commitment appears on the ledger as soon as the coin is minted.

Transactions. Lelantus is implementing three specific transactions.

– Mint Transaction: Mint transaction creates and records on the ledger a new coin with commit-
ment cm(C) and value v.

– Spend Transaction: Spend transaction redeems a previously minted coin to transfer the shielded
value back to the base cryptocurrency. Spend is the private case of JoinSplit transaction which
allows more generic functionality.

– JoinSplit Transaction: JoinSplit is used to merge, split or redeem coins. We assume JoinSplit
transaction can spend multiple input coins and output multiple new coins and also a transparent
public value (which may be 0). A special zero-knowledge proof is provided by the transaction
owner convincing the legitimacy of the transaction.

Lists of all minted coin commitments and serial numbers of spent coins. For any given
moment

– CMList denotes the list of all coin commitments appearing in the Mint and JoinSplit transac-
tions.

– SNList denotes the list of all serial numbers revealed after Spend or JoinSplit transactions.

3.2 Overview and Intuition

Lelantus can be integrated with any blockchain-based currency, such as Bitcoin. To give a sense on
how Lelantus works, we outline our construction in four incremental steps starting from the original
Zerocoin construction.

Step 1: Transaction anonymity with fixed-value coins. The Zerocoin protocol is one of the
first and most widely-used anonymous payment protocols in cryptocurrencies today. It uses coins
of fixed denomination, e.g., 1 BTC. The protocol enables the users to destroy these coins in their
possession and redeem a new coin with no prior transaction history. Each coin has a unique serial
number assigned, which is revealed in the spending process to prevent double-spending of the coin.
The original Zerocoin construction was build on RSA accumulators and redeeming Zerocoin required
double-discrete-logarithm proofs of knowledge, which have a size exceeding 20 kB.
In [4] a new Zerocoin design has been proposed based on 1-out-of-N proofs which results in smaller

proof sizes and faster verification. In this construction, the user’s spendable coin Ci is a Pedersen
commitment to a secret random serial number S that only he knows the opening of. [4] leverages the
fact that the serial number S can be homomorphically subtracted from all coins from the CMList by
multiplying them with Comck(S; 0)−1 so that the commitment with this serial number S turns into
a commitment to 0. When a user wants to spend the coin, he first reveals the coin’s serial number
S, then form a statement for the 1-out-of-N protocol consisting of the commitments

C0 · Comck(S)−1, . . . , CN · Comck(S)−1

and lastly prove that they know an opening to zero for one of these commitments. To prevent double-
spending of the coin, the verifier accepts the proof only if S has not previously been recorded in the
SNList.
Another important benefit of this construction is that in contrast to existing Zerocoin implementa-
tions based on RSA accumulators, it does not rely on a trusted setup process, assuming the commit-
ment parameters ck have been generated in a way that is publicly verifiable and excludes backdoors.
The Zerocoin scheme consists of a quadruple of PPT algorithms (Setup, Mint, Spend, Verify) for
generating a common setup available to all users, creating new coins, spending the coins while simul-
taneously providing proof of the validness of the spend transaction, and verifying proofs of spending.

Step 2: Enabling to mint, merge, split and redeem coins of arbitrary values. Zerocoin
makes transaction history private, but does not support payments of arbitrary values. In [6], a
scheme for Confidential Transaction has been proposed. This scheme hides transaction amounts
while preserving the ability of the public network to verify that the transaction entries still add
up. The construction utilizes coins as Pedersen commitments of the form C = grhv, where v is
the transaction amount that the transaction owner is committing to, and r is a secret blinding fac-
tor to hide the value. The construction implies each transaction can spend Nold inputs denoted as
Ci1 = gri1hvi1 , . . . , CiNold = griNoldhviNold to output Nnew new coins Co1 = gro1hvo1 , . . . , CoNnew =
groNnewhvoNnew and for each such transaction a special proof should be provided claiming that the
transaction balance is preserved, i.e.

vi1 + · · · viNold = vo1 + · · ·+ voNnew

By leveraging the additive homomorphic properties of the Pedersen commitment scheme, it is easy
to notice that the balance is preserved if the following equation takes place

Ci1 · . . . · CiNold
Co1 · . . . · CoNnew

= gR

where gR is a valid public key corresponding to the private key

R = (ri1 + · · ·+ riNold)− (ro1 + · · ·+ roNnew)

R is known only to the transaction owner who can provide a balance proof by simply signing the
transaction with this private key. The signature can then be verified by all network verifiers, as they
can compute the public key from the public input and output commitments. Signature verification
will pass only if the transaction balance is preserved. Confidential Transactions also use range proofs
to convince the verifier that the transaction outputs are not negative and there will be no value
overflow. However this construction is possible only because of the fact that all transaction input
commitments Ci1, . . . , CiNold are public, while our goal is to ensure both transaction anonymity and
confidentiality.

In our construction, coin commitments are double-blinded Pedersen commitments of the form
C = gShV1 h

R
2 , where V is the coin value, S is the coin’s unique serial number which is revealed

during the spend, and R is an extra blinding factor, which keeps the coins untraceable even after the
coin’s serial number and value are published. We enable JoinSplit transactions allowing to merge
and split coins of arbitrary amounts as well redeem the coin values to convert them to the base
currency. Each JoinSplit transaction can spend Nold inputs to make a public output vpub and si-
multaneously output Nnew new coins at the transaction fee f . The transaction balance is preserved
if and only if

vi1 + · · · viNold = vpub + vo1 + · · ·+ voNnew + f

We describe how one can still provide a transaction balance proof without revealing either the
origin, i.e., the inputs or the transaction values by exploiting specific design elements of the 1-out-
of-N proofs. For all transaction input coins Cj ∈ Ci1, . . . CiNold the transaction owner exercises the
zerocoin-style spend operation as described in Step 1. More precisely, they first reveal the coin’s serial
number Sij and homomorphically subtract it from all coin commitments CMList =

(
C1, · · · , CN

)
.

They then leverage their knowledge of the commitment’s opening values Vij and Rij to provide a
special 1-out-of-N proof establishing the legitimacy of this spend. The 1-out-of-N proofs published to
the blockchain hide the origins of their corresponding input coin, but at the same time they contain
blinded information about the input values. As we will show in Section 4, the transaction owner can
exploit these blinded values to generate a balance proof. Verifiers can compute the published spend
proofs and explicit transaction outputs to verify this balance proof.

