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Abstract. With Attribute-based Signatures (ABS) users can simulta-
neously sign messages and prove compliance of their attributes, issued by
designated attribute authorities, with some verification policy. Neither
signer’s identity nor possessed attributes are leaked during the verifica-
tion process, making ABS schemes a handy tool for applications requiring
privacy-preserving authentication. Earlier ABS schemes lacked support
for hierarchical delegation of attributes (across tiers of attribute author-
ities down to the signers), a distinct property that has made traditional
PKIs more scalable and widely adoptable.

This changed recently with the introduction of Hierarchical ABS (HABS)
schemes, where support for attribute delegation was proposed in combi-
nation with stronger privacy guarantees for the delegation paths (path
anonymity) and new accountability mechanisms allowing a dedicated
tracing authority to identify these paths (path traceability) and the
signer, along with delegated attributes, if needed. Yet, current HABS
construction is generic with inefficient delegation process resulting in
sub-optimal signature lengths of order O(k2|Ψ |) where Ψ is the policy
size and k the height of the hierarchy.

This paper proposes a direct HABS construction in bilinear groups that
significantly improves on these bounds and satisfies the original security
and privacy requirements. At the core of our HABS scheme is a new
delegation process based on the length-reducing homomorphic trapdoor
commitments to group elements for which we introduce a new delega-
tion technique allowing step-wise commitments to additional elements
without changing the length of the original commitment and its open-
ing. While also being of independent interest, this technique results in
shorter HABS keys and achieves the signature-length growth of O(k|Ψ |)
which is optimal due to the path-traceability requirement.

1 Introduction

Attribute-based Signatures, first introduced in [29] and [30], provide privacy-
preserving mechanisms for authenticating messages. An ABS signature assures
the verifier that the signer owns a set of attributes that satisfy the signing policy



without leaking their identity, nor the set of attributes used. Traditional ABS
schemes considered two security properties, user privacy and unforgeability. In-
formally, a user is anonymous if an ABS signature does not leak their identity,
nor the set of attributes used to satisfy the signing policy, while unforgeability
requires that a signer cannot produce a signature conforming to a policy for
which he does not own a set of suitable attributes. Later constructions [16, 14,
19] offered more advanced functionality with an additional property of traceabil-
ity which holds signers accountable by allowing a dedicated tracing authority to
identity them if required.

The vast majority of existing ABS schemes [16, 32, 31, 5, 14, 19, 13, 34]are non-
interactive, in the standard model and is based on bilinear maps and Groth-Sahai
proofs [20], with the exception of [22], which uses RSA setting and the random
oracle model, and the recent schemes in [15, 37] which rely on lattices. Interac-
tive ABS schemes, e.g. [26], where policies must be chosen by verifiers ahead
of the signing phase have also been proposed. In general, signing polices can
have varying levels of flexibility and range from threshold policies [29], to mono-
tone boolean predicates [14, 19], and generalised circuits [34]. Typically, more
restrictive policies allow for more efficient constructions. Policy-based Signa-
tures (PBS) [5] can be viewed as a generalisation of ABS schemes, albeit their
security is currently proven in a single-user setting without addressing stronger
non-frameability requirement of more recent ABS schemes [14, 19, 12].
Hierarchical Attribute-based Signature and their Limitations. Hierar-
chical Attribute-based Signatures (HABS), recently introduced in [12], extend
traditional ABS schemes by permitting controlled delegation of attributes from a
root authority (RA) over possibly multiple intermediate authorities (IAs) down
to the users. In this way HABS aims to close the gap between ABS and tradi-
tional PKIs where hierarchical delegation can be achieved at low cost. In HABS,
IAs can delegate attributes to any authority in the scheme and users can ac-
quire attributes from any authority in the hierarchy that is authorised to issue
them. In addition to strong non-frameability property in a multi-user setting,
the authors extend traditional ABS privacy guarantees to protect not only the
identity of the signer but also the identities of all intermediate authorities in
the delegation path, as part of their new path-anonymity property. Traditional
traceability property of ABS schemes has also been extended to hold not only
signers but also intermediate authorities accountable for their actions, through
the new notion of path-traceability where a dedicated tracing authority can re-
veal the entire delegation path, along with delegated attributes.

We observe that the HABS scheme in [12] is generic, based on standard cryp-
tographic primitives, i.e., public key encryption, one-time signature, tag-based
signature, and non-interactive zero-knowledge proofs. Its delegation process is
handled using a tag-based signature (TBS) where an authority at level i pro-
duces a TBS signature, using attribute as a tag, on the public key of authority
j together with all public keys appearing previously in the delegation path. As
part of its HABS signature the signer proves knowledge of each TBS at every
delegation of each attribute that is required to satisfy the policy. Clearly this del-
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egation process is highly inefficient. Not only does an additional signature need
to be verified per delegation (and per attribute), the size of the signature grows
linearly in the distance from the root authority. Thus, per attribute, verification
of the delegation path is of order O(k2).

Other related work. Attribute-based signatures can be seen as a generalisa-
tion of group [11] and ring [33] signatures, in which case identities are viewed
as attributes and policies can only contain disjunction over them. The notion of
hierarchical delegation in these, more restricted, primitives have been explored
in [36] and [28] respectively. Attribute delegation has been widely investigated
in anonymous credentials [9, 10]. Maji et al. [30] give discussion that ACs are a
more powerful primitive than ABS but with effiency drawbacks, as attribute ac-
quisition typically requires expensive zero-knowledge proofs. Note that in HABS
intermediate authorities may know each other, and so as discussed in [12], there
is no need to hide their identities from each other during the delegation phase,
which in turn helps to omit costly proofs and make this phase more efficient than
in the case of ACs. Regardless, we note that ACs with hierarchical delegation
have been proposed [4]. Further, a homomorphic ABS scheme [24] has been used
to construct non-delegatable anonymous credentials. In this setting, a signer ob-
tains attributes directly from the (multiple) root authorities where combining
attributes from different issuers requires an online collaboration. Anonymous
Proxy Signatures [17] also allow for verification of anonymous delegation paths
back to a root authority. However, tasks that are delegated, when viewed as
attributes, remain in the clear and are required for verification of the proxy
signature. Homomorphic Signatures [37] have been claimed to be equivalent to
Attribute-based Signatures, however this equality has been shown to hold in
the weaker security setting that only considers a solitary user. In which, it is
impossible to capture the notion of collusion and non-frameability. Finally, we
note functional signatures [3, 8] also allow for delegation of signing rights. Here,
however, keys are dependent on the function f and can only sign on messages
that fall within the range. For an attribute-based scheme, this would require
keys for each possible combination of attributes a user obtains.

Contribution. We address the suboptimal efficiency of the so-far only (generic)
HABS construction [12] and propose a scheme with a completely new delegation
mechanism which no longer relies on the consecutive issue of tag-based signa-
tures from higher-level to lower-level authorities on the delegation path. The
main novelty in our approach is a smart use of the length-reducing homomor-
phic trapdoor commitment scheme to multiple group elements from [20] which
we extend with delegation capabilities. At a high level, at each delegation the
issuing intermediate authority amends the current trapdoor opening such that
the existing commitment incorporates the public key of the next-level authority
or user to whom the attribute is delegated. With this new delegation mechanism
we are able to significantly reduce the lengths of HABS keys and achieve the
optimal growth of O(k|Ψ |) for the length of HABS signatures, depending on the
length k of the delegation path and size |Ψ | of the signing policy. In particular,
verifying delegation of an attribute along the path takes O(k) steps (as opposed
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to O(k2) in [12]). We use the original security model from [12] to show that our
construction satisfies the required properties of path anonymity, path traceabil-
ity, and non-frameability, in the standard model under standard assumptions in
bilinear groups and an additional assumption which we justify using the generic
group model [35]. Our efficiency improvement claims over [12] are reinforced in
a detailed comparison between the two schemes.

