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Abstract

Being the most widely used and comprehensive standard for hardware security modules, cryptographic tokens
and smart cards, PKCS#11 has been the subject of academic study for years. PKCS#11 provides a key store that
is separate from the application, so that, ideally, an application never sees a key in the clear. Again and again,
researchers have pointed out the need for an import/export mechanism that ensures the integrity of the permissions
associated to a key. With version 2.40, for the first time, the standard included authenticated deterministic encryption
schemes. The interface to this operation is insecure, however, so that an application can get the key in the clear,
subverting the purpose of using a hardware security module.

This work proposes a formal model for the secure use of authenticated deterministic encryption in PKCS#11,
including concrete API changes to allow for secure policies to be implemented. Owing to the authenticated encryption
mechanism, the policy we propose provides more functionality than any policy proposed so far and can be
implemented without access to a random number generator. Our results cover modes of operation that rely on
unique initialisation vectors (IVs), like GCM or CCM, but also modes that generate synthetic IVs. We furthermore
provide a proof for the deduction soundness of our modelling of deterministic encryption in Bohl et. al.’s composable
deduction soundness framework.
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1. Introduction

PKCS#11 is one of the Public-Key Cryptography Standards and was defined by RSA Security in 1994. By now, it
is the most prevalent standard for operating hardware security modules (HSM), but also smart cards and cryptographic
libraries. It defines an API intended to separate usage and storage of cryptographic secrets so that application code
can only access these secrets indirectly, via handles. The hope is that HSMs provide a higher level of security than
the multi-purpose machines running the respective application. This is reasonable: HSMs are designed for security and
have less functionality and therefore a smaller attack surface, making them easier to secure. Consequently, PKCS#11
is used throughout the public-key infrastructure and the banking network.

In contrast to this stated goal, raising the level of security, many versions and configurations of PKCS#11 allow
for attacks on the logical level [10, |14} |18} [11]]. Here, a perfectly valid chain of commands leads to the exposure of
sensitive key material to the application, defeating the purpose of separating the (possibly vulnerable) application from
the (supposedly secure) hardware implementation — and thus defeating their purpose. Formal methods have been used
to identify configurations that are secure [[18] [L1}, 29]]. In this context, a configuration or policy refers to a specification
of the device’s behaviour that implements a subset of the standard, e.g., PKCS#11 with the restriction that all keys
generated must have a certain attribute set. In order to be secure, the two most functional secure policies [11, 29]
either have to limit the ability to transfer keys between devices [29]] or have some keys degrade in functionality after
transfer, i.e., after transfer, they cannot be used for operations that were permitted prior to transfer [[11]. Recent versions
of PKCS#11 have adopted various security extensions (e.g., wrapping/unwrapping templates, ‘wrap-with-trusted’), but
none of these improve upon this lack of functionality. Fundamentally, the problem is that the export mechanism for
keys (key wrapping, i.e., encrypting a key with another key) does not provide a way to authenticate the attributes or
the role that a key should be imported with.

Authenticated encryption with associated data (AEAD) provides a solution to this problem [37]. AEAD was not
available in 1994, when PKCS#11 was invented. Academic development started around 2000 [<25]], standardisation
followed suit in 2004 [19]. With version 2.40, support for two AEAD schemes was finally added to the set of supported
algorithms in PKCS#11, but as Steel pointed out [45]], the interface that v2.40 provides allows for a two-time pad attack.
The application is able to set the initialisation vector (IV). If it chooses to use the same IV twice, wrapping can be
used to decrypt and obtain keys in the clear. Figure [I] depicts why this attack works. Both GCM and CCM are based on
CTR-mode. If we leave out the computation of the message authentication tag, it is easy to see that any cyphertext can
be decrypted by XORing it with the keystream that is deterministically generated from the IV. Requesting an encryption
with the same IV is essentially a decryption without the authenticity check.

This attack demonstrates that the mere support of AEAD schemes is not enough, a suitable interface needs to be
provided, too. Unfortunately, this is not a trivial task. As keys can be present on several devices at the same time, each
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Figure 1: Example on key extraction using CTR-mode. By supplying the same IV twice, the attacker can wrap a key
and then encrypt the resulting wrapping, again using the same IV. This leads to the leakage of the key.

device individually needs to ensure that, globally, an IV is not used twice. Hence in this paper, we tackle the following
questions:



I How can we guarantee global uniqueness even on devices that lack a random number generator (RNG)?
IT Using authenticated encryption, is it possible to create a secure PKCS#11 configuration that is strictly more powerful
than those proposed so far?

Contributions. The contributions of this paper can be summarized as follows:

1) We answer (I) and affirm (I) by proposing a secure PKCS#11 configuration that uses authenticated encryption.

2) We formally verify this proposal in the symbolic model and provide custom heuristics that allow for automated
proof generation. These results apply to the previously proposed modes of operation GCM and CCM.

3) We put forward a deduction soundness [9] result, which is a necessary condition for computational soundness. It
justifies the symbolic abstraction of AEAD and is of independent interest for protocol verification. Besides AEAD,
it also supports hash functions, public-key cryptography, digital signatures and MAC.

