
How many transactions per second can bitcoin really handle ?

Theoretically.

Evangelos Georgiadis

1. Introduction

Transactions are arguably the most important part in the bitcoin mechanism,
with everything else facilitating the proper creation, propagation and validation;
culminating with their addition to the public ledger – the blockchain. One crucial
measure inevitably intertwined with transactions is, throughput, the number of
transactions confirmed (or added to the blockchain) per second1, or simply, tps.
Understanding throughput capacity from different angles remains of paramount
importance for gaining insights into the underlying infrastructure.
We compute the exact upper bound for the maximal transaction throughput of the
bitcoin protocol and obtain 27 tps. The previous best known bound for the average
transaction throughput is 7 tps. All results are based on legacy infrastructure, i.e.,
pre-SegWit era.

1.1. Organization of paper. Previous bounds are briefly highlighted, then a set
of assumptions is discussed. Since this analysis relies on in-depth knowledge of
protocol specifications, additional background and details are provided about block,
block structure and transactions.2. Based on this information, actual transaction
space is calculated. At last, culminating with the back of the envelope computation
of the maximal throughput bound.

2. Previous bounds: Approximate Concrete, Exact and General

The bound 7 tps is cited in papers [12, 11], other papers [14, p.5] claim 10
tps. Amongst those values 7 appears to be the most often cited in the literature,
tracing back to a back of the envelope calculation in [9]. Note that these bounds
while concrete are approximate. For instance, the computation involved does not
distinguish between actual transaction space within a block and blocksize, and thus
is not truly fine-tuned to the protocol level. Additionally, the computation depends
on an approximation for transaction size.

We also employ a meticulous back of the envelope calculation with an in-depth
focus at the protocol level. This enables direct computation with minimal assump-
tion base3. Our bound 27 tps, is both concrete and exact. (Surprisingly, this is the

Date: April 1st, 2019.,. Midnight musings.
1Other papers might abbreviate this as transactions/sec or tx/sec or tx/s. We currently prefer

tps.
2For a thoughtful introduction into this space, the avid reader should consult with source [1]
3Economic factors as well as other system parameters, such as, propagation delay, growth rate

of main chain, etc ... are not considered. We are interested in engineering maximal transaction

throughput based on the protocol’s specification. Essentially assuming no latency issues, etc...

1



2 EVANGELOS GEORGIADIS

same value as the throughput limit based on SegWit in [12]. Reminder, we assume
1 MB blocksize limit.)

More sophisticated approaches leading to general bounds are found in [13] and
[14]. Those are based on additional system parameters, such as latency and growth
rate of main chain, etc. Thus definitions involve other functions, which, in turn,
cannot be computed directly without additional assumptions. In [13], for instance,
the transactions per second or TPS function is defined in terms of the growth rate
of the main chain, which needs additional assumptions for further computation.
That said, once assumptions have been postulated, bounds can be developed. See
also [14, p.18] for an upper bound of the transaction throughput.

3. Assumptions for the various approaches

There are three fundamental assumptions, which are as follows. The size of
a block is limited to 1MB4, the consensus algorithm stipulates that a block is
generated on average every 10 minutes, and the notion of an “average, or more
robustly, median sized transaction.”

Our viewpoint differs slightly yet significantly. We are interested in engineering
maximal throughput, given the constraints of the 1 MB blocksize limit and the block
generation rate. This task is accomplished via finding appropriate transaction types
within the transaction universe. In particular, we engineer transactions that are
minimalistic in complexity and byte size.

3.1. Assumptions pertaining to the known 7 tps bound. In all fairness, this
result in [9] is based on transactions of the form: 2 inputs and 2 outputs. Further,
it takes the economic aspect into consideration, a focus that deviates substantially
from our analysis. Penultimately, the result is not fine-tuned at the protocol level
– does not distinguish actual transaction space from blocksize limit, etc... Finally,
the computation assumes approximate and obsolete “average or median sized trans-
actions.”
That said, a 1 input and 1 output instance was also considered (under similar
assumptions) resulting in 9 tps. This is still multiples away from our 27 tps bound!

On a different note, the metric used to compute tps is in terms of KB; this might
be more appropriate when considering latency,etc5.

4We assume legacy infrastructure, pre-SegWit era. Additionally, 1MB is defined as 1,000,000
bytes.

5Once again not the avenue this analysis aims at.



How many transactions per second can bitcoin really handle ? Theoretically. 3

4. Block structure

According to bitcoin’s specifications [6], the block structure is as follows. The
block consists of the blocksize, blockheader, transaction counter, followed by the
list of transactions.