Step 3: Ensuring non-malleability and enabling direct anonymous payments. To pre-
vent malleability attacks on a spend transaction (e.g., malicious assignment by re-targeting the
recipient address of the transaction public output) we generate the coin serial number from the pub-
lic key Q associated with the coin using a cryptographically secure hash function. The coin spend
transaction should be signed with the coin’s spending key. When the coin is spent, its corresponding
public key Q is published on the blockchain instead of the coin serial number S, which still allows
all network verifiers to derive the coin serial number S and verify both the transaction signature and
provided 1-out-of-N proof. The fact that each coin has an associated spending key, also allows for
the creation of a Diffie-Hellman-like authentication system between the coin owner and the targeted
recipient and mint the new coins in way that only the intended recipient will possess the spending key.

Step 4: Performing batch verification of transaction proofs. In the blockchain applica-
tion the verifier needs to verify multiple separate 1-out-of-N proofs simultaneously. 1-out-of-N proof
verification complexity is linear of the commitment list size N and takes hundreds of milliseconds
to verify within a set of few dozen thousand commitments. We will illustrate important batch ver-
ification techniques which enables verification of proofs in batches and lowers the average cost of a
single proof verification to a few dozens of milliseconds within large commitment sets.

4 Algorithm Constructions

4.1 Setup

Our construction works for any additively homomorphic non-interactive commitment scheme over
Zp, where p is a large prime. Example of such commitment schemes include Pedersen commitments

[8]. In our case, the commitment key ck specifies a prime-order group G and three orthogonal group
generators g, h1 and h2. We also utilize a cryptographically secure hash function Hash.

Inputs: Security parameter λ
Outputs: Public parameters pp = (ck,Hash)

1. ck = (G, g, h1, h2)
2. Hash function Hash : {0, 1}∗ → {0, 1}λ

4.2 Mint Transactions

The Mint algorithm generates a coin of a given value V and a mint transaction txmint.

Inputs:

– Public parameters pp
– Coin value V ∈ [0, vmax]

Outputs: Coin commitment C and mint transaction txmint

– Randomly generate the coin spending key q and computes the corresponding public key as
Q = gq

– Compute the coin’s serial number from the public key Q as S = Hash(Q)
– Randomly sample a commitment blinding factor R
– Compute a double-blinded coin commitment as C = Comm(S;V,R) = gShV1 h

R
2

The component hR2 will ensure that it will be computationally unfeasible to identify the commit-
ment even when given both the values S and V . Mint transactions can be associated with one
or more transparent inputs from the blockchain base layer, and each base layer input spending
should be associated with a proof of ownership for the spent assets. This is usually done by pro-
viding a signature Sigi, which can be verified through the input UTXO’s public key. Mint algo-
rithm should also prove that the committed value actually corresponds to the transparent input
V . This is done by providing SchnorrProof , a generalized Schnorr proof of knowledge of discrete
logarithm relation C

hV1
= gShR2 . In the end, the txmint is comprised of the following components

txmint =
{
SchnorrProof, {Sigi1, . . . , }, auxdata

}
. The transaction owner saves the coin’s private

data (q, V,R) while the coin’s commitment C is published to the blockchain along with the txmint.

4.3 Spend Transactions

The Spend transaction enables a user to redeem previously-minted coins without revealing their
origin. Although Spend is a private case of a more generic transaction type JoinSplit, we discuss
it beforehand for simplifying the design rationale of JoinSplit. Similar to the Spend transaction in
the original Zerocoin construction discussed in [4], for each input coin the transaction owner

– First reveals the coin serial number S
– Next subtracts S homomorphically from all commitments in the CMlist
– Then provides a zero-knowledge proof of their knowledge of one out of these N-formed commit-

ments opening to 0.

In our case, the Spend also redeems the coin value V to a transparent input, an extra value proof
should be provided convincing that the hidden values of all spent coins sum up to the redeemed
value. Spend Transaction generates a zero-knowledge proof of a valid spend comprised of the zero-
knowledge 1-out-of-N proof and a special value proof along with other auxiliary transaction data.

Inputs:

– Input coins C1, . . . , Cold

– Private coin data
{

(q1, V1, R1), . . . , (qold, Vold, Rold)
}

and their corresponding indexes l1, . . . , lold

in the CMlist.

Outputs: Redeemed value Vout and Spend transaction - txspend

– For each input coin C1, . . . , Cold:
• Prover proves that he knows an index l ∈ [0, ..N] and the values q, V , R of the coin Cl ,

so that S = Hash(gq) and Cl = gShV1 h
R
2 . This is done via Σ-proofs for a double-blinded

commitment opening to 0 via the following steps: The Prover
1. Reveals the coin address public key Q = gq.
2. Computes the coin serial number as S = Hash(Q).
3. Homomorphically substracts the coin serial number from all coin commitments in the set
CMList = (C0, C1, .CN−1) resulting to a new set CMList′ = {C0·Comm(S, 0, 0)−1, . . . , CN−1·
Comm(S, 0, 0)−1}

4. Generates a Σ-proof proving the knowledge of one double-blinded commitment from the
set CMList′ is opening to 0.

– Provides a correct output value proof Proofvalue that the transparent input value corresponds
to the sum of all spent input coins. This is done with help of generalized Schnorr proofs of
knowledge and will be described in details below.

– Signs the transaction with each spending key qi.

The resulted txspend is comprised of the following elements

txspend =
(

[Σ1, Qi], . . . , [Σold, Qold], Vout, P roofvalue, sign1, . . . , signold

)
Next we describe a Σ-protocol to prove that the list of N double-blinded commitments Cck =
(c0, . . . , cN) includes a commitment to 0. This protocol design elements are instrumental for gener-
ating value proof in Spend transactions and the balance proof in the JoinSplit transactions.

1-out-of-N proofs for a double-blinded commitment opening to 0. Formally, we give a
Σ-protocol for the following relation

R = {(ck, (C0, . . . , CN−1), (l, v, r) | ∀i : Ci ∈ Cck
∧ l ∈ {0, . . . , N − 1}
∧ v, r ∈ Zq ∧ Cl = Commck(0, v, r))}

The protocol described below, is the modified version of the Σ-protocol of [5]. Assuming that N =
nm, the idea behind the Σ-protocol is to prove knowledge of an index l for which the product∏N
i=0 C

σl,i
i is a double-blinded commitment to 0. Here σl,i = 1 when i = l and σl,i = 0 otherwise.