2 HABS Model: Entities and Definitions

We start with the description of entities within the HABS ecosystem.

Attribute Authorities. The set of Attribute Authorities (AA) comprises the
Root Authority (RA) and Intermediate Authorities (IAs). All AAs can delegate
attributes to lower-level IAs and users. The RA is at the top of the hierarchy and
upon setup, defines the universe of attributes A. With its key pair (ask0, apk0),
the RA can delegate a subset of attributes to IAs which hold their own key
pairs (aski, apki), i > 0. IAs can further delegate/issue attributes to any end
user (aka. signer). In this way a dynamically expandable HABS hierarchy can
be established.
Users. Users join the scheme by creating their own key pair (usk, upk), and are
issued attributes by possibly multiple AAs.

By Ψ we denote a predicate for some signing policy. A policy-conforming user
can use usk to create a HABS signature, provided their issued set of attributes A
satisfies the policy, i.e. Ψ(A′) = 1 for some A′ ⊆ A. Users are unable to delegate
attributes further and thus can be viewed as the lowest tier of the hierarchy. To
account for this, when an attribute is delegated to a user a dedicated symbol ?
will be used in addition to upk to mark the end of the delegation path.
Warrants. An IA or user, upon joining the HABS scheme, receives a warrant
warr that consists of all their delegated attributes a ∈ A and a list of all AAs
in each of the delegation paths. Warrants can be updated at any time, i.e. if
the owner is issued a new attribute, by appending a new entry with the list of
authorities on the delegation path. We use the notation |warr| to denote the
size of the warrant, i.e. the number of attributes stored in the warrant warr,
and we use |warr[a]| to denote the length of the delegation path of the attribute
a ∈ A. Upon signing, the user submits a reduced warrant for an attribute set
A′ ⊆ A that satisfies Ψ(A′) = 1.
Tracing Authority. The tracing authority (TA) is independent of the hierar-
chy. Upon receiving a valid HABS signature, it can identify the signer and all
authorities on the delegation paths for attributes that the signer used to satisfy
the signing policy. The tracing authority can output a publicly verifiable proof
π̂ that the path was identified correctly. The existence of such tracing authority
improves the accountability of signers and IAs from possible misbehaviour.

Definition 1 (Hierarchical ABS Scheme [12]) A scheme HABS := (Setup,
KGen, AttIssue, Sign, Verify, Trace, Judge) consists of the following seven pro-
cesses:
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• Setup(1λ) is the initialisation process where based on some security param-
eter λ ∈ N, the public parameters pp of the scheme are defined, and the root
and tracing authority independently generate their own key pair, i.e. RA’s
(ask0, apk0) and TA’s (tsk, tpk). In addition, RA defines the universe A of
attributes, and a label ? for users. We stress that due to dynamic hierar-
chy, the system can be initialised by publishing ( pp, apk0, tpk) with A and ?
contained in pp.

• KGen(pp) is a key generation algorithm executed independently by interme-
diate authorities and users. Each entity generates its own key pair, i.e.,
(aski, apki) for i > 0 or (usk, upk).

• AttIssue (aski,warri, A, {apkj |upkj}) is an algorithm that is used to dele-
gate attributes to an authority with apkj or issue them to the user with upk.
On input of an authority’s secret key aski, i ∈ N0, its warrant warri, a
subset of attributes A from warri, and the public key of the entity to which
attributes are delegated or issued, it outputs a new warrant warr for that
entity.

• Sign ((usk,warr),m, Ψ) is the signing algorithm. On input of the signer’s
usk and (possibly reduced) warr, a message m and a predicate Ψ it outputs
a signature σ.

• Verify (apk0, (m, Ψ, σ)) is a deterministic algorithm that outputs 1 if a can-
didate signature σon a message m is valid with respect to the predicate Ψ
and 0 otherwise.

• Trace (tsk, apk0, (m, Ψ, σ)) is an algorithm executed by the TA on input of
its private key tsk and outputs either a triple (upk,warr, π̂) if the tracing
is successful or ⊥ to indicate its failure. Note that warr contains attributes
and delegation paths that were used by the signer.

• Judge (tpk, apk0, (m, Ψ, σ), (upk,warr, π̂)) is a deterministic algorithm that
checks a candidate triple (upk,warr, π̂) from the tracing algorithm and out-
puts 1 if the triple is valid and 0 otherwise.

A HABS scheme must have the correctness property ensuring that any signature
σ generated based on an honestly issued warrant will verify and trace correctly.
The output (upk,warr, π̂) of the tracing algorithm on such signatures will be
accepted by the public judging algorithm with overwhelming probability.

2.1 Security Properties

Our security definitions resemble the requirements of path anonymity, path trace-
ability, and non-frameability from [12]. We recall the associated game-based def-
initions assuming probabilistic polynomial time (PPT) adversaries interacting
with HABS entities through the following set of oracles:

– OReg : A registers new IAs and users through this registration oracle, for
which a key pair will be generated and added to List. The public key is
given to the adversary. Initially, the entity is considered honest, and so the
public key is also added to the list HU .
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OReg( · ) with ( · ) = ( i ) and i /∈ HU

1 : (ski, pki)← KGen(pp)

2 : List← List ∪ {(i, pki, ski)}
3 : HU ← HU ∪ {i}
4 : return pki

OCorr( · ) with ( · ) = ( i )

1 : if i ∈ HU then

2 : HU ← HU − {i}
3 : return ski from List

OTr( · ) with ( · ) = (m, Ψ, σ)

1 : return Trace(tsk, apk0, (m, Ψ, σ))

OAtt( · )

( · ) = (i,warri, a, {apkj |upkj})
1 : L := {a|(a, pka, ska) ∈ List}
2 : if i ∈ L ∧ j ∈ L then

3 : warr ← AttIssue(aski,

warri, a, {apkj |upkj})
4 : return warr

5 : return ⊥

OSig( · ) with ( · ) = (i,warr,m, Ψ)

1 : A← {a| a ∈ warr}
2 : if i ∈ HU ∧ Ψ(A) then

3 : σ ← Sign((uski,warr),m, Ψ)

4 : return σ

5 : return ⊥

Fig. 1. Oracles used in the HABS security experiments.

– OCorr : This oracle allows A to corrupt registered users or IAs. Upon input
of a public key, the corresponding private key is given as output if it exists
in List. The public key is removed from HU so the oracle keeps track of
corrupt entities.

– OAtt : A uses this oracle to ask an attribute authority to delegate attributes
to either an IA or to the user. In particular, the adversary has control over
which attributes are issued and the oracle outputs a warrant warr if both
parties are registered, otherwise it outputs ⊥.