Blockstructure and Properties

Size (in bytes) Field Description

4 Blocksize Size of block in bytes
80 Blockheader Blockheader consists of multiple fields
1-9 Transactioncounter Number of transactions that follow

Variable Transactions Actual transactions in this block

5. Actual Transaction space

The size of the block cannot exceed 1 MB. Thus, the size for the transaction
space is actually, less than 1 MB; more precisely6

Transaction Space = 1MB(blocksize)− 80 bytes(blockheader)

− 4 bytes(blocksize in bytes)− 3 bytes(transactioncounter)

= 999913 bytes.

The question now is how many transactions can fit into this space.

6. Transactions

Bitcoin’s transaction mechanism is based on Script, a simple Forth-like, stacked
based, left to right processing language [4]. There are different types of transactions
in the transaction universe [8], varying in degree of complexity and size. Transac-
tions, in algorithmic abstraction, are about inputs and outputs. For a thoughtful
introduction into this sphere, we encourage the interested reader to consult with
chapter 6 in [1].

6.1. Transactions within a block. There is some form of transactions hierarchy
within every block. Every block must have a coinbase transaction, which in turn,
must be the first transaction of the block. Coinbase transactions have some unique
characteristics distinguishing them from the rest. For example, coinbase transac-
tions have exactly 1 input with prescribed special form, and according to BIP 34 [3]
are christened with Height, an additional ‘property’ that adds to size. There are a
few other wrinkles that (hopefully) bear no relevance for this analysis.

6How did we obtain the value for Transactionscounter before determining the actual number

of transactions that can fit inside the transaction space ? The answer is, this value was computed

after we found the size of a ‘minimal transaction’. Another good question, why 3 bytes and not 2
bytes ? Well, any number greater than 252 and less than 65536, by bitcoin specification (see [5]),

takes 3 bytes. Note that one byte is pre-fixed to the number to indicate its length.



4 EVANGELOS GEORGIADIS

6.2. General data structure of a transaction. For sake of completeness we are
reproducing relevant parts of the table from [7], detailing the general structure of
a transaction.

Raw Transaction Format and Properties

Size (in bytes) Field Description

4 Version Version number
Varies Tx in count Number of inputs in this transaction
Varies Tx in Transaction inputs
Varies Tx out count Number of outputs in this transaction
Varies Tx out Transaction outputs

4 Lock time Time or block number

6.2.1. General structure of each input of a transaction. For sake of completeness we
are reproducing relevant parts of the table from [7], detailing the general structure
of each input of a transaction, Tx_in.

General format of each input of a transaction and properties: Tx in

Size (in bytes) Field Description

36 Previous outpoint Previous outpoint being spent
Varies Script bytes Number of bytes in scriptSig ≤ 10,000 bytes
Varies ScriptSig Script

4 Sequence Sequence number

6.2.2. General structure of each input of a transaction. For sake of completeness we
are reproducing relevant parts of the table from [7], detailing the general structure
of each output of a transaction, Tx_out.

General format of each output of a transaction and properties: Tx out

Size (in bytes) Field Description

8 Value Number of satoshis to spend. Maybe 0.
≥ 1 Tx script length Number of bytes in the pubkey script. Maximum is 10,000 bytes

Varies ScriptPubKey Script

6.3. General data structure of a coinbase transaction. For sake of complete-
ness we are reproducing relevant parts of the table from [7], detailing the general
structure of a coinbase transaction.

Coinbase Input Format and Properties

Size (in bytes) Field Description

32 Hash(null) A 32-byte null, as coinbase has no previous outpoint
4 Index 0xffffffff

Varies Script bytes No. of bytes in coinbase script ≤ 100 bytes
≥ 4 Height Block height required since BIP34

Varies Coinbase script Coinbase field
4 Sequence Sequence number



How many transactions per second can bitcoin really handle ? Theoretically. 5

6.4. Byte lightest transaction within the transaction universe. Within the
transaction universe, the skinniest and thus byte lightest transaction appears to
come via anyone-can-spend output, a transaction which has no constraints to how
its output can be spent. In other words, a transaction that can be made spendable
by anyone. The transaction is defined as spending an OP_TRUE anyone-can-spend
output and generating one OP_TRUE anyone-can-spend output. Before we analyze
its size, a few pointers about properties and usecases.

6.4.1. Properties. The properties of anyone-can-spend output are outlined in [10].

scriptPubKey: (empty)
scriptSig: OP_TRUE

While this is a valid transaction, it is non-standard.