σl,i =
∏m−1
j=0 σlj ,ij where l =

∑m−1
j=0 ljn

j and i =
∑m−1
j=0 ijn

j are the n-ary representations of l and
i respectively. In the protocol, the prover first commits to m sequences of n bits (σlj ,0, · · · , σlj ,n−1)

and then proves that each sequence contains exactly one 1. On receiving the challenge x, the prover
discloses the elements fj,i = σlj ,ix + aj,i where aj,i are randomly generated and committed by the

prover. For each i ∈ {0, · · · , N − 1} the product
∏m−1
j=0 fj,ij is the evaluation at x of the polynomial

pi(x) =
∏m−1
j=0 (σlj ,ijx+ aj,ij). So for 0 ≤ i ≤ N − 1 we have

pi(x) =

m−1∏
j=0

σlj ,ijx+

m−1∑
k=0

pi,kx
k = σl,ix

m +

m−1∑
k=0

pi,kx
k

The coefficients pi,k are depending on the l and aj,i and can be computed by the prover indepen-
dently of the challenge value x. All polynomials p0(x), · · · , pN−1(x) are of degree m−1 except pl(x).
The overall protocol is described in detail below.

P (gk, crs, (C0, . . . , CN−1), l, V,R) V (gk, crs, (C0, . . . , CN−1))

Compute Accept if and only if
rA, rB , rC , rD, aj,1, . . . , aj,n−1 ←R Zq
for j ∈ [0, · · · ,m− 1]

aj,0 = −
∑n−1
i=1 aj,i

B := Comck(σl0,0, . . . , σlm−1,n−1; rB)
A := Comck(a0,0, . . . , am−1,n−1; rA)

C := Comck({aj,i(1− 2σlj ,i)}
m−1,n−1
j,i=0 ; rC)

D := Comck(−a20,0, . . . ,−a2m−1,n−1; rD)
For k ∈ 0, ...,m− 1 A,B,C,D,

ρk, τk, γk ←R Zq {GK , QK}m−1k=0

Gk =
∏N−1
i=0 C

pi,k
i · h−γk2 −−−−−−−−−−−→

computing pi,k as is described above The values
Qk = hγk2 · Comm(0, ρk, τk) A,B,C,D,G0, Q0 . . . , Gm−1, Qm−1 ∈ G

x←{0,1}λ←−−−−−− {fj,i}m−1,n−1j,i=0,1 , zA, zC , zV , zR ∈ Zq
∀j ∈ [0,m− 1], i ∈ [1, n− 1]

fj,i = σljix+ aj,i ∀j : fj,0 = x−
∑n−1
i=1 fj,i

zA = rB · x+ rA BxA = Com(f0,0, . . . , . . . fm−1,n−1; zA)

zC = rC · x+ rD CxD = Com({fj,i(x− fj,i)}m−1,n−1j,i=0 ; zC)

zV = V · xm −
∑m−1
k=0 ρk · xk f0,1, . . . fm−1,n−1

zR = R · xm −
∑m−1
k=0 τk · xk zA, zC , zV , zR

∏N
i=0 C

∏m−1
j=0 fj,ij

i ·
∏m−1
k=0 (Gk ·Qk)−x

k

=
−−−−−−−→ = Comm(0, zV , zR)

Our construction differs from the original protocol described in [5] in a few different ways.

First, it exploits double-blinded commitments, and thus the transcript reveals two different val-
ues zV and zR for the two random values used in the commitment.

Next, instead of revealing the values Gk as a product of
∏N−1
i=0 C

pi,k
i ·Comm(0, ρk, τk), we split this

product and explicitly reveal the pair of blinded values Gk =
∏N−1
i=0 C

pi,k
i and Qk = Comm(0, ρk, τk).

The Qk elements are blinded via extra random factors hγk2 . The Gk values are correspondingly mul-
tiplied with the inverse of hγk2 to ensure that this random factors will be neutralized in the product
Gk ·Qk during the proof verification process.

In the appendix, we will prove the following lemma.
Lemma: The Σ-protocol for knowledge of 1-out-of-N double-blinded commitments opening to 0 is
perfectly complete. It is (m+ 1)-special sound if the commitment scheme is binding. It is (perfect)
special honest verifier zero-knowledge if the commitment scheme is (perfectly) hiding.

Generating a proof of correct transparent output value. Transaction spending input coins
C1, . . . , Cold and outputting a transparent net value Vout at the transaction cost f should prove that
V1 + . . . + Vold = Vout + f . Let’s see how we can leverage the transcript data of Σ proofs to prove
the correctness of this transparent output value.

Note that given the txdata, the verifiers can independently compute the following equation.

A =

∏old
t=1

(
Comm(0, zVt , zRt) ·

∏m−1
k=0 Q

xk

k

)
h
(Vout+f)·xm
1

where Qk = hγk2 · Comm(0, ρk, τk) (1)

Here x is the common verifier challenge used in generating all Σ-proofs for all inputs. x is generated
via Fiat-Shamir trick using the initial statements of Σ-proofs of all transaction inputs.

Now let’s see that

old∏
t=1

(
Comm(0, zVt , zRt) ·

m−1∏
k=0

Qx
k

k

)
= h

∑old
t=1 Vt·x

m

1 · h
∑old
t=1(Rt·x

m+
∑m−1
k=0 γtk·x

k)
2

If the value equation V1 + . . . + Vold = Vout + f holds, then h
(Vout+f)·xm
1 will be canceled by

the value h
∑old
t=1 Vt·x

m

1 in the equation (1) and A will be a valid public key with the witness a =∑old
t=1(Rt · xm +

∑m−1
k=0 γ

t
k · xk).

The prover is the only party knowing a as they possess both the secret values Rt for all input
coins and also the blinding factors γtk used for the Σ-proofs generation. Using these observations,
the prover can provide a proof of correct output value by signing the transaction with the witness
a. All network participants will be able to verify this signature by computing the verification public
key A in a non-interactive way from the transaction output value and Σ-proofs statement data.

4.4 JoinSplit Transactions

JoinSplit transactions can simultaneously spend old ≥ 1 input coins to output new ≥ 0 fresh
output coins and net transparent output value Vout ≥ 0 at the cost of transaction fee f . Each
such transaction will be comprised of corresponding spend descriptions, output descriptions and the
transaction balance proof.
Inputs:

– Input coins CI1 , . . . , CIold

– Private coin data
{

(q1, V1, R1), . . . , (qold, Vold, Rold)
}

and their corresponding indexes l1, . . . , lold

in the CMlist.