– OSig : A can ask for a HABS signature from a registered user. The adversary
provides the warrant (and implicitly the attributes used), signing policy,
message and the public key of the signer. If the attribute set satisfies the
policy, and the public key is contained in HU then the signature will be
given to A, otherwise ⊥ is returned.

– OTr : sA can ask the TA trace a HABS signature (provided by the adversary)
to the output is returned. The TA does verification checks on the signature
and upon failure, will return ⊥.

Path Anonymity. This property extends the anonymity guarantees of tra-
ditional ABS schemes and hides not only the identity of the signer but also
the identities of all intermediate authorities on delegation paths for attributes
included into the signer’s warrant. Path anonymity, as defined in Fig. 2, also
ensures that signatures produced by the same signer remain unlinkable. The
corresponding experiment requires the adversary to distinguish which warrant
and private key were used in the generation of the challenge HABS signature
σb. In the first phase, A1 generates a hierarchy of authorities and users, utilising
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Exppa-b
HABS,A(λ)

1 : (pp, ask0, tsk)← Setup(1λ)

2 : (st, (usk0,warr0), (usk1,warr1),m, Ψ)← A1(pp, ask0 : OReg, OCorr, OTr)

3 : if |warr0| = |warr1| then

4 : σ0 ← Sign((usk0,warr0),m, Ψ), σ1 ← Sign((usk1,warr1),m, Ψ)

5 : if Verify(apk0, (m,Ψ, σ0)) = 1 and Verify(apk0, (m,Ψ, σ1)) = 1 then

6 : b′ ← A2(st, σb : OTr)

7 : return b′ ∧ A2 did not query OTr(tsk, (m,Ψ, σb))

8 : return 0

Fig. 2. Path-Anonymity Experiment

the RA’s secret key ask0. If the warrants created by A1 are of the same size, a
challenge HABS signature σb is produced on the randomly chosen user-warrant
pair. In the second phase, with access to the tracing oracle, the adversary A2

must be able to guess the challenge bit b.

Definition 2 (Path Anonymity [12]) A HABS scheme offers path anonymity
if no PPT adversary adv can distinguish between Exppa-0

HABS,A and Exppa-1
HABS,A

defined in Fig. 2, i.e., the following advantage is negligible in λ:

Advpa
HABS,A(λ) = |Pr[Exppa-0

HABS,A(λ) = 1]− |Pr[Exppa-1
HABS,A(λ) = 1]|.

Non-frameability. This property, formalised in Fig. 3, captures the notion of
unforgeability, i.e., that no PPT adversary can create a HABS signature with-
out having an honestly issued warrant that satisfies the policy, and in particular,
they cannot create one on behalf of an user for which the secret key is not known.
The adversary wins if either he produces a valid HABS signature, or is able to
perform delegation for at least one attribute on behalf of any honest authority
anywhere in the delegation path.

Definition 3 (Non-Frameability [12]) A HABS scheme is non-frameable,
if no PPT adversary A can win the experiment Expnf

HABS,A defined in Fig. 3, i.e.,
the following advantage is negligible in λ:

Advnf
HABS,A(λ) = |Pr[Expnf

HABS,A(λ) = 1]|.

Path Traceability. This property, formalised in Fig. 4, ensures that any valid
HABS signature can be traced (by the tracing authority) to the signer and the
set of authorities that were involved in the issue of attributes used to produce
the signature. The adversary is required to output either a HABS signature that
verifies but cannot be traced, or one in which the tracing algorithm outputs a
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Expnf
HABS,A(λ)

1 : pp ← Setup(1λ), ask0 ← KGen(1λ), tsk ← TKGen(1λ)

2 : ((σ,m, Ψ), (upkj ,warr, π̂))← A(pp, ask0, tsk : OAtt, OSig, OCorr, OReg)

3 : if Verify(apk0, (m, Ψ, σ)) ∧ Judge(tpk, apk0, (m, Ψ, σ), (upkj ,warr, π̂)) then

4 : if j ∈ HU ∧ A did not query OSig((uskj ,warr),m, Ψ) then, return 1

5 : if ∃a. a ∈ warr =⇒ (apk0, apk1, . . . , apkn, upkj , ?) = warr[a] ∧
6 : ((∃i ∈ [0, n− 1]. A did not query OAtt(i, · , a, apki+1) ∧ i ∈ HU) ∨
7 : (A did not query OAtt(n, · , a, upkj) ∧ n ∈ HU) ) then, return 1

8 : return 0

Fig. 3. Non-Frameability Experiment

Exptr
HABS,A(λ)

1 : pp ← Setup(1λ), ask0 ← KGen(1λ), tsk ← TKGen(1λ)

2 : ((σ,m, Ψ), (upk,warr, π̂))← A(pp, tsk : OAtt, OCorr, OReg)

3 : if Verify(apk0, (m,Ψ, σ)) then

4 : if Trace(tsk, (m,Ψ, σ)) = ⊥ then, return 1

5 : if Judge(tpk, apk0, (m,Ψ, σ), (upk,warr, π̂)) ∧
6 : (∃a. a ∈ warr =⇒ (apk0, apk1, . . . , apkn, upk, ?) = warr[a] ∧
7 : ( (∃i ∈ [0, n− 1]. i ∈ HU ∧ (i+ 1, apki+1, aski+1) /∈ List)∨
8 : (n ∈ HU ∧ ( · , upk, usk) /∈ List) ) ) then, return 1

9 : return 0

Fig. 4. Path-Traceability Experiment

warrant for which at least one IA or the user is unknown to the experiment, i.e.,
were not previously registered in List. The attribute-issuing oracle checks that
both entities are registered to prevent the trivial attack where adversary asks
the oracle to delegate to an unregistered entity.

Definition 4 (Path Traceability [12]) A HABS scheme offers path traceabil-
ity if no PPT adversary A can win the experiment Exptr

HABS,A defined in Fig. 4,
i.e., the following advantage is negligible in λ:

Advtr
HABS,A(λ) = |Pr[Exptr

HABS,A(λ) = 1]|.

3 Our Short HABS Construction

We start with the description of the underlying hardness assumptions and build-
ing blocks.
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3.1 Underlying Hardness Assumptions

In addition to widely used hardness assumptions in the asymmetric bilinear
group setting generated by BG(1λ), namely q-Srong Diffie-Hellman (q-SDH) [7],
Symmetric eXternal Diffie-Hellman (SXDH) [1] and Simultaneous Decision LIN-
ear (SDLIN) [25] assumptions, which we do not recall here, our scheme requires
the following interactive assumption, which we prove to hold in the generic group
model [35, 23]. We equip the adversary with an oracle OX0,Y0

and assume that
it is hard to produce group elements that satisfy the verification equations for
an input that has not been queried to the oracle. We note that on input of
(X,Y ), the oracle can compute each component without knowledge the discrete
logarithm of X or Y as it has access to r, s, t1, t2.

Assumption 1 Let pp := (p,G1,G2,GT , e, g1, g2)← BG(1λ). The adversary A
has access to the oracle OX0,Y0

(·, ·) which on input (X,Y ) returns (A,B, T1, T2,
T3, T4) := (hx0t1

2 hx0t2
5 hxt12 hyt15 , hy0t15 hy0t24 hxt25 hyt24 , f t11 , f

t2
2 , g

t1
2 , g

t2
2 ) for t1, t2 ←

Z∗p. We assume that for all p.p.t. adversaries A, the following probability is
negligible in λ.