4) The PKCS#11 technical committee considered SIV mode [41] as an alternative to GCM/CCM as it does not require
an initialisation vector [44]]. We derive a construction to obtain an AEAD scheme out of SIV mode (in fact, any
deterministic authenticated encryption scheme). This construction cancels out if we use it in a particular way. With
only slight syntactical modification to our model we can thus derive a similar policy for SIV mode while reusing
the deduction soundness result, model and heuristics.

2. PKCS#11

PKCS#11 provides applications an interface to cryptographic implementations ranging from cryptographic libraries
to smart cards and HSMs. Once an application establishes a session to a device (slot in PKCS#11 parlance), it identifies
as a Security Officer (SO), or a normal user. The SO may initialise a slot and set a PIN for the normal user. Only
if this PIN is set, the normal user can login. As we consider the case where the application or the host computer are
malicious, we will abstract away from this and assume the attacker has complete control over a session.

PKCS#11 exposes so-called objects, e.g., keys and certificates, to the user or attacker. They are referred to indirectly,
via handles. Handles do not reveal any information about the object they refer to. Objects have attributes, some of
which are specific to their type (e.g., public keys of type ckk _RsA have a public exponent). Some however, are general
for all keys, and control how they can be used. E.g.:

o CKA_SENSITIVE marks keys that ought not to be read out in the clear.

o CKA_DECRYPT marks keys that can be used to decrypt cyphertexts.

o CKA_WRAP marks wrapping keys: If ¢_wrapkey is given two handles, and the first has cka_wRAP, it uses the key referred
to by the first to encrypt the second. Wrapping is used to export keys. Additional constraints apply to the attributes
associated to the second key, but we omit them for simplicity. To import, the function c_Unwrapkey takes a handle
and a wrapping (the cyphertext resulting from ¢_Wrapkey), decrypts the latter with the key referred to by the handle,
stores the results and returns a handle to the newly generated object.

Typically, a given implementation supports only some of the functionality specified by PKCS#11, first, because the
standard is extensive and contains many legacy algorithms, but also because the full standard is insecure. Clulow’s
attack provides a nice and concise example [14]:

1) A key is generated and marked CKA SENSITIVE, CKA DECRYPT and CKA_WRAP.
2) The key is used to wrap itself, obtaining an encryption of itself.
3) The key is used to decrypt the wrapping from the previous step, obtaining the key in the clear.

This attack and others have prompted vendors to limit the functionality offered by their respective implementations,
which are often dubbed configurations or policies. Some vendors introduced proprietary functionality, e.g., marking
CKA_DECRYPT and CKA_ WRAP as conflicting, but even those were prone to attacks [11]]. With version 2.20, wrapping and
unwrapping templates were introduced to control what keys can be wrapped, and what attributes objects created via
unwrapping can obtain. While this mechanism provides more flexibility, it does not improve the expressiveness of policies
— these templates can essentially be hard-coded in the device. In effect, two secure configurations were discovered that
are incomparable to each other, but more or equally functional to the others found so far [[11} 29].

The fundamental problem is that a wrapping does not contain authenticated information about the role of the key
prior to the wrapping, i.e., its intended use. Hence, if it is possible to wrap two keys that have different roles, it is not
clear which attributes a (re-)imported key should obtain upon unwrapping — it could originate from a key with either
role. For instance, the first of the two most functional policies [11] allows for two different roles to be wrapped, but
to be secure, the attributes obtained upon unwrapping provide less capabilities than either role — the keys ‘degrade’.
The second of them [29] allows only keys of a single role specific role to be wrapped.

Before OASIS took over standardisation from RSA Security in 2012, RSA drafted, but never published, version
2.30. Based on this draft, OASIS published version 2.40 in 2015, introducing support for AEAD schemes. AEAD
schemes can be used for wrapping, which finally provides a way of authenticating a key’s attributes upon wrapping.
Unfortunately, the API requires the user to set the initialization vector, which allows for a simple attack where some
vector is used twice [45]. The security of the schemes supported (AES-CCM and AES-GCM) relies on the uniqueness
of the initialisation vector, hence the upcoming standard 3.00 is planned to support device-internal nonce generation for
encryption/decryption.



function description rule comment

Object management functions

C_CreateObject creates an object () only by SO during setup

C_GetObjectSize, C_GetAttributeValue  gather information about object — not useful to adversary

C_FindObjectss find objects — not useful to adversary

C_CopyObject creates a copy of an object — not useful to adversary (in this configuration)

C_DestroyObject destroys an object — not useful to adversary

C_SetAttributeValue modifies object’s attribute forbidden by policy

Key-management functions

C_GenerateKey generates a secret key (@) generated with level [ and universally unique handle h

C_DeriveKey derives a key from a base key (9) base keys and derived keys must have level 2, key-
derivation needs random salt, universally unique handle
h

C_GenerateKeyPair generates a public / private key — always level 2; asymm. wrapping keys permits ‘Trojan

pair wrapped key attack’, thus not modelled (only key-
usage)

C_WrapKey wraps (encrypts) a key (7) wrapping key must have larger level than argument key;
internal IV generation (e.g., like C_EncryptMessage);
authenticate level and handle as additional data

C_UnwrapKey unwraps (decrypts) a key and (8) level and handle of new key have to match additional

stores it authenticated data

Key-usage functions

C_Encrypt encrypts single-part data () require ! = 2, internal IV generation

C_Decrypt decrypts single-part data (6) require I =2

message digest, signature, MAC, RNG etc.

require [ = 2, not modelled (only key-usage)

TABLE 1: PKCS#11 operations for object and key management, and corresponding rules in our modelling (cf. Section .