Outputs:

– Redeemed value - Vout
– Output coins - CO1

, . . . , COnew
– JoinSplit transaction - txjoinsplit

Let us define the input coins of the transaction as

CI1 = gSI1hVI11 hRI12 , . . . , CINold = gSIoldh
VIold
1 h

RIold
2

and the output coins as

CO1 = gSO1hVO1
1 hRO1

2 , . . . , CONnew = gSOnewh
VOnew
1 h

ROnew
2

The JoinSplit transaction legitimacy proof should convince all network participants of the following.

• All Nold spend transactions are valid spends.
• All Nnew output coins are valid and do not contain any negative values: ∀j ∈ 1, . . . , Nnew :
VOj > 0

• No value is created out of thin air and the transaction balance is preserved VI1 + . . . + VIold =
VO1 + . . .+ VOnew + Vpub.

This proof is generated via the following steps:

1. Each input coin is spent via Spend transaction described above, which implies revealing the
coin’s public key, substrating its serial number from all commitments in the list CMList and
providing a Σ-proof that one double-blinded commitment of the set of new commitments is
opening to 0. Note that Spend does not reveal the coin’s value explicitly.

2. For each output coin COl

• The prover provides a zero-knowledge range proof BPO, showing that the coin does not hide
a negative value. This is done with the help of Bulletproofs for double-blinded commitments
which are described in detail in the Appendix B.

3. The prover provides a zero-knowledge proof that

VI1 + . . .+ VIold = VOUT + VO1 + . . .+ VOnew + f

4. Prover signs the transactions with the corresponding spending keys q1, . . . , qold of all input coins.

The resulted txjoinsplit is comprised of the following elements

txjoinsplit =
(

[Σ1, Qi], . . . , [Σold, Qold], Vout, P roofbalance,

[CO1, RangeProofO1
], . . . , [COnew , RangeProofOnew],

sign1, . . . , signold

)
For each Nold input coins we will have Nold separate Σ-proofs published by the spender, which proof
transcripts contain the following data

(zV1
, · · · , zVNold) and (zR1

, · · · , zRNold) where zVt = Vt · xm −
m−1∑
k=0

ρtkx
k and zRt = Rt · xm −

m−1∑
k=0

τ tkx
k

{hγ
t
0

2 · Comm(0, ρt0, τ
t
0), · · · , hγ

t
m−1

2 · Comm(0, ρtm−1, τ
t
m−1)} for t ∈ 1, ..., Nold

Before describing how the prover could generate a transaction balance proof, let’s notice that the
verifier can leverage the published transaction txjoinsplit data to go over the following steps

1. Take all output coins, the net output value VOUT , the transaction fee f and the common challenge
value x used for Σ-proofs constructions and compute the following element

A : = (CO1 · . . . · CONnew)x
m

· h(VOUT+f)x
m

1 =

= g(SO1+...+SONnew)xmh
(VOUT+VO1+...+VONnew+f)xm

1 h
(RO1+...+RONnew)xm

2

2. Take the elements zV 1, . . . , zVNold , zR1, . . . , zRNold and {Comm(0, ρtk, τ
t
k)}m−1k=0 from the corre-

sponding Σ-proof transcripts and compute the element

B : = Comm(0; zV 1 + . . .+ zV Nold , zR1 + . . .+ zRNold) ·
Nold∏
t=1

m−1∏
k=0

Qx
k

k

= Comm(0; zV 1 + . . .+ zV Nold , zR1 + . . .+ zRNold) ·
Nold∏
t=1

(m−1∏
k=0

(h
γtk
2 · Comm(0; ρtk, τ

t
k))x

k
)

= h
(VI1+...+VINold)x

m

1 h
(RI1+...+RINold)x

m

2

= h
∑old
t=1 VIt·x

m

1 h
∑old
t=1(RIt·x

m+
∑m−1
k=0 γtk·x

k)
2

If the balance transaction holds, the h1 exponents in A and B will cancel each other out and we will
have

A

B
= gXhY2 (2)

where

X = (SO1 + . . .+ SONnew)xm and Y =

new∑
t=1

ROt · xm −
old∑
t=1

(
RIt · xm +

m−1∑
k=0

γtk · xk
)

Now we can observe that for providing a balance proof, it is sufficient for the transaction owner to
prove the knowledge of the exponent values X and Y in the equation (2). So the BalanceProof is
simply a generalized Schnorr proof of knowledge of the discrete logarithm relation.

In order to confirm the JoinSplit transaction’s legitimacy, all network participants should perform
the following verification steps.

• Verify the correctness of all 1-out-of-Many proofs ΣI1 , . . . , ΣIold .

• Check the signatures sigI1 , . . . , sigIold with help of the input coins public keys Q1, . . . , Qold.

• Verify all range proofs BPO1
, . . . , BPOnewto ensure non of the output coins CO1

, . . . , COnew
contains a negative value.

• Compute the special discrete logarithm relation from the output coin and spent proof transcript
data and then check the non-interactive Schnorr proof of knowledge to ensure that the transaction
balance is preserved.

5 Batching & Precomputation Techniques for 1-out-of-N Proofs in the
Zerocoin Setup

In the blockchain application, the verifier will have to verify multiple 1-out-of-N proofs simultane-
ously. For example, the blockchain nodes receiving a block of transactions need to verify all trans-
actions and thus the corresponding proofs in parallel. Here we describe an important optimization
concerning the simultaneous verification of multiple 1-out-of-N proofs in the Zerocoin setup.
Let us assume the verifier has to verify M different Spend transfers from the initial set of all com-
mitments C = (C0, C1, .CN−1). Each spend description contains the associated Σ proof and the coin
serial number St (in our construction, St are dynamically computed from the coin’s public address
Qt). For the t-th spend a new commitment set is calculated as Cti := Ci · g−st and the Σ-proof is
generated, which convinces the verifier that the set {Ct0, . . . , CtN−1} contains a commitment to 0.
The verification of a single One-out-of-Many Proof boils down to a large multi-exponentiation to
check the following equivalency.

N∏
i=0

Ct
∏m−1
j=0

ftj,ij

i ·
m−1∏
k=0

(Gtk ·Qtk)−x
k

≡ Comm(0, ztV , z
t
R)

This requires ∼ N(as we have N >> m) exponentiation. For simplifying the notations further, lets
make the following assignments.

f ti :=

m−1∏
j=0

f tj,ij Dt :=

m−1∏
k=0

(Gtk ·Qtk)−x
k

Et := Comm(0, ztV , z
t
R) (3)

So for each transaction, the multi-exponentiation equation can be rewritten as

N∏
i=0

(
Cti

)fti
·Dt ≡ Et (4)

We want to benefit from batch verification techniques based on the observation that checking if
gx = 1 and gy = 1 can be checked by drawing a random scalar α from a large domain and checking
if gαx+y = 1. But in our case, the generators Cti used in the multi-exponentiation are proof-dependent
and differ for each transaction.