AdvAssump1A (λ) :=

Pr


x0, y0, r, s← Z∗p;h1 := gs1, h2 := gs

2

1 , h3 := gr1, h4 := gr
2

1 , h5 := grs1
f1 := gs2, f2 := gr2, X0 := hx0

1 ;Y0 := hy03 ;

(Â, B̂, T̂1, T̂2, T̂3, T̂4, X̂, Ŷ )← AOX0,Y0 (pp,X0, Y0, h1, h2, h3, h4, h5, f1, f2) :

e(Â, g2) = e(X0, T̂1T̂2)e(X̂Ŷ , T̂1) ∧ e(B̂, g2) = e(Y0, T̂1T̂2)e(X̂Ŷ , T̂2)

∧ e(g1, T̂1T̂2) = e(h1, T̂3)e(h3, T̂4) where (X̂, Ŷ ) was not queried.



Theorem 1. Let A denote an adversary in the generic group model against
Assumption 1. A has access to oracles for which he makes qG group queries, qP
pairing queries, and qO oracle queries. The probability ε of A winning the game
for Assumption 1 is bounded by ε ≤ 5(qG + qP + 6qO + 11)2/p, where p is the
prime order of the generic groups.

Proof. See Appendix C.

3.2 Cryptographic Building Blocks

The following building blocks will be used in our HABS construction.

Tag-based Encryption. A TBE scheme has the same algorithms as a tradi-
tional public key encryption scheme, except that its encryption and decryption
procedures take an extra tag t as input. A correctly formed TBE ciphertext C will
fail to decrypt if the tag used as input to the decryption algorithm is different
from the one used upon encryption. We adopt the TBE scheme from [25] which
relies on the SDLIN assumption. It offers selective-tag witness-indistinguishable
chosen-ciphertext (st-IND-CCA) security, where an adversary is unable to dis-
tinguish between two ciphertexts under the same tag t of their choosing. Kiltz
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[27] showed that a st-IND-CCA TBE scheme combined with a strongly unforge-
able one-time signature, where the one-time verification key is used as the tag,
gives rise to an IND-CCA2 secure PKE. Our scheme uses this approach.

One-Time Signature. For the OTS, we use the strongly unforgeable BBS one-
time signature scheme from [7]. It consist of three algorithms (KeyGen, Sig, Ver)
with a verification key in G2 × Z∗p and the corresponding signing key in Z∗2p .

Groth-Sahai Proofs. We use the Groth-Sahai proof system [21] to construct
the required non-interactive zero-knowledge proofs NIZK. A GS proof, which
consists of five algorithms (Setup, Prove, Verify, SimSetup, SimProve), allows
proving relations involving multi-linear, quadratic, and pairing-based equations.
We use GS proofs in the asymmetric bilinear group setting with Type-3 curves
[18], i.e., where there is no computable isomorphism between G1 and G2, in
which case their security is based on the SXDH assumption [7].

Homomorphic Trapdoor Commitments to Group Elements. The key
to our short HABS scheme is the length-reducing homomorphic trapdoor com-
mitment scheme by Groth [20], adopted in our new delegation mechanism. With
the HTC scheme, defined by four algorithms (Setup, KeyGen, Commit, Trapdoor),
one can use the trapdoor key tk to open a constant-length commitment (c, d)
to arbitrary group elements with respect to a commitment key. We observe that
due to its construction this HTC scheme has an interesting property that allows
a commitment to group elements step-wise, i.e. an opening (ai, bi) to elements
g1, . . . , gi can be transformed into an opening (ai+1, bi+1) for an extended set of
elements g1, . . . , gi+1 without knowledge of the secret commitment key, i.e., with-
out jeopardising the binding property for the already committed group elements.
In our HABS scheme such step-wise extension of an initial commitment (c, d)
produced by the root authority allows intermediate authorities, upon delegation,
to embed public keys of next-level authorities or users, along with the delegated
attribute, by providing appropriate modification to the opening of (c, d), that
is without changing its value nor increasing its length. Proving ownership of a
delegated attribute amounts to presenting an opening (a, b) for the commitment
(c, d) to the attribute and the list of public keys of authorities on the delega-
tion path, i.e., apk0, . . . ,upk, ?. In our scheme we use the asymmetric variant of
Groth’s HTC scheme with security based on the XDLIN assumption [1].

3.3 Specification of our HABS Scheme

We start with a high-level intuition behind our HABS construction and provide
detailed specification in Figures 5, 6, and 7.

High-Level Overview. As part of the setup process public parameters pp of
the scheme are generated. They include the security parameter λ, the descrip-
tion of bilinear groups (G1,G2,GT ), the trapdoor key tk for the HTC scheme, the

10



Setup(λ)

0 : (G1,G2,GT , g1, g2, e, p)← BG(1λ)

1 : Sample r, s← Z∗p

2 : h1 := gs1, h2 := gs
2

1 , h3 := gr1 ,

h4 := gr
2

1 , h5 := grs1

3 : f1 := gs2, f2 := gr2

4 : Define H1 : A→ Z∗p,
H2 : {0, 1}∗ → Z∗p,H3 : {0, 1}∗ → Z∗p

5 : Sample g̃1 ← G1, g̃2 ← G2

6 : Compute ζ ← e(g̃1, g̃2)

7 : (tsk, tpk)← TKGen

8 : w1 ← NIZK1.Setup

9 : w2 ← NIZK2.Setup

10 : Define attribute universe A

11 : Sample mr,ms, nr, ns ← Z∗p
12 : Sample a0, b0 ← G1

13 : Compute gr ← gmr2 , gs ← gms2 ,

hr ← gnr2 , hs ← gns2

14 : Compute c := e(a0, gr)e(b0, gs)

d := e(a0, hr)e(b0, hs)

15 : Compute ∆ := mrns − nrms

16 : α := ns/∆, β := −ms/∆,

γ := −nr/∆, δ := mr/∆

17 : tk := (mr,ms, nr, ns, α, β, γ, δ)

18 : pp := (G, c, d, a0, b0, tk,H1,H2,

H3, ζ, g̃1, g̃2, tpk,A, w1, w2)

for G := (G1,G2,GT , g1, g2, e, p
h1, h2, h3, h4, h5, f1, f2)

19 : return pp

Fig. 5. Setup algorithm of our HABS construction.

initial ’dummy’ HTC commitment (c, d) with an opening (a0, b0), and the descrip-
tion of the attribute universe A. The independent tracing authority TA generates
the TBE key-pair (tsk,tpk):=((η1, η2), (V1, V2, V3, V4)) with tpk included into pp.
For simplicity we describe the setup phase as a single process involving com-
putations performed by the RA and TA. We stress, however, that generation
of h1, ..., h5, f1, f2 must be trusted in that no entity knows the corresponding
exponents.