6.4.2. Use cases. At first glance, this appears to be an utterly useless, if not eerie,
type of transaction. Even bitcoin and blockchain expert, Andreas Antonopoulos,
in [2] believes it to have no practical use other than for donations. Though, on
second thought, the following reasons might provide some incentive for reconsider-
ation.

• Useful for establishing new theoretical bounds on throughput.
• A strategy for coin laundering; effectiveness depends on execution.
• A strategy for network disruption; substantially increases network traffic.

6.4.3. Counting Size/Bytes: Going through the list of values in the above tables.
From top to bottom.

Size of non-coinbase transaction = (Version + Tx_in count + Tx_in

+ Tx_out count + Tx_out + Lock_time)

= 4 + 1 + (36 + 1 + 1 + 4) + 1 + (8 + 1 + 0) + 4

= 4 + 1 + 42 + 1 + 9 + 4

= 61 bytes.

Size of coinbase transaction = (Version + Hash + Index + Tx_in count + Tx_in

+ Tx_out count + Tx_out + Height + Sequence

+ Lock_time)

= 4 + 32 + 4 + 1 + (1 + 1) + 1 + (8 + 1 + 0) + 4 + 4 + 4

= 65 bytes.

7. Maximal Transaction Throughput

Thus the maximal transaction throughput is computed as follows.

b (999913− 65)

61
c+ 1 = 16391

transactions can fit inside a block.
Hence, bitcoin’s maximal transaction throughput is: (converting minutes to sec-

onds)

b16391/(10× 60)c = 27 tps.



6 EVANGELOS GEORGIADIS

Acknowledgement

We thank Giulia Fanti for comments on [14] and Yonatan Sompolinsky for com-
ments on [13, 9].

References

[1] Andreas M. Antonopoulos. Mastering bitcoin: programming the open blockchain. 2nd Edi-

tion. O’Reilly Media Inc., 2017.

[2] Bitcoin multisig and p2sh transactions with Andreas Antonopoulos - 01/13/14. https://

youtu.be/K-ccC9YZ8UI?t=2717, 2014. Accessed April,1st 2019.

[3] Gavin Andresen. 34. Block v2, Height in Coinbase. 2012-07-06. https://github.com/

bitcoin/bips/blob/master/bip-0035.mediawiki

[4] Bitcoin wiki. Script. https://en.bitcoin.it/wiki/Script. April,1st 2019.

[5] Bitcoin Developer Reference. Unsigned Integers. https://bitcoin.org/en/

developer-reference#compactsize-unsigned-integers.

Accessed April,1st 2019.

[6] Bitcoin wiki. Block. https://en.bitcoin.it/wiki/Block.
Accessed April,1st 2019.

[7] Bitcoin Developer Reference. Unsigned Integers. 2019. https://bitcoin.org/en/

developer-reference#raw-transaction-format.
Accessed April,1st 2019.

[8] Bitcoin wiki. Transaction. https://en.bitcoin.it/wiki/Transaction.

Accessed April,1st 2019.
[9] Bitcoin wiki. Scalability. https://en.bitcoin.it/wiki/Scalability.

Accessed April,1st 2019.

[10] Bitcoin wiki. Script. Anyone-Can-Spend Outputs. https://en.bitcoin.it/wiki/Script#

Anyone-Can-Spend_Outputs. Accessed April,1st 2019.

[11] Chenxing Li, Peilun Li, Wei Xu, Fan Long, and Andrew Chi-Chih Yao. Scaling nakamoto
consensus to thousands of transactions per second. ArXiv preprint, 2018. https://arXiv:

1805.03870.

[12] K. Croman, C Decke, I. Eyal, A.E. Gencer, A. Juels, A. Kosba, A. Miller, P. Saxena,
E. Shi, E.G. Sirer, D.S. An, and R. Wattenhofer. On Scaling decentralized blockchains.

In 3rd Workshop on Bitcoin and Blockchain Research (2016). https://link.springer.com/

chapter/10.1007/978-3-662-53357-4_8.
[13] Y. Sompolinsky and A. Zohar. Secure high-rate transaction processing in bitcoin. In Financial

Cryptography and Data Security. 19th International Conference, FC 2015, pages 507–527,

2015.
[14] V. Bagaria, S. Kannan, D. Tse, G. Fanti, and P. Viswanath. Deconstructing the blockchain

to approach physical limits. https://arxiv.org/abs/1810.08092.

MathCognify Technologies, Cheung Kong Center 19/F, 2 Queen’s Road, Central,
Hong Kong

Email address: eg(?)mathcognify.com