In order to benefit from batching techniques we can use the following trick. Considering the fact
that Cti = Ci

g(St)
and the either the values St or their preimages are explicitly revealed during the

Spend transaction, we can rewrite the equation (4) as

N∏
i=0

(
Cti

)fti
·Dt =

N∏
i=0

(Ci
gSt

)fti
·Dt (5)

and check if the following equivalency holds

N∏
i=0

C
fti
i ≡

Et
Dt
· gSt·(

∑N
i=0 f

t
i) (6)

The verifier can do this for all proofs, as the values St are public and are part of the spend proof.
So for all M transactions with different St, we will get the same generator values Ci for the left side
of all M equations. This will enable us to

1. Perform batch verification of the transaction Σ proofs.
2. Speeding up the batch verification by pre-computing the exponent values of Ci (resulting in

another 25-60% performance optimization)

Now, in order to perform verification of M spend proofs in batch, the verifier can generate M random
values y1, . . . , yt and do the following computations

M∏
t=1

(N∏
i=0

C
fti
i

)yt
=

M∏
t=1

(Et
Dt
· gst·(

∑N
i=0 f

t
i)
)yt

(7)

which in turn is equivalent to verifying that

N∏
i=0

C
∑M
t=1 yt·f

t
i

i = g

∑M
t=1

(
yt·st·

∑N
i=0 f

t
i

)
·
M∏
t=1

(Et
Dt

)yt
(8)

This helps to save N exponentiation for each extra proof verification resulting to highly efficient
batch verification process.

6 Extending Lelantus for direct anonymous payments

Zerocoin does not provide a mechanism for one user to pay another in ”Zerocoins” directly. In order
to spend the coin C = gShV1 h

R
2 , the coin owner should exclusively possess the coin private values

q, V,R. Note, that Spend transaction requires a valid signature via the spending key q. If during the
Mint transaction we could generate the coin spending key q in a way that it becomes accessible only
to the intended recipient, then we will have an authentication system authorizing only the intended
recipient to spend the coin.

Sender (V, R) Recipient
Samples x←R Zp

Samples y ←R Zp gx Computes public address gx

←−−−−−−−
Computes

S = Hash(gxy)
C = gShV1 h

R
2 For spending the coin C :

C is published to blockchain y, V,R
−−−−−−−→ 1. Reveals the coin public address gxy

2. Generates proof for the spend transfer
3. Signs the transaction with secret key x · y

We leverage the fact that coin serial numbers are not generated randomly, but rather from through
hashing a specific public key associated with the coin and initially known only to the coin owner. This
public key is revealed during the spend transaction and the corresponding private key also referred

as the coin’s private address is used to sign the Spend transaction. Based on this observation, we
can bind the serial number to a public key, which corresponding secret key will be known only to
the intended recipient authorizing him to make a valid signature and spend the coin. For Mint-ing
coins which can be spent only by the targeted recipient and not by the coin creator, the sender and
recipient can engage into a Diffie-Hellman-like protocol depicted above. Note, that the coin creator
will still notice when this coin associated with the public address gxy is being spent. Although this
is a privacy drawback, it can be easily eliminated if we require the recipient to immediately spend
and re-mint the received coin.

7 Implementation and Performance

For a commitment set of N = nm coins, a single One-out-of-Many Proof requires the prover to send
2m+4 Pedersen commitments and m(n−1)+4 elements of ZP in total. The proof can be computed

N n m Proof Size Proof Time Verification Time
(bytes) (ms) (ms)

8192 2 13 1564 1636 243
16384 4 7 1412 1464 491
32768 8 5 1724 1895 1002
65536 4 8 1576 6584 1992
65536 16 4 2456 2940 1997
262144 8 6 2016 19218 8315
262144 64 3 6516 10401 8343

Table 2. 1-out-of-N Proofs Performance

using mN + 2mn + 2m + 6 group exponentiation, as the computation of the values A, B, C and
D in the bit proof requires 2mn+ 4 exponentiation since exponentiation by (1− 2σli,j) amounts to
a multiplication. Computing the elements Qk costs 3m exponentiation. The computation of all Gk
requires mN exponentiation as the elements h−γk2 are just the inverses of elements already computed
for Qk. Proofs can be verified using N+2mn+2m+15 group exponentiations as follows: N+2m+2
exponentiation for the last equation implying big multiexponentation, and 2mn+4 for the remaining.
Our schemes can be instantiated over any group G where the DDH problem is computationally hard.
To evaluate the performance of our proofs, we created a reference implementation in C++ using
the popular library libsecp256k1 which uses the elliptic curve secp256k1 with 128-bit security and
is used in numerous cryptocurrency projects. In the compressed form, secp256k1 points are stored
as 33 bytes. In the Table 2 below we bring the proof size and performance parameters for different
anonymity set size and configurations. All experiments were performed on an Intel I7-4870HQ system
with a 2.50 GHz processor. The verification time is of critical importance for the cryptocurrency
application, as the verifiers need to check all confidential transactions with all associated proofs. Next,
we experiment with batching of the verification of multiple Σ-proofs, so that the cost of verifying
every additional proof will be significantly reduced. Table 3, 4, 5 and 6 expose proof verification
benchmarks for different values N . Our modifications to the original Bulletproofs protocol add an
additional two exponentiations to the proof generation efforts and one extra exponentiation to the
verification process. Also, we add an additional ZP element to the proof. These modifications, in
general, will result in a negligible performance overhead to the original protocol. For the Bulletproofs
performance estimation, we refer to the implementation analysis provided in the original paper. The

Batch Verification Average cost
Size Time per verification

5 623 124.6
10 636 63.6
50 1125 22.5
100 1759 17.6
500 6978 14
1000 13719 13.7

Table 3. Batch Verification Timing for the
Anonymity Set of 16384

Batch Verification Average cost
Size Time per verification

5 1090 218
10 1186 118.6
50 1970 39.4
100 2967 29.7
500 11098 22.2
1000 21825 21.8

Table 4. Batch Verification Timing for the
Anonymity Set of 32384

Batch Verification Average cost
Size Time per verification

5 2162 432.5
10 2317 232
50 3691 73.8
100 5342 53.4
500 19660 39.3
1000 38192 38.2

Table 5. Batch Verification Timing for the
Anonymity Set of 65536

Batch Verification Average cost
Size Time per verification

5 9310 1862
10 10024 1000
50 16737 335
100 24995 250

Table 6. Batch Verification Timing for the
Anonymity Set of 262144

proof size for a single 64-bit range proof is 675 byte which takes 37ms to generate and 3.9ms to verify.
In the transaction with multiple spend and output transfers, the proof and verification times will be
dominated by the Σ-proofs and Bulletproofs. The generalized Schnorr proof’s impact on the overall
transaction performance will be negligible, as the generation requires only two exponentiations and
verification needs just three exponentiations. The signature will be comprised of one group element
and two scalars which is a small overhead to the overall storage requirements.