The present work was motivated by the drafting of the standard. We announced our results on the OASIS PKCS#11
mailing list and stressed the need to support device-internal nonce generation for wrapping and encryption [5]]. Assuming
that support for this is present in v3.00, our policy provides a template for the secure use of PKCS#11. The current
version at time of writing is version 2.40 with errata 01 [33]]. The most recent proposal for PKCS#11 v3.00 is working
draft 5 [34].

3. Policy

Our policy implements three central ideas: a key-hierarchy, globally unique counters and authentication of handles.

Key-hierarchy: keys are created with a given level, i.e., a natural number, and may only be used to wrap and unwrap
keys of a lower level. If we extend this to payload data, we can assign level 1 to payload and level 2 to encryption keys
that cannot wrap. Ergo, wrapping keys must have level 3 or higher. When wrapping a key, we authenticate the level of
the enclosed key with the encryption. Upon unwrapping, this level is restored. To be consistent with that, decryption
only succeeds if the cyphertext is authentic w.r.t. level 1. This already prevents Clulow’s attack, as wrappings will never
be decrypted, since whatever level the wrapping key was created with must be larger or equal to three.

Globally unique counters: The deduction soundness result that we will present in Section [7| holds only for protocols
that guarantee that AEADs are created with a unique initialisation vector. This is necessary, as otherwise, for counter-
mode based schemes like GCM and CCM, key-wrapping can immediately be used to decrypt. The simplest way to
ensure this is to choose the IV randomly, however, many low-cost devices do not have a random number generator. We
thus describe a secure low-cost alternative that is slightly more involved. We require each device to have a unique device
identifier at initialisation time, e.g., a serial number with a unique vendor id. For every encryption, a running counter is
increased, so that the combination of this unique public value and the running counter is unique in the network. Hence,
even if a key is shared between two devices, the initialisation vector remains unique. Practically, this combination can
be a simple concatenation: if the serial number and the counter have 64 bit, they match the blocksize of AES. For
an HSM that can run 10M encryptions per second, it would take about 60’000 years to repeat a counter. In terms of
the soundness of our deduction rules, any other way of combining those is sound, as long as it provides an injective
mapping into the set of initialisation vectors (or is indistinguishable from one).

Authentication of handles: The third novelty to our policy is the authentication of handles. Usually, handles are
assigned through a running counter or are simply the memory address where the key is physically stored. If a key is
exported to another device, it most likely receives a new handle. Instead, we chose a unique handle at key-generation
time, and ensure that, no matter on which device, this handle always resolves to the same key. We call this property
handle integrity.

We discus the relevant parts of PKCS#11 in the follow-up. Table |1| gives an overview, see [|34, Table 30] for the
full list.



3.1. Object-management

The main security goal is to keep keys secret from the possibly malicious host. Hence, for the operation of the
device, we disallow direct key imports via C_CreateObject. Nevertheless, in order to import keys via C_UnwrapKey, at
least one key must be shared initially. A common practice is to have the security officer (SO) set up shared keys using
C_CreateObject. Thus this function may only be used by the SO, which we assume happens only during setup or in an
otherwise safe environment and only with trusted PKCS#11 tokens, i.e., tokens implementing our policy by vendors
that guarantee the uniqueness of their unique device identifiers.

As the key-hierarchy is static, so are the attributes. We thus disable the function C_SetAttributevalue altogether.

We allow the user to inspect the device using functions like ¢ _GetObjectSize and C_Findobjects and its siblings. As
the adversary has full control, this information is redundant to him and w.l.0.g., we omit them from our model. Similar
for ¢_Destroyobject. As our model assumed no limit on space for storing keys, any attack using it can be transformed
into an attack that does not delete objects.

3.2. Key-management

In our policy, normal users can create new objects via C_GenerateKey, C_GenerateKeyPair, C_DeriveKey Or C_UnwrapKey.
C_GenerateKey and C_GenerateKeyPair create a new symmetric or asymmetric key, C_DeriveKey derives a new key from an
existing one, and C_Unwrapkey decrypts a wrapping, i.e., an AEAD that was output by ¢_wrapKey, and imports its content.
We thus consider these four functions plus ¢_Wrapkey the key-management core of PKCS#11.