In our scheme, all attribute authorities and users generate their own pri-
vate/public key pairs (aski,apki) and (usk, upk) respectively, of the form {(x, y),
(X,Y, Z, Ẑ)}. While only X and Y are used in the verification of attribute del-
egation which we prove in the signature, the components (Z, Ẑ) are used in the
issuing phase. To ensure an authority creates a delegation that opens to (X,Y ),
we insist that the validity of a public key is checked prior to delegation. This
is done by evaluating e(XY, h1) = e(Z, g2) and e(XY, h3) = e(Ẑ, g2). IAs and
users obtain attributes from existing authorities at a higher level in the hier-
archy. Ownership of a valid key-pair (aski, apki) allows authorities to delegate
attributes further down the hierarchy and to the users, by manipulating the
opening of the initial commitment (c, d).

With the trapdoor key tk an authority can create an opening (ai, bi) for (c, d)
to the path that includes delegate’s public key e.g. apkj . Rather than opening
directly, the issuer first creates randomisation tokens T1, T2, T3, T4 ∈ G2 and
opens to these instead. It then uses T1 and T2 as one-time commitment keys to
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KGen(pp)

0 : Sample x, y ← Z∗p
1 : X := hx1 , Y := hy3 ,

2 : Z := hx2h
y
5 , Ẑ := hx5h

y
4

3 : pk := (X,Y, Z, Ẑ),

4 : sk := (pk, x, y)

5 : return (pk, sk)

TKGen(pp)

0 : Sample η1, η2 ← Z∗p
1 : Compute V1 := gη11 , V2 := gη21

2 : Sample V3, V4 ← G2

3 : tpk := (V1, V2, V3, V4)

4 : tsk := (tpk, η1, η2)

5 : return (tsk, tpk)

AttIssue(aski, {apkj |upk}, att, ai, bi,warr)

0 : Parse {apkj |upk} as (Xj , Yj , Zj , Ẑj)

1 : Verify e(XY, h1) = e(Z, g2)

and e(XY, h3) = e(Ẑ, g2)

2 : Sample t1, t2 ← Z∗p
3 : T1 := f t11 , T2 := f t22 , T3 := gt12 , T4 := gt22

4 : ã← amri bmsi (ht12 h
t2
5 )−xi(Zjh

H1(att)
1 )−t1

b̃← anri bnsi (ht15 h
t2
4 )−yi(Ẑjh

H1(att)
3 )−t2

5 : (ai+1, bi+1) := (ãαb̃β , ãγ b̃δ)

6 : warr = warr ∪ {apki, T1, T2}
7 : return (ai+1, bi+1,warr)

Fig. 6. Key generation and issue of attributes in our HABS construction.

open to apkj and the delegated attribute att, that is hashed into the message
space using gH1(att). The randomisation tokens T1 and T2 are used to prevent
forgeries (where the adversary combines multiple openings and in doing so, forges
an opening to a new public key) whereas T3 and T4 are used to verify the well-
formedness of T1 and T2, by evaluating e(g1, T1T2) = e(h1, T4)e(h3, T3). The
issuing authority updates the (possibly empty) warrant with opening (ai, bi),
his public key apki and the randomisation tokens (T1, T2, T3, T4). As tk is part
of public parameters, any IA in the hierarchy is able to perform the delegation
procedure, where it receives (ai−1, bi−1) from its issue and generates (ai, bi) for
the next delegation. When delegating to users, an issuing IA will open (c, d) to
a designated element ? ∈ G, in addition to the user’s public key upk and the
attribute att. A warrant contains the trapdoor opening and a list of all public
keys of AAs that appear in the delegation path for any issued attribute.

Upon signing, the user first generates an OTS key-pair (otssk, otsvk) :=
{(k1, k2), (K1,K2, κ)} and an opening to H3(otsvk) by modifying the open-
ing (a0, b0) using his public key upk and the trapdoor key tk. The reduced
warr along with upk are encrypted in a TBE ciphertext under the TA’s pub-
lic key tpk and tag H3(otsvk). The signing policy Ψ is modelled as a mono-
tone span program, with labelling function ρ that maps rows from S to the
attribute set A. The signer proves that this set satisfies Ψ by computing a vector
z such that zS = [1, 0, ..., 0], where any non-zero entry zi implies ρ(i) ∈ warr.
A NIZK proof π is then computed using Groth-Sahai framework with witness
(upk,warr, z, r̃, s̃) for the following relation:
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(
(a, b),warr, upk, z

)
,
(
Ψ, otsvk, apk0, C, tpk

)
: zS = [1, 0, ..., 0]

∧ (∀i. zi 6= 0 =⇒ atti = ρ(i) ∧ (apki1 , ..., apkin , apkin+1
:= upk) ∈ C

∧ c|warr|+1 = e(a, gr)e(b, gs)e(X, g
H3(otsvk)
2 )

ΠiΠ
k
n=0e(Xin , T1,inT2,in)e(Xin+1

Yin+1
g
H1(att)
1 , T1,in)

∧ d|warr|+1 = e(a, hr)e(b, hs)e(Y, g
H3(otsvk)
2 )

ΠiΠ
k
n=0e(Yin , T1,inT2,in)e(Xin+1

Yin+1
g
H1(att)
1 , T2,in)

∧ e(g1, ΠiΠ
k
n=0T1,inT2,in) = e(h1, ΠiΠ

n
n=0T4,in)e(h3, ΠiΠ

k
n=0T3,in).

The message m and policy Ψ are then bound to this proof and ciphertext
by hashing H2(π,C, Ψ,m), before an OTS signature σo is produced with otssk.
The resulting signature is verified with respect to the public parameters of the
scheme, and the RA’s public key apk0 by verifying the OTS signature and the
NIZK proof.

As part of the tracing procedure, executed by TA with knowledge of tsk, the
ciphertext C is decrypted to obtain the warrant warr, signer’s public key upk,
and the opening (a, b). A publicly verifiable NIZK proof π̂ is created with witness
tsk for the statement (otsvk,C,tpk,(apk0,warr)) and relation:

TBE.Dec(tsk, C,H3(otsvk)) = (upk,warr, a, b).

We give a detailed construction for the Groth-Sahai proofs NIZK1 and NIZK2 in
Appendix D.

3.4 Security Analysis

In this section we prove that our construction meets HABS security properties
of path anonymity, non-frameability and path traceability.

Lemma 1 The HABS construction from Fig. 5, 6 and 7 offers path anonymity,
if SXDH, SDLIN and q-SDH hold in G.

Proof. We follow a game-based approach and show that the advantage of the
PPT adversary A in the path-anonymity experiment for the HABS construction
from Fig.5, 6 and 7, is bounded by the advantages of the constructed adver-
saries for the underlying primitives. We assume that adversary A asks n user
registration queries and the probability for sampling one of these users is 1/n.

Game G0: This game is defined to the be the experiment Exppa-b
HABS,A(λ) in Fig.

2, where the 2-stage adversary A = (A1,A2) is required to distinguish between
the HABS signatures σ0 = (σ0

o ,C0, π0, otsvk0) and σ1 = (σ1
o ,C1, π1, otsvk1).