8 Conclusion

In this paper we have presented a new private cryptocurrency scheme which meets the requirements
of a good privacy protocol, namely a high anonymity set, minimal trust required, scalability, ease of
use and implementation. We presented formal security proofs for all cryptographic building blocks
utilized in our system leaving the formal proof of the payment system security to be discussed in
the extended version of this paper.

Acknowledgments.

The author thanks Jens Groth for his continuous support and feedback on the generic ideas evaluated
in this paper and Benedict Bünz for his important suggestions for the Bulletproof protocol for double-
blinded commitment schemes. Further, I thank Poramin Insom, Reuben Yap, Martun Karapetyan,
Levon Petrosyan, and the whole Zcoin team for helpful discussions and support. This protocol has
been developed in the scope of Zcoin’s next-generation privacy protocol research.

References

1. J. Camenisch, A. Kiayias, M. Yung. On the Portability of Generalized Schnorr Proofs.
https://eprint.iacr.org/2009/050.pdf

2. Claus-Peter Schnorr. Efficient signature generation by smart cards. Journal of Cryptology, 4(3):161174,
1991.

3. ZCash parameter generation. https://z.cash/technology/paramgen.html, 2016. Accessed: 2017-09-28.

4. J. Groth and M. Kohlweiss. One-out-of-many proofs: Or how to leak a secret and spend a coin. In
EUROCRYPT, vol. 9057 of LNCS. Springer, 2015.

5. Bootle, J., Cerulli, A., Chaidos, P., Ghadafi, E., Groth, J., Petit, C.: Short accountable ring signatures
based on DDH. In: Pernul, G., et al. (eds.) ESORICS. LNCS, vol. 9326, pp. 243265. Springer, Heidelberg
(2015).

6. Greg Maxwell. Confidential transactions. https://people.xiph.org/greg/confidential-values.txt, 2016.

7. Benedikt Bünz, Jonathan Bootle, Dan Boneh, Andrew Poelstra, and Greg Maxwell. Bulletproofs: Short
proofs for confidential transactions and more. Cryptology ePrint Archive, Report 2017/1066, 2017.
https://eprint.iacr. org/2017/1066

8. Torben P. Pedersen. Non-interactive and information-theoretic secure verifiable secret sharing. In
CRYPTO, volume 576 of Lecture Notes in Computer Science, pages 129 -140,1991.

9. Jonathan Bootle, Andrea Cerulli, Pyrros Chaidos, Jens Groth, and Christophe Petit. Efficient zero-
knowledge arguments for arithmetic circuits in the discrete log setting. In Annual International Conference
on the Theory and Applications of Cryptographic Techniques, pages 327-357. Springer, 2016.

10. Yehuda Lindell. Parallel coin-tossing and constant-round secure two-party computation. J. Cryptology,
16(3):143-184, 2003.

11. Jens Groth and Yuval Ishai. Sub-linear zero-knowledge argument for correctness of a shuffle. In Advances
in Cryptology - EUROCRYPT 2008, pages 379-396, 2008.

12. Mihir Bellare and Phillip Rogaway. Random oracles are practical: A paradigm for designing efficient
protocols. In ACM CCS, pages 62-73, 1993.

13. Eli Ben-Sasson, Alessandro Chiesa, Christina Garman, Matthew Green, Ian Miers, Eran Tromer, and
Madars Virza. Zerocash: Decentralized anonymous payments from Bitcoin. In IEEE Symposium on Secu-
rity and Privacy. IEEE, 2014.

14. Eli Ben-Sasson, Alessandro Chiesa, Daniel Genkin, Eran Tromer, and Madars Virza. SNARKs for C:
Verifying program executions succinctly and in zero knowledge. In CRYPTO, 2013.

15. Ian Miers, Christina Garman, Matthew Green, and Aviel D. Rubin. Zerocoin: Anonymous distributed
e-cash from bitcoin. In IEEE Symposium on Security and Privacy, 2013.

16. Daira Hopwood, Sean Bowe, Tailor Hornby, and Nathan Wilcox. Zcash protocol specification, 2018.
URL: https://github.com/zcash/zips/blob/master/protocol/protocol.pdf.

17. Mihir Bellare and Phillip Rogaway. Random oracles are practical: A paradigm for designing efficient
protocols. In ACM CCS, pages 62-73, 1993.

18. Jens Groth and Mary Maller. Snarky signatures: Minimal signatures of knowledge from simulationex-
tractable SNARKs. Cryptology ePrint Archive, Report 2017/540, 2017. http://eprint.iacr.org/2017/540.

19. Alessandro Chiesa, Matthew Green, Jingcheng Liu, Peihan Miao, Ian Miers, and Pratyush Mishra.
Decentralized anonymous micropayments. In Proceedings of the 36th Annual International Conference on
the Theory and Applications of Cryptographic Techniques, EUROCRYPT 17, pages 609642, 2017.

A: Security Proofs of 1-out-of-N Proofs for Double Blinded Commitments

Proof:To see that the protocol is complete observe that the correctness of the equations BxA =
Com(f0,0, . . . , . . . fm−1,n−1; zA) and CxD = Com({fj,i(x− fj,i)}m−1,n−1j,i=0 ; zC) follows by inspection.
The first equation proves that the values of each sequence sum up to one and the second equation
proves that each sequence is consisting of bits only.