C_GenerateKey and C_GenerateKeyPair: Keys are generated and then stored with a level and a universally unique
handle. The level is provided by the user by setting the attribute parameter ck_ATTRIBUTE_PTR. The handle can be chosen
randomly from a sufficiently large space or using any another technique/mechanism for creating universally unique
identifier [36]. This ensures handle integrity without central coordination. The details of the precise encoding from
levels to ck_ATTRIBUTE PTR are not important, but the token has to enforce that the level is correctly encoded. In general,
the level can be represented using a vendor-specific PKCS#11 attribute that encodes this number in an integer. If there
is a suitable upper bound, these levels can also be encoded in standard PKCS#11 attributes, e.g., if the bound is 4, the
values of cka_wrAP and CKA ENCRYPT can be used to encode a binary representation of each level between 1 and 4. As
wrapping with asymmetric keys is fundamentally flawed (asymmetric wrapping keys can be used to inject keys whose
values are known to the attacker [14]]), asymmetric key generation (C_GeneratekeyPair) is restricted to keys of level 2.
We hence consider asymmetric encryption keys only for key-usage.

C_DeriveKey creates a new key object from a base key. As there is no AEAD scheme in the PKCS#11v2.40
cryptographic mechanism specification that can be used for both wrap/unwrap and key derivation [35, Section 2.11],
any key that may be used for key-derivation has level 2 and may only be used to derive keys of level 2. Similar to
C_GenerateKey, a universally unique handle is created.

C_WrapKey creates an authenticated encryption of a key and includes its level and handle as additional authenticated
data. This makes sure that keys are reimported with precisely the same attributes. This is not possible with PKCS#11
prior to v2.40, due to the lack of support for AEAD. Note, however, that, even for v2.40, this requires a modification
to its specification or a new interface: PKCS#11 v2.40 specifies the initialisation vector to be set from the outside,
leading to the aforementioned two-time pad attack. While an implementation may very well ignore the supplied IV and
choose it internally, by specification, the function output contains only the cyphertext, not the IV. This is problematic,
as it means that the interface cannot be easily changed to communicate the internally generated IV without breaking
backwards compatibility. For encryption, the current PKCS#11 v3.00 draft solves this by introducing a new interface for
encryption, C_EncryptMessage, specifically to support internal nonce-generation for AEAD schemes. C_EncryptMessage has
an additional parameter that can be used to output the IV. In the current draft, there is no equivalent for key-wrapping.
We encourage the inclusion of a similar mechanism for key-wrapping in the base specification and making internal
IV generation the default for authenticated wrapping. Considering the adaptation of C_EncryptMessage, we deem this a
realistic proposal. Moreover, internal nonce-generation follows from the FIPS requirement on GCM: ‘The probability
that the authenticated encryption function ever [across all instances] will be invoked with the same IV and the same
key on two (or more) distinct sets of input data shall be no greater than 2732 [19, 4]

C_Unwrapkey decrypts a wrapping, verifies its authenticity and stores the decryption as a new key. It takes the
following parameters: the handle of the wrapping key, an attribute template specifying the attributes that the newly
generated object should obtain, and a handle for this newly generated object. The initialisation vector is supplied as
the mechanism parameter. Our policy is to reject any handle and any template that do not match the authenticated
handle and levelﬂ In contrast to previous policies, it is thus not possible to reimport a key on the same device under
different handles — there is no need to, as all instances of a key are guaranteed to have the same attributes. Thread-safe
implementations should thus check if the requested handle is present on the device before unwrapping, relying on locks
only to synchronize concurrent unwrap, key-generation and key-derivation actions.

1. In addition, we recommend checking that the authenticated level is smaller than the wrapping key’s level to provide resilience against key
compromise. Our model, however, does not consider key compromise.



3.3. Key-usage

PKCS#11 supports a variety of functions for creating message digests, signatures, MACs or random numbers. All
of these operate on payload data, hence, we impose that the keys must have level 2. We impose no further restrictions
beyond PKCS#11’s standard requirements, e.g., MACs can only be computed with MACing keys, etc.

For AEAD encryption and decryption specifically, we require that the authenticated header contains the level [ = 1
(for payload data). This prohibits encryptions to be confused with wrappings and thus ‘trojan key’ attacks [|14], where
unwrapping injects dishonest key material into the store. The same policy applies to encryption for multi-part data
(C_EncryptInit, C_EncryptUpdate and C_EncryptFinal), however, our model only covers encryption and decryption for
single-part data.

Similar to prior work [[18| 22 |11} [20]], we will only model key-usage functions that could possibly interfere with
key-management, i.e., symmetric encryption and decryption, as indicated by Clulow’s attack. Keys that do not support
encryption can, by the standard, not be used to create or import wrappings, and hence do not interact with the key-
management. By our policy, asymmetric encryption falls into the same category. Extending the model to cover non-
key-management operations is straight-forward, but unlikely to lead to new insights with respect to the security of
policies.

3.4. Limitations

The policy we propose is based on a static key-hierarchy: This reduces the flexibility when setting up keys. Similarly,
a popular best practice for HSMs is to disallow the modification of attributes for all users but the SO.