Game G1: We define the game G1 as G0 where the check “A2 did not query
OTr(m,Ψ, σb)” is enforced by the OTr oracle available to A2, which aborts the
game if this is the case. The probability from G0 to G1 is preserved.
Game G2: The game G2 is obtained from G1 where, on the output of OTr,
we replace the NIZK2 proof π̂ with π̂′ from the simulator NIZK2.SimProve. We
also replace Setup by SimSetup for NIZK2. This prevents the case where A may
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Sign(usk,m, Ψ, {attj , aj , bj ,warrj}j∈J)

0 : (k1, k2, k3)← Z∗p
1 : otsvk := (g̃k12 , g̃k22 , k3)

2 : Compute z s.t. zS = [1, 0, ..., 0]

3 : T1 := f t11 , T2 := f t22 ,

T3 := gt12 , T4 := gt22

4 : a′ ← amri bmsi (ht12 h
t2
5 )−xh

−t1H3(otsvk)
1

b′ ← anri bnsi (ht15 h
t2
4 )−yh

−t2H3(otsvk)
3

5 : (a′, b′) := (ãαb̃β , ãγ b̃δ)

6 : (a, b) = (a′ ·Πaj , b′ ·Πbj)
7 : C ← TBE.Enc(tpk,warr, upk,

a, b, {H1(otsvk)})
8 : π ← NIZK1.Prove((upk, z,warr, a, b) :

(C, otsvk, tpk, apk0, Ψ) ∈ R)

9 : H ← H2(π||C||Ψ ||m||otsvk)

10 : σo ← g̃
1/(k1+H+k2k3)
1

11 : return (σo, C, π, otsvk)

Verify(pk, σ,m, Ψ)

0 : Parse σ as (ots, π, otsvk)

1 : H ← H2(π||C||Ψ ||m||otsvk)

2 : return NIZK.Verify(π)

∧ e(σo, g̃
k1
2 · g̃

H
2 · g̃k2k32 ) = ζ

Trace(tsk, σ,m, Ψ)

0 : if Verify(σ,m, Ψ) = 1 then

1 : warr← TBE.Dec(tsk, C, t)

for t = H1(otsvk)

2 : π̂ ← NIZK2.Prove(tsk :

(otsvk, C, tpk, (apk0,warr)))

3 : return (warr, π̂)

Judge(tpk,warr, σ)

0 : Verify(ask0, (σ,m, Ψ))

∧ NIZK2.Verify(π2)

Fig. 7. Sign, Verify, Trace and Judge algorithms of our HABS construction.

”extract” tsk from NIZK2 proofs. Thus, for all future OTr oracle calls we use the
simulated NIZK2 proof. The probability that A can distinguish between these
two games is bounded by the advantage of the zero-knowledge adversary Bnizk2
for NIZK2. For our instantiation of GS proofs, this is reduced to the SXDH
assumption [21].
Game G3: Let G3 be the game obtained from G2 where we replace the proof πb
from the challenge signature σb = (σo,b, Cb, πb, otsvkb) with the simulated proof
π′b by calling NIZK1.Sim on (Cb, otsvkb, tpk, apk0, Ψ). Additionally, we replace
NIZK1.Setup by NIZK1.SimSetup. The probability thatA can distinguish between
games G2 and G3 is bounded by the advantage of the zero-knowledge adversary
Bnizk1 for NIZK1 proof. Similarly, this property is implied by SXDH.

Game G4: Game G4 only differs from game G3 in that we abort if A2 queries
OTr(m,Ψ, (σo,Cb, π, otsvkb)). The adversary A is only able to distinguish be-
tween these games if it can produce a valid OTS signature σo for the message
(Cb, π,m, Ψ) and public key otsvkb, without knowledge of the secret key otsskb.
Thus, the capabilities of the adversary A to distinguish between these two games
is bounded by the advantage of the adversary Bots against the strong unforge-
ability of the OTS scheme, which is reduced to the q-SDH assumption [7].

Game G5: Game G5 is defined to be G4, except we additionally do a check for
any queries A2 makes do not contain the challenge ciphertext, that is OTr(m,Ψ,
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(σo,Cb, π, otsvk)). If so the game is aborted. The output of OTr is for G4 and
G5 is the same, as the oracle returns ⊥ if the tag otsvkb for C is different from
otsvk received as input. Hence, the probability is preserved.
Game G6: The game G6 is the same as G5, except that we move the OTS key
generation from the signature generation phase into the setup of the experiment.
Note that only one key pair needs to be created in this game since the adversary
only sees the challenge signature. This step is necessary to utilise the st-IND-
CCA property of the TBE scheme. The probability is unchanged from game G5

to G6.
Game G7: Let G7 be the game obtained from G6 where the TBE ciphertext
Cb from the challenge signature σb = (σbo, Cb, π

′
b, otsvkb) is replaced with the

C0. The adversary A is unable to query a ciphertext C ′ 6= Cb for the same tag
H3(otsvk) as a result of game G4. Further, any query to the oracle for a tag
t′ 6= H3(otsvk) will also fail as decryption of Cb is dependent on the correct tag.
Thus, the ability of the adversary A2 to distinguish between the ciphertexts C0

and Cb is bounded by the advantage of the st-IND-CCA adversary Bind. For out
instantiation, this property of TBE is implied by SDLIN [25].

The experiment G7 provides A with the same challenge signature indepen-
dent of b that A is asked to guess. Additionally, due to the zero-knowledge
property of NIZK2 used in G1, A does not have access to tsk. Therefore, the
probability that the adversary wins game G7 is 1/2 and hence the advantage of
A to win this experiment is 0. �

Lemma 2 The HABS construction from Fig. 5, 6 and 7 is non-frameable, if
H1,H2 and H3 are second-preimage resistant hash functions, and q-SDH, SXDH
and Assumption 1 hold in G.

Proof. See Appendix A.

Lemma 3 The HABS construction from Fig. 5, 6 and 7 offers path traceability,
if SXDH, SDLIN and Assumption 1 hold in G.

Proof. See Appendix B.

Theorem 2. The HABS scheme in Figs. 5, 6 and 7 offers path-anonymity, non-
frameability and path-traceability if H1,H2 and H3 are second-preimage resistant
hash functions and SXDH, SDLIN, q-SDH and Assumption 1 hold in G.

Proof. The result follows from Lemmas 1, 2 and 3. �

4 Efficiency Comparison

We first compare the warrant sizes for our scheme and [12]. For a single at-
tribute, an authority at level 1 (with respect to the root authority at level 0) has
a warrant size of 6 group elements (of the form G2

1 ×G4
2). Further delegation to

level 2 adds a further 6 elements in G2
1×G4

2. A delegation from the root author-
ity contains the opening (a, b) (as part of the 6 elements) which is updated by
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subsequent delegations, however the warrant must now also contain the issuers
public key (Xi, Yi) in G2

1. This generalises, and for a user at level k, the size of
the warrant is 6k for a single attribute. Likewise, if we extend the number of
attributes in the warrant to |A|, each of which has a delegation path of length
k, then the warrant has 6k|A| group elements.

In contrast, for a single attribute issued to a level-1 entity, the warrant in [12]
contains 7d 12+2m

m−2 e group elements, where m is the size of the message space used

in the TBS instantiation. A level-2 delegation increases this to 7d 24+4m
m−2 e+2m+12

elements, and this generalises for a single attribute that is issued to a level k

entity to 7dk(12+2m)
m−2 e+(k−1)(2m+12) elements. Similarly, a warrant that con-

tains |A| attributes adds a linear factor of |A| to this term. To give a concrete
comparison, a user with 3 attributes at level 4 of the hierarchy would have a war-
rant containing 72 group elements in our scheme, as opposed to 208 elements for
an optimal choice of m (i.e., m = 10) in the scheme from [12]. Since m would be
chosen in advance during the setup phase, the warrant would unlikely reach its
optimal bound and for any suboptimal choice of m, the warrant grows linearly
in this parameter.