The correctness of the last verification equation follows from the homomorphic properties of the

double-blinded commitments since

N∏
i=0

C
∏m−1
j=0 fj,ij

i ·
m−1∏
k=0

(Gk ·Qk)−x
k

=

N∏
i=0

C
pi(x)
i ·

m−1∏
k=0

(
h−γk2 ·

N−1∏
i=0

C
pi,k
i · hγk2 · Comm(0, ρk, τk)

)−xk
=

=

N∏
i=0

C
pi(x)
i ·

m−1∏
k=0

(N−1∏
i=0

C
−pi,k·xk
i · Comm(0,−ρkxk,−τkxk)

)
=

N∏
i=0

C
pi(x)
i ·

(N−1∏
i=0

C
−

∑m−1
k=0 pi,k·xk

i · Comm(0,−
m−1∑
k=0

ρkx
k,−

m−1∑
k=0

τkx
k)
)

=

N∏
i=0

C
σl,ix

m

i · Comm(0,−
m−1∑
k=0

ρkx
k,−

m−1∑
k=0

τkx
k)
)

=Cx
m

l · Comm(0,−
m−1∑
k=0

ρkx
k,−

m−1∑
k=0

τkx
k)
)

=Comm(0, V · xm, R · xm) · Comm(0,−
m−1∑
k=0

ρkx
k,−

m−1∑
k=0

τkx
k)
)

=Comm(0, V · xm −
m−1∑
k=0

ρkx
k, R · xm −

m−1∑
k=0

τkx
k) = Comm(0, zV , zR)

Now let us describe a special honest verifier zero-knowledge simulator that is given a challenge x ∈
{0, 1}λ. It starts by picking the elements of the response uniformly at random as B,C,G1, . . . Gm−1;

Q0, Q1, . . . Qm−1 ← G; f0,1, . . . fm−1,n−1, zA, zC , zV , zR ← Zq. Next it computes fj,0 = x−
∑n−1
i=1 fj,i;

A = Comck(f0,0, . . . , fm−1,n−1, zA)B−x and D = Comck(fi,j(x− fi,j), zC)C−x. The simulator com-
putes G0 from the last verification equation as

G0 =
Q−10 · Comm(0, zV , zR)∏N

i=0 C
∏m−1
j=0 fj,ij

i ·
∏m−1
k=1 (Gk ·Qk)−xk

By the DDH assumption, Q0, Q1, . . . Qm−1, G1, . . . Gm−1 in a real proof are indistinguishable from
picking random group elements as was done in the simulation. We get independent, uniformly ran-
dom B, zV and zR in both real proofs and simulations. Also in both simulations and real proofs,
the elements f0,1, . . . fm−1,n−1, zA, zC and C are independent, uniformly random and uniquely de-
termine the values A,D and {f0,j}m−1j=0 . Finally, G0 is uniquely determined by the last verification
equation in both real proofs and in simulations, so the two are indistinguishable. Observe that two
different valid answers f0,1, . . . fm−1,n−1, zA, zC and f ′0,1, . . . f

′
m−1,n−1, z

′
A, z

′
C to one challenge would

break the binding property of BxA and CxD so the simulation is perfect.

Now we prove the protocol is (m + 1)-special sound. Suppose an adversary can produce (m + 1)

different accepting responses
(

(f
(0)
j,i , z

(0)
V , z

(0)
R), . . . , (f

(m)
j,i , z

(m)
V , z

(m)
R)

)
with respect to m+1 different

challenges x(0), . . . , x(m) and the same initial message. Assume that m > 1. As is described in the
original paper [9], it is possible to extract the openings σlj ,i, aj,i for B and A with σlj ,i ∈ {0, 1} and∑n−1
i=0 σlj ,i = 1. This opening will define the index l =

∑n−1
j=0 ljn

j , as lj is the index of the only 1

in the sequence σlj ,0, . . . , σlj ,n−1. Following the proof, all answers satisfy f
(e)
j,i = σlj ,ix

(e) + aj,i for
0 ≤ e ≤ m with overwhelming probability due to the binding property of the commitment scheme.

Having the values σlj ,i and aj,i, we can compute the polynomials pi(x) =
∏m−1
j=0

(
σlj ,i+aj,i

)
. Here the

value pl(x) is the only polynomial with degree m in x and we can write the last equation of the pro-

tocol as cx
m

l ·
∏m−1
k=1 G

′xk
k = Comm(0, zV , zR). The values G′x

k

k are derived from the initial statement
and the values σlj ,i and aj,i and the equation holds for all x(0), . . . , x(m). Consider the Vandermonde

matrix with the eth row given by
(

1, x(e), . . . , (x(e))m
)

. As all x(e) are district, this matrix is invert-

ible and we can obtain a linear combination θ0, . . . , θn of the rows producing the vector (0, . . . , 0, 1).

Hence we can deduce cl =
∏m
e=0

(
c
(x(e))m

l ·
∏m−1
k=1 G

′(x(e))k

k

)θe
= Comm

(
0,
∑m
e=0 θez

e
V ,
∑m
e=0 θez

e
R

)
,

which provides an opening of double-blinded commitment cl to the plain-text 0 with the random-
nesses V =

∑m
e=0 θez

e
V and R =

∑m
e=0 θez

e
R.

B: Bulletproofs for Double-Blinded Commitments

Here we describe how Bulletproofs can be generalized to support double-blinded commitments. Let
v ∈ Zp and V ∈ G be a double-blinded Pedersen commitment to v using the random values γ1 and
γ2. The Bulletproof system will convince the verifier that v ∈ [0, 2n−1]. In other words, the proof
system proves the following relation

L = {(g, h ∈ G,V, n; v, γ1, γ2 ∈ Zp) : V = gvhγ11 h
γ2
2 ∧ v ∈ [0, 2n − 1]}

We make appropriate modifications to the original Bulletproofs protocol to support double-blinded
commitments. The steps required for proving the relation are the following.