To benefit from handle authentication, existing applications have to be modified to make use of this feature by
validating the authenticity of the handle provided. In current applications, objects are identified by a user-specified
attribute CKA_LABEL. C_FindObjects is used to obtain all handles associated to objects that have a specified label and these
handles are used without further validation. Instead, the handle should be specified (in place of the label) to identify
keys. Practically, however, this is not always possible, as handles are implementation-dependent and cannot always be
chosen freely. Furthermore, this requires a modification of the application. In the following, we discuss a workaround for
both issues. The handle (in the sense of our policy) could be stored within the attribute cka_LABEL. Handle authenticity
then pertains to this attribute, which can now be used to identify keys. The advantage is that applications using the
previously described method for identifying keys would not require changes. The downside is that this label can neither
be set nor modified by the user or SO, but is instead chosen according to the policy upon object creation.

4. Preliminaries

Our analysis takes place in an abstract model of cryptography with an active, Dolev-Yao adversary. The idea is that
all implementations are considered participants in a protocol. As the adversary is active and has access to all of them,
he can send arbitrary commands to them and combine their outputs. This represents a network where all hosts are under
adversarial control. We analyzed this model with Tamarin [43], a protocol verifier with support for (stateful) security
protocols.

Terms and equational theories. Cryptographic messages are represented by a term algebra over public names PN,
fresh names F'N and variables V. Let 3 be a signature, i.e., a set of function symbols, each with an arity. We write
f/n when function symbol f is of arity n, e.g., pair/2 is a function symbol for pairs. Let Terms be the set of terms
built over 3, PN, FN and V, e.g., pair(¢,t’) € Terms, which we will abbreviate {t,").

Equality is defined by means of an equational theory F, i.e., a finite set of equations between terms. F induces a
binary relation =g that is closed under application of function symbols, bijective renaming of names and substitution
of variables by terms.

Example 1. Our model employs the following equational theory. Unary function symbols fst and snd model projection
On pairs:

fst((z,y)) = = snd({z, y)) =y
Hence fst(snd({z,{y,2)))) =g y. We use true/0 to model a constant truth value. We model AEAD using senc/4,

which expects a key, an initialisation vector, some authentication data and a message. The following equations apply:
sdec(k, i, h,senc(k, iv, h,m)) = m
sdecSuc(k, iv, h,senc(k, iv, h,m)) = true()
getHeader(senc(k, iv,h,m)) = h
getlV(senc(k, iv, h,m)) = iv

We use the two-ary function symbol U¥ to model multiset union. Written in infix notation, the following equations for
associativity and commutativity apply:

U (y o 2) = (z U y) UT 2 x Uty = (yut )



Out(z) - >  K(z)
Fr(z : fresh) %[ %—» E:c freZ’;L)
— K(z : pu
K(z1), - K(zg) - K(f (21, 2))
K@) K@ In()

Figure 2: The set of rules MD.

This function symbol is built into Tamarin. We will use it to model natural numbers. We also include a symbol kdf/2
for key-derivation, without any equations.

Multiset Rewriting. In the Tamarin protocol prover, the protocol itself, its state and its behavior are modeled using a
multiset of facts and rewriting rules operating on this set. The state of the system is a multiset of ground facts G, where
a fact F(tq, ..., tx) of arity k is ground if all k terms ¢4, ..., t; are ground. Further, there are predefined fact symbols for
special purposes. The state of the adversary’s knowledge is encoded using the fact symbol !K. Freshness information is
denoted with the fact symbol Fr and messages on the network are represented by In and Out. Multiset rewriting rules
are denoted by | —{ a |- r, where [ is the premise, 7 is the conclusion and a labels so-called actions. Linear facts
used in the premise are consumed by the transition rule. An exclamation mark in front of a fact symbol indicates that
it is persistent and can be consumed arbitrarily often. For example, freshness Fr is a linear fact, whereas adversarial
knowledge K is a permanent fact.

Example 2. To express, e.g., a key hierarchy or a counter, we need to identify natural numbers. We can model them
using Tamarin’s built-in support for multisets: a multiset with n elements 1 € PN represents n. The following two rules
ensure that terms t for which a fact INat(t) or action 1sSNat(t) exists are always multisets consisting only of 1 € PN.

—{ IsNat(1) ]>!Nat(1) (1

'Nat(n) - IsNat(n u* 1) J->!Nat(n U™ 1) )

Intuitively, we say that a rewriting step is possible if all facts in [ are in the current state S. In the resulting state,

all linear facts from [ are removed and all facts in r are added. We will formulate this intuition in the following, but

need some preliminaries first. We use Ifacts and pfacts to denote the linear, respectively, the permanent facts in a set,

set to turn a multiset into a set and mset to turn a set into a multiset. We mark the multiset equivalents of the subset
relation, set difference and set union with a # superscript, i.e. =%, \# and U7,

We define a labeled transition relation — = G# x P(G) x G#, where G# denotes a multiset of ground facts and
M denotes a set of ground instantiations of multiset rules, as follows:

Ildal>reM lfacts(l) c# S pfacts(l) < set(S)
§ SMD, S\ Flfacts (1)) UF {r)#
Consider, e.g., the following application of (2)):
{!Nat(1) } {INat(1), Nat(1 u# 1) }#.