Next, in Table 1 we compare the sizes of public keys (of users and authori-
ties) and the lengths of signatures generated by our scheme and [12]. By β we
denote the size of the span program representing the policy Ψ . As before k is the
maximum length of a delegation path, |Ψ | is the number of attributes needed to
satisfy the signing policy, and m is the size of the message space for the TBS
scheme used in [12].

Dragan et al. [12] This Work
G Zp G1 G2 Zp

Public Keys
upk 14 - 4 - -
apk 12+2m - 4 - -

Sig.
ots 3 1 2 1 1

C
5(6+m)k(k−1)|Ψ|

(m−2)
+ 110 - 6(2k − 1)|Ψ |+ 12 4(2k − 1)|Ψ |+ 8 -

π
28(6+m)k(k−1)|Ψ|

(m−2)
+ 18 2β 8 2k|Ψ |+ 8 β

Table 1. Comparison of key and signature sizes.

In addition to being more efficient and shorter than [12], our scheme, in
fact, produces HABS signatures of optimal length, from the asymptotic point
of view. The need to provide path traceability, where the TA must be able to
reveal the entire delegation path along with delegated attributes from a valid
HABS signature implies the O(k|Ψ |) growth of its length. This means that in
order to reduce this bound path-tracability property would need to be relaxed.

Finally, our scheme brings a few other efficiency improvements. The use of
Type-3 pairings results in fewer group elements and the possibility to achieve
the same level security for a smaller choice of the prime p [18], which would give
rise to smaller groups and faster operations than in the symmetric setting. In
addition, we can adopt batch verification techniques available for Groth-Sahai
proofs [6] to speed up the computations.
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5 Conclusion

We proposed a direct construction of Hierarchical Attribute-based Signatures
(HABS) with a new delegation process based on length-reducing homomorphic
trapdoor commitments. Our HABS scheme significantly reduces the lengths of
warrants, public keys and signatures in comparison to the so-far only known
(generic) HABS construction. Moreover, due to the need to support the path-
traceability requirement, our HABS scheme achieves optimal signature length
growth of O(k|Ψ |) for delegations paths of size k and signing policies of size |Ψ |.
Our technique of step-wise embedding of new group elements into the homo-
morphic trapdoor commitment can be considered to be of independent interest,
e.g., it could add support for delegation to other privacy-preserving signature
schemes that rely on homomorphic trapdoor commitments, e.g. [2].
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visited – unconditionally and perfectly anonymous schnorr version. In Security,
Privacy, and Applied Cryptography Engineering, pages 329–346, 2015.

29. J. Li, M. H. Au, W. Susilo, D. Xie, and K. Ren. Attribute-based Signature and
Its Applications. In ACM ASIACCS 2010, pages 60–69. ACM, 2010.

30. H. K. Maji, M. Prabhakaran, and M. Rosulek. Attribute-based signatures. In
CT-RSA 2011, pages 376–392, 2011.

31. T. Okamoto and K. Takashima. Decentralized attribute-based signatures. In PKC
2013, pages 125–142. LNCS 7778, 2013.

32. T. Okamoto and K. Takashima. Efficient attribute-based signatures for non-
monotone predicates in the standard model. In PKC 2011, pages 35–52. LNCS
6571, 2011.

33. R. L. Rivest, A. Shamir, and Y. Tauman. How to leak a secret. In ASIACRYPT
2001, volume 2248 of LNCS, pages 552–565. Springer, 2001.

34. Y. Sakai. Practical attribute-based signature schemes for circuits from bilinear
map. IET Information Security, pages 184–193(9), 2018.

35. V. Shoup. Lower bounds for discrete logarithms and related problems. In Advances
in Cryptology — EUROCRYPT ’97, pages 256–266, 1997.

18



36. M. Trolin and D. Wikström. Hierarchical Group Signatures. In ICALP 2005,
volume 3580 of LNCS, pages 446–458. Springer, 2005.

37. R. Tsabary. An equivalence between attribute-based signatures and homomorphic
signatures, and new constructions for both. In TCC (2)’17, pages 489–518, 2017.

A Proof of Theorem 1

Proof. A challenger B interacts with an adversary A in the game for Assumption
1. In the generic group model, A is given random encodings of group elements by
defining 3 functions ξi : Gi → {0, 1}∗ for i = 1, 2, T . Since the only property the
adversary can test for is equality, it uses oracles to compute all group operations.
It interacts with oracles using ξ-encodings of the group elements only.
The challenger keeps 3 lists, L1, L2, LT , which contain the pair (K,κ) ∈ Li,
where K is the output of the map ξi, and κ is a multivariate polynomial in
Zp[X0, Y0, Xi, Yi, Ai, Bi, T1,i, T2,i]. The lists are initiated with ξ1(g1), ξ1(h1), ξ1(h2),
ξ1(h3), ξ1(h4), ξ1(h5), ξ2(g2), ξ2(f1), ξ2(f2), ξ1(X0), ξ1(Y0).

– Group Operations. Oracle Oi allows the adversary to compute addition
and subtraction in group Gi. Upon input Oi(M,N,±), the challenger, who
controls the oracle, checks that KM := ξi(M),KN := ξi(N) ∈ Li and identi-
fies the pairs (KM , κM ) and (KN , κN ). If this step fails the oracle returns ⊥.
It computes the polynomial κM±N := κM ± κN and checks if κM±N ∈ Li. If
it exists, B returns the corresponding encoding K from the pair (K,κM±N ),
otherwise B selects a new random encoding K distinct from all other encod-
ings and updates Li with the pair (K,κM±N ).

– Pairing Operations. The oracle OP takes as input random encodings
(K1,K2) ∈ G1 × G2. B searches the lists L1 and L2 for the correspond-
ing polynomials κ1 and κ2 (and returns ⊥ if this fails). It then searches list
LT for the term κ1 ·κ2 in the second component. If the search is successful, it
returns the corresponding encoding K, otherwise it generates a new random
encoding distinct from all others in LT , returns this, and updates the list
with (K,κ1 · κ2).

– AttIssue Oracle. Upon input of random encodings (X,Y ), the challenger
looks up the corresponding polynomial κX and κY in L1. If the search fails,
return ⊥. Otherwise, it selects t1, t2 ← Z∗p and computes the polynomials for

the tuple (A,B, T1, T2, T3, T4) := (hx0t1
2 hx0t2

5 hxt12 hyt15 , hy0t15 hy0t24 hxt25 hyt24 , f t11 ,
f t22 , g

t1
2 , g

t2
2 ) ∈ G2

1 ×G4
2. If any of κA, κB , κT1

, κT2
exist in L1 and L2 respec-

tively, then return the paired encoding K for that polynomial. Otherwise,
generate and return a new random encoding distinct from all elements in
the list.