Prover on the inputs v, γ1, γ2 computes

aL ∈ {0, 1}ns.t.〈aL,2
n〉 = v, aR = 1− aL ∈ ZnP

α, ρ←− ZP , sL, sR ←− ZnP ,
A = hα1 gaLhaR

S = hρ1g
aLhaR

Prover −→ V erifier : A,S

Verifier −→ Prover : y, z ← ZP

Next two linear vector polynomials l(x), r(x) ∈ ZnP [X] and a quadratic polynomial t(x) ∈ ZP [X] are
defined as follows:

l(x) = (aL − z · 1n) + sL ·X ∈ ZnP [X]

r(x) = yn ◦ (aR + z · 1n + sR ·X) + z22n ∈ ZnP [X]

t(x) = 〈l(X), r(X)〉 = t0 + t1 ·X + t2 ·X2 ∈ ZP [X]

The remaining steps required to complete the proof are:

Prover computes

τ11 , τ
1
2 , τ

2
1 , τ

2
2 ← Z∗P

T1 = gt1h
τ1
1

1 h
τ1
2

2 , T2 = gt2h
τ2
1

1 h
τ2
2

2 ∈ G
Prover sends T1 and T2 to verifier

Verifier generates a challenge x← Z∗P and sends it to prover

Prover computes

l = l(x) = aL − z · 1n + sL · x ∈ Znp
r = r(x) = yn ◦ (aR + z · 1n + sr · x) ∈ Znp
t̂ = 〈l, r〉 ∈ ZP
µ = α+ ρ · x ∈ Zp
τ1x = τ21x

2 + τ11x+ z2γ1, τ2x = τ22x
2 + τ12x+ z2γ2 ∈ Zp

Prover sends the values l, r,µ, τ1x , τ
2
x , t̂ to verifier

Verifier computes:

h′i = h
(y−i+1)
i ∈ G for j ∈ [1, ..., n]

P = A · Sx · g−z · (h′)zy
n+z22n

∈ G
Verifier checks if

gt̂h
τ1
x

1 h
τ2
x

2 ≡ V z
2

· gσ(y,z) · T x1 · T x
2

2

P ≡ hµ1glh′
r

t̂ ≡ 〈l, r〉 ∈ ZP

The blinding vectors sL and sR ensure that the prover can publish l(x) and r(x) for any x ∈ Z∗P
without revealing any information about aL and aR. The prover needs to convince the verifier that
the constant term of t(x) denoted t0 is equal to v · z2 + σ(y, z). To do so, the prover commits to
the remaining coefficients of t(x), namely t1, t2 ∈ Zp through double-blinded commitments. It then
convinces the verifier that it has a double-blinded commitment to the coefficients of t(x) by checking
the value of t(x) at a random point x ∈ ZP .
In the range proof protocol, the prover transmits l and r, with sizes linear in n. The transfer of l
and r can be eliminated using the inner-product argument from the actual paper [7]. To use the
inner-product argument, observe that verifying P ≡ hµ1g

lh′
r

and t̂ ≡ 〈l, r〉 ∈ ZP is the same as
verifying that the witness l and r satisfies the inner product relation

{(g,h′ ∈ Gn, P ′ = Ph−µ1 ∈ G, t̂ ∈ Zp; l,r ∈ Znp) : P ′ = glhr ∧ t̂ = 〈l, r〉}

That is, P ∈ G is a commitment to two vectors l, r ∈ Znp whose inner product is t̂.

Therefore, instead of transferring the values l, r,µ, τ1x , τ
2
x , t̂ to the verifier, the prover can transfer

µ, τ1x , τ
2
x , t̂ and an execution of the inner product argument described in the original paper.

Lemma: The presented range proof for the double-blinded commitment has perfect completeness,
perfect special honest verifier zero-knowledge, and computational witness extended emulation.

Proof: For proving the perfect completeness of the provided Bulletproof, let us check that

V z
2

· gσ(y,z) · T x1 · T x
2

2 =gv·z
2

hγ1·z
2

1 hγ2·z
2

2 · gσ(y,z) · gt1xhτ
1
1x

1 h
τ1
2x

2 · gt2x
2

h
τ2
1x

2

1 h
τ2
2x

2

2

=gv·z
2+σ(y,z)+t1x+t2x

2

h
γ1·z2+τ1

1x+τ
2
1x

2

1 h
γ2·z2+τ1

2x+τ
2
2x

2

2

=gt0+t1x+t2x
2

h
τ1
x

1 h
τ2
x

2

=gt̂h
τ1
x

1 h
τ2
x

2

as we have t̂ = 〈l, r〉 = t0 + t1x + t2x
2 and also t0 = σ(y, z) + v · z2 for all valid witnesses v. The

equation gt̂h
τ1
x

1 h
τ2
x

2 ≡ V z
2 · gσ(y,z) · T x1 · T x

2

2 is the only place where the verifier uses the committed
value V , the double-blinded commitments T1 and T2 and the values τ1x , τ

2
x .

Also, it is evident that other verification checks as

A · Sx · g−z · (h′)zy
n+z22n = hα1 gaLhaR · hρx1 gsLxhsRx · g−z · (h′)z·y

n+z2·2n =

= hα+ρx1 · gaL−1n·z+sL·x · (h′)y
n◦(aR+sRx+z·1n)+z2·2n

= hµ1gl(h′)r

In order to prove the perfect honest-verifier zero-knowledge, let us construct the simulator that

produces a distribution of proofs for a given statement
(
g, h ∈ G; h,g ∈ Gn;V ∈ G

)
that is

indistinguishable from valid proofs produced by an honest prover interacting with an honest verifier.
The simulator chooses all proof elements and challenges according to the randomness supplied by
the adversary from their respective domains or computes them directly as described in the protocol.
Particularly it generates random witness l and r, chooses A, T2 ← G,µ← ZP and then computes S
and T1 according to the verification equations as

S =
(
h−µ1 ·A · g−z·1

n−l · h′−z·y
n−z2·2n−r

)−x−1

T1 =
(
h
−τ1

x
1 · h−τ

2
x

2 · gσ(y,z)−t̂ · V z
2

· T x
2

2

)−x−1

The simulator can run the inner product argument with the simulated witness (l,r) and the veri-
fier randomness. All elements in the proof are either independently randomly distributed or their
relationship is fully defined by the verification equations. Revealing the inner product witness or
leaking information about it does not change the zero-knowledge property of the overall protocol. It
is straightforward to check that the simulator is efficient.

In order to prove the knowledge-soundness of Bulletproofs, the witness-extended emulation tech-
niques defined in [11] and [10] is used which shows that whenever an adversary produces an argument
satisfying the verifier with some probability, then there exists an emulator producing an identically
distributed argument with the same probability, but also a witness. The emulator is permitted to
rewind the interaction between the prover and verifier to any move and resume with the same inter-
nal state for the prover, but with fresh randomness for the verifier. Whenever the adversary makes
a convincing argument when in state s, the emulator can extract the witness, and therefore, we will
have an argument of knowledge of witness w. The techniques to build witness-extended emulation
techniques for Bulletproofs with double-blinded committed value are identical to the techniques for

building an emulator for Bulletproofs described in the original paper, apart from a minor argument
that two random values used in the calculation of the values T1 and T2 should be extracted from
the transcripts. For the details of the emulator construction process, we refer to the original paper
for interested readers.