Using the labelled transition relation, we can define executions of some model M as a set of traces:

4 IsNat(1u#1)

((A1,...,Ay) | 3S1,..., S0 eG* & ... %4 S
AVi#j. Yo, S \*S; = {Fr(z)}
= Sj1\*S; # {Fr(2)}}
Combining the previous transition with an application (T), we obtain the trace (IsNat(1), IsNat(1 u# 1)). The side
condition ensures that fresh variables are instantiated with unique fresh names.
Tamarin combines a user-defined set of rules describing the protocol itself with the builtin rules for message deduction
MD depicted in Figure [2| They represent a standard Dolev-Yao attacker who obtains knowledge (!K) by eavesdropping

on the network (Out), creating fresh names, or by using public values. This knowledge can be combined by applying
function symbols f/k. Known terms can be sent to the network.

5. Formal Modelling

We present the multiset rewrite rules used to formalise the policy described in Section [3] and Table [I}



Devices. At any time, a new device can be introduced to the network. This device has a fresh identifier dev, and its
device counter is initialised to 1 € PN, representing the natural number 1. Previous work [[11} |18} 29] abstracted all
PKCS#11 devices in the network with a single store. As we want to tackle the problem of locally generating network-
wide unique IVs, we need to capture the absence of a secure channel between these devices, and thus model them
individually.

Fr(dev),!Nat(1) - DCtrls(dev,’ 1) ]—
'D(dev), DCtr(dev, 1)

Each device (ID(dev)), obtains a fresh identifier (Fr(dev)), which links it to the initial counter value (DCtr(dev, 1)).
The action DCtrls is used in the lemma counter_mono (cf. Section [6) to refer to this counter and show each counter is
monotonically increasing.

Key-generation. When a new key is created, it is stored along with its level, a freshly chosen handle and a natural
number [ on the store of dewv, represented by the fact !Store(dev, h, k, [). The rules from Example [2[ are part of our
model and ensure that [ represents a natural number. The handle and the level of the key are handed out to the adversary

(Out(¢h, D).
ID(dev), Nat(l), Fr(k), Fr(h)
—{ CreateK(h, k, 1), StoreK(dev, h, k, 1) |-
IStore(dev, h, k, 1), Out({h, 1)) 3)
The action CreateK marks the creation of a key along with its level and attribute. It is referenced by lemma key int_conf
to say that keys imported via unwrapping were honestly generated at an earlier point (i.e., no trojan keys can exist).
StoreK, by contrast, marks that a key is added to the store, which includes import via unwrap and key-derivation.
A second rule additionally contains !D(dev’) in the premise and !Store(dev’, h, k, ) in the conclusion and is used
to model a trusted set-up phase where a common key is established on two devices.
,!D(dev") - -- -, StoreK(dev', b, k, 1) |-
-, IStore(dev’, h, k, 1) 4)
Note that devices only need to produce fresh names during key-generation. Hence, w.l.o.g., a device without RNG is
represented by an adversary that chooses to never employ an instance of the key-generation rule where dev is instantiated

to this device. Devices without RNG exist and are useful: lightweight authentication tokens can, e.g., obtain a master
key via a trusted set-up, and subsequently import keys via unwrapping.

Encryption and decryption of payload data. Encryption (C_Encrypt) expects some payload m and encrypts it with
the authenticated header affirming the level as 1 (payload data) and, for uniformity, an empty handle value € € PN.
For simplicity, the handle A is not required as an explicit input — the adversary chooses the appropriate instantiation of
this handle anyway. We set the initialisation vector to {dev, ctr), which, as we will show, ensures the network-wide
uniqueness of the IV.

INat(ctr u* 1),!D(dev), 'Store(dev, h, k, 1),
DCtr(dev, ctr),In(m) - UseK(dev, h, k, 1),
DCtrls(dev, ctr U™ 1), IV({dev, ctr)) |-
DCtr(dev, ctr u* 1), Out(senc(k, {dev, ctr),{1,€), m) Q)
As before, DCtrls records the new counter value (DCtr(dev, ctr U¥ 1)) to ensure monotonicity. |V marks the use of
the IV. The lemma uniqueness Iv will ensure that no two instances of this action have the same value, which is a
cryptographic requirement for AEAD schemes. Finally, UseK marks the use of a key with the handle and level that
were assumed. Lemma key usage will ensure that any key used was created or imported with exactly this handle and
level.
Decryption (C_becrypt) verifies that the authenticated tag is (1,¢). Let v = getlV(c), t = getHeader(c¢) and
m = sdec(k, iv,t,c) in
ID(dev), \Store(dev, h, k, 1), In(c)
— UseK(dev, h, k, 1), Decrypt(m),
IsTrue(sdecSuc(k, v, t,c)), Eq(t,(1,€)) |-
Out(m) (6)

Again, UseK tracks the use of the key. Decrypt(m) will be used in the lemma origin to state that any knowledge
obtained by the output message m was known by the adversary before invoking decryption.