Eventually, A stops and outputs the tuple (Â, B̂, X̂, Ŷ , T̂1, T̂2, T̂3, T̂4) ∈ G4
1×G4

2,
where (X̂, Ŷ ) was not queried. Let (KA,KB ,KT1

,KT2
) be the polynomials that

represent the elements in the tuple. We assume SXDH 1,is hard in (G1,G2,GT )

1 We note that we are not introducing additional complexity assumptions here as our
construction for HABS already assumes SXDH for the instantiation of Groth-Sahai
proofs.
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and therefore no isomorphism exists and aim to find a contradiction.
We start by noting that the forgery must be a solution to the verification equa-
tions under the restriction of the check on (T1, T2, T3, T4). Thus we have the
following:

KA − (SKT1
+RKT2

)SX0 − (SX̂ +RŶ )SKT1
= 0 mod p (1A)

KB − (SKT1
+RKT2

)RY0 − (SX̂ +RŶ )RKT2
= 0 mod p (1B)

KA = PA0 + PA1,iXi + PA2,iYi + PA3,iAi + PA4,iBi + PA5,jHj + PA6,lFk + PA7 SX0 + PA8 RY0
KB = PB0 + PB1,iXi + PB2,iYi + PB3,iAi + PB4,iBi + PB5,jH + PB6,lF + PB7 SX0 + PB8 RY0

KTj = P
Tj
0 + P

Tj
1,iST

(1)
i + P

Tj
2,iRT

(2)
i + P

Tj
3,iT

(1)
i + P

Tj
4,iT

(2)
i + P

Tj
5 F1 + P

Tj
6 F2

Substituting these and equating coefficients immediately gives:

PA0 = 0, PA1,i = 0, PA2,i = 0, PA4,i = 0, PA5,j = 0, PA6,l = 0, PA7 = 0, PA8 = 0,

PB0 = 0, PB1,i = 0, PB2,i = 0, PB3,i = 0, PB5 = 0, PB6 = 0, PB7 = 0, PB8 = 0,

P
Tj
0 = 0, P

Tj
1,i = 0, P

Tj
2,i = 0, P

Tj
3,i = 0, PT3

4,i = 0, P
Tj
5 = 0, P

Tj
6 = 0,

∀i ∈ {1, ..., qO} and i 6= j.

Simplifying:

PA3,iAi − (SPT1
1,iT1,i +RPT2

2,iT2,i)SX0 − (SX̂ +RŶ )SPT1
1,iT1,i = 0 mod p (2A)

PB3,iBi − (SPT1
1,iT1,i +RPT2

2,iT2,i)RY0 − (SX̂ +RŶ )RPT1
1,iT2,i = 0 mod p (2B)

PA3,i
(
(ST1,i +RT2,i)SX0 − (SXi +RYi)ST1,i

)
−

(SPT1
1,iT1,i +RPT2

2,iT2,i)SX0 − (SX̂ +RŶ )SPT1
1,iT1,i = 0 mod p (3A)

PB4,i
(
(ST1,i +RT2,i)RY0 − (SXi +RYi)ST2,i

)
−

(SPT1
1,iT1,i +RPT2

2,iT2,i)RY0 − (SX̂ +RŶ )RPT1
1,iT2,i = 0 mod p (3B)

Therefore we can make the equality:

PA3,i = PT1
1,i = PT2

2,i = PB4,i ∀i ∈ {1, ..., qO}

Which then simplifies (3A), (3B) to:

PA3,i(SXi +RYi)ST1,i − (SX̂ +RŶ )SPA3,iT1,i = 0 mod p (4A)

PB4,i(SXi +RYi)ST2,i − (SX̂ +RŶ )SPB4,iT2,i = 0 mod p (4B)

These equations can only hold if i 6= 0 for exactly one i, thus X̂ = Xi and
Ŷ = Yi for some i ∈ {1, ..., qO}, which is a contradiction to our assumption that
(X̂, Ŷ ) had not been queried by the adversary. Hence, our assumption holds in
the generic group model.

Analysis of B’s Simulation. The game is initialised with (x0, y0, r, s) ∈ Z∗p. A
can only tell it is in a simulation if for any two polynomials κi,j 6= κi,j′ in Li,
we have κi,j(x0, y0, r, s, t1,i, t2,i) = κi,j′(x0, y0, r, s, t1,i, t2,i). This can only occur

20



if the randomly sampled instantiation of elements coincide with the roots of any
of the polynomials. We use Lemma 1 in [35] to bound this probability above by
the maximum total degree of the polynomial divided by p.

ε ≤
(
qG + qP + 6qO + 11

2

)
5

p
≤ 5(qG + qP + 6qO + 11)2

p
.

To conclude, the advantage of an adversary against Assumption 1 is bounded in
the GGM by ε ≤ 5(qG + qP + 4qO + 11)2/p. �

B Construction of NIZK Proofs

Following the structure given in [21], we first define:

Step 0. Sample R1 ← Mat|Ψ |×1(Zp) and R2 ← Mat|Ψ |×3(Zp).
Step 1. Commit to z with tpk by computing, for every zi ∈ z.

Step 2. Next construct proofs for
∑
i ziSi,1 = 1 and

∑
i ziSi,j = 0 for j 6= 1.

These are linear equations. For each equation, compute: φ
(1)
j := RT1 Sj ∈ Zp.

Step 3. We next link the commitments (c(X), c(Y )) to public keys (X,Y ) to
the attributes ai ∈ Ψ .
Case 1: Attribute ai is a delegated attribute. For each public key of each attribute
ai in policy, we need to prove the multi-scalar multiplication equations X̂ = Xsi

and Ŷ = Y si .
Case 2: Attribute ai is not an issued attribute. Simulate commitments to (X,Y )
by running TBE.Enc(1G) and prove the multi-scalar multiplication equations
X̂ = Xsi and Ŷ = Y si where si is committed to in Step 1. For each ai not
issued, we require 4k commitments to 1G where k is the depth of the delegation
path.
Step 4. Use the commitment for si from step 1, the commitments to (Xi, Yi)
from step 3 or 4 and R′1 is defined to be R1 with an appended 0-row. The proof
φ is computed as:

φ
(2)
i := R

(1)
i Xi

φ
(3)
i := R

(2)
i Yi

Step 6. Show the correct opening (a, b) := (ã·a|Ψ |−|A|0 , b̃·b|Ψ |−|A|0 ) to (c|Ψ |+1, d|Ψ |+1)
by proving the following 2 product pairing equations (A1 · Γ1A2) = c|Ψ |+1 and
(A1 ·Γ2A2) = d|Ψ |+1. The vectors A1 contain apk ∈ warr. and contains A2 ran-
domisers T ∈ warr. The sparse matrices Γ1 and Γ2 are constructed as follows,
where 1 ≤ i, j ≤ 2n|Ψ |.

Γ
(1)
i,j :=

{
1 if i ∈ 2N0 + 1 and j = i+ 2 or j = i+ 3

0 otherwise

Γ
(2)
i,j :=

{
1 if i ∈ 2N0 and j = i+ 2 or j = i+ 3

0 otherwise
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The vector of group elements A1,A2 ∈ G2n|Ψ |+2
1 × G2n|Ψ |+2

2 is given by X0, Y0

and T1,0, T2,0 in the first position, for A1 and A2 respectively, and g
H3(otsvk)
2 in

position 2n|Ψ |+ 2 for both A2. The proofs can be computed as such:

φ(4) := RTΓι2(A1) + (RTΓ1S − TT )v
φ(5) := STΓT ι1(A2) + Tu

Output the proof as π := (φ(1), φ(2), φ(3), φ(4), φ(5)).
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