We use the action IsTrue to check whether the decryption was successful: every lemma ¢ presented in the next
section is verified w.r.t. the subset of traces for which the condition

o= (Va,ilsTrue(a)@i = a =g true()f]

holds true. This is achieved by showing @« == ¢ on the entire set of traces. For every trace where the term
sdecSuc(k, iv,t,c) is unequal to true() (modulo E), the property is trivially true and thus the property is valid iff «
holds for all traces that adhere to the restriction. Tamarin conveniently allows specifying several so-called restrictions
«, which apply to all lemmas in this way.

Key-wrapping. Wrapping proceeds in the same vein. A key on the device (IStore(dev, hy, ki, Ly)) can be used to
encrypt another key (IStore(dev, he, ke, l.)). Again, let iv = {dev, ctr).

INat(ctr ¥ 1),!D(dev), !Store(dev, by, kuw, L),

IStore(dev, he, ke, lo), DCtr(dev, ctr)

—{ UseK(dev, hy, kuw, L), DCtrls(dev, ctr u* 1),

IV(iv), Lt(el,wl) -
DCtr(dev, ctr U™ 1),0ut(senc(key, iv, {l, he), ke)) (7)
The output senc(k,, iv,{l, he), k.) constitutes the wrapping of k. under k, with additional authenticated data

(le, hey for the previous handle and level of k. on device dev. Again, UseK, DCtrls and IV track the state of keys,
counters and the IV v = (dev, ctr). Similar to IsTrue, the action Lt ensures the wrapped key has a lower level than

the wrapping key by imposing another restriction on traces: for every action Lt(a, b), there is a non-empty o’ such that
a U™ a’ = b, i.e., a represents a (strictly) smaller number than b. This avoids key-cycles.

Unwrapping. To unwrap (C_Unwrapkey), a device is called with a handle to a wrapping key (i.e., a key of level > 3) and
an authenticated encryption c. It decrypts ¢, and stores the resulting key along with the authenticated handle and level
for future use (!Store(dev, he, ke, I.)). Let iv = getlV(c), t = (I, h) = getHeader(c) and k. = sdec(k, iv,t,c) in

Nat(l.),!D(dev), IStore(dev, h, k, 1), In(c)

— UseK(dev, h, k, 1), ImportK(dev, he, ke, I.), Neq(l, 1),

StoreK(dev, he, ke, I ), IsTrue(sdecSuc(k, i, t,c)) |-

IStore(dev, he, ke, l.) 8)

As before, UseK marks the use of the wrapping key and StoreK their addition to the store. ISTrue ensures that

sdecSuc(k, iv,t,c¢) =g true(). ImportK marks that the key contained in the wrapping has been imported, and not
created. It will be referred to by lemma key_int_conf (cf. Section [6) to say that any key imported by wrapping was
once created on some device.

By our deduction soundness result, the cyphertext ¢ in our model contains the authenticated header and IV in the
clear. Hence it represents the ‘raw’ cyphertext, as well as the other parameters supplied to C_Unwrap.

Key-derivation. Key-derivation (C_Derivekey) is restricted to key-usage keys, i.e., keys of level 2. Recall that we omitted
pure key-usage like MACs from the model, except for AEAD encryption and decryption. We therefore model key-
derivation with AEAD base keys to represent derivation from other keys of level 2. The Fr-facts in the premise model
the generation of a globally unique handle, as well as a random salt , which is used to derive the new key as kdf(k, 7).
Let two =1 U# 1 in
'D(dev), !Store(dev, h, k, two), Fr(r), Fr(h’)
— UseK(dev, h, k, two), StoreK(dev, ', kdf(k, r), two),
CreateK(r', kdf(k, ), two) |-
IStore(dev, h', kdf(k, r), two) )
As before, UseK marks the use of the key k. Similar to key-generation, this rule is marked with StoreK (as the
derived key is added to the store of dev), as well as CreateK (as the key kdf(k,r) is created).

6. Results for AES-GCM/CCM

The stated purpose of PKCS#11 is to separate secret data from untrusted code accessing the interface. Hence our
main goal is to ensure that no key generated on the device can leak to the adversary. Nevertheless, there are two
additional integrity properties that we consider important, but that have been largely overlooked by prior work. First,
the integrity of the keys themselves: each key on the device was created on some honest device; it is not possible to

2. FQj denotes that action F' appears at position ¢ in the trace.



dep. lemma description steps  seconds

0 origin Any messages obtained by decryption were encrypted before and all keys imported via unwrap- 1597 72
ping were either created on the device or known to the adversary at some point. (!D(m)Qi —
7. IK(m)@Qj A j < i) A (ImportK(dev, h, k,1)@i = (3j.CreateK(h,k,1)Qi A j <
1) v 37 IK(k)@j5" A ' < i).
Cf counter_mono The device counter is monotonically increasing. DCtrls(d, ¢)@i A DCtrls(d, ¢/)@jni < j = 1880 77
Jdz.c =g z +c.
o uniqueness_IV No IV is used twice, no matter on which device. IV(¢)@Qi A IV(t)Qj = i = j. 8 16
—O key_usage All keys that are used were created by unwrapping, key-derivation or key-generation. 78 17
UseK(d, h, k,1)@i = 3j.StoreK(d, h, k,1)Qj A j < i.
—O key_int_conf All keys are created on some device (ImportK(d, h, k,1)@i = 3Jj.CreateK(h, k,l) A j < i) 428 45
T and are never known (—(CreateK(h, k,1)@Qi A K (k)Qj)).
—0 key_level_handle  Keys always retain the level and handle they were created with. StoreK(d, h,k,1)@i A 170 21

StoreK(d’,h', k,1')Q@j = l =gl Ah=pg h'.

TABLE 2: Proof lemmas and their dependencies. We use F'Q; to denote that an action F' appears at position ¢ in a
trace. For brevity, unbound variables are to be read as universally quantified.

import trojan keys. Second, the integrity of the mapping from handles to keys: each key, on whichever device it may be
placed, will always have the same level and the same handle. The latter property is a new feature of our policy that is
meant to ensure that no attacker can confuse an honest application into using an insecure or deprecated key by altering
the assignment from handles to keys.

We verify these properties using two helping lemmas (see Table [2). These lemmas were stated manually, but
proven automatically. The first one (origin), establishes that any knowledge obtained through decryption was available
beforehand, and that all keys imported via wrapping were either originally created on some device, or was otherwise
known by the adversary before. The first conjunct of origin prunes cases where decryption is used to derive a term
of arbitrary form from an encryption. Intuitively, when Tamarin’s backward search algorithm is trying to prove that a
certain term cannot be deduced, e.g., a key stored on the device, it considers all rules that have a matching Out-fact.
The rule for decryption (6) by itself could output any term ¢, as long as ¢ = senc(k,iv,{1,€),t) is input, and thus
known to the adversary. This c itself could come from rule @), which, without origin, creates a loop. This conjunct
establishes that the content of the cyphertext must have been known prior to using the decryption rule. As knowledge
facts are permanent, the application of rule (6) is superfluous if !K(¢) is already present, and thus this step can be
pruned. The second conjunct can be used to either establish the freshness of keys (both rules containing CreateK(k)
have the premise Fr(k)), or to pinpoint an earlier leak of a key, which helps in the inductive steps of many of the
follow-up lemmas.

The second helping lemma (counter monotonicity) establishes that on each device, the counter is monotonically
increasing. Proving it is just a matter of considering all pairs of rules where the action DCtrls occurs, but when applied,
it readily entails the relationship between any two counter-values once their temporal relation can be established.

With these lemmas in place, we show: First (key usage), that all keys that are used by an honest token were put in the
store either by unwrapping (8)), by key-derivation (9) or by key-generation (3)); and that the attribute and handle remain
unchanged. Second (key int_conf, first conjunct), if they were created by unwrapping, they were previously generated
by key-generation or key-derivation with the same attribute and handle, but possibly on a different device. Together,
this means that all keys that are used were honestly generated, and that throughout their use, they are associated with
the same attributes and handle. Third (key int conf, second conjunct), all keys are confidential: it is not possible for
any key that was created on the device to be deduced by the adversary. In Tamarin, this is expressed by referring to the
action !K in the message deduction rule for adversarial output (see Figure [2): the adversary cannot output a key created
on some device. Fourth, whenever a key is added to the store on any device, it is associated with the same level and
handle.

Finally, the deduction soundness result in the next section comes with a proof obligation for the protocol: whenever
a term senc(k, iv, h,m) is output, the tuple (k, iv, h) needs to be unique. Lemma uniqueness_1V establishes the stronger
property that v itself is distinct within all such terms.

All these lemmas can be shown automatically using a custom heuristic that prioritizes goals relevant to IV generation.
We report the number of proof steps and the verification time per lemma in Table 2] Both were measured on a 3.1
GHz Intel Core i7 with 16GB RAM. A full proof took about four minutes. As we present a new policy of PKCS#11
with new features, we cannot compare the verification time with previous efforts. The closest work to ours also used
Tamarin and reported a runtime of half an hour on a dedicated computation server [29]]. The structure of the proof, in
particular the choice of the helping lemmas and their order, follows the structure in this paper, albeit adapted to our
model. We thus feel confident that our helping lemmas and heuristics can be reused for other policies that guarantee
key and attribute integrity.

7. Justifying the symbolic abstraction

Symbolic models in the literature that include symmetric encryption usually imply authenticity of the cyphertext.
In the cryptographic setting, this is called non-malleability. They do, however, not account for the choice of the IV.



This is reasonable, as in most cases, this choice is part of the encryption scheme itself, and not a protocol task. For the
configuration we discussed in the last section, however, IV generation is part of the protocol itself and hence cannot be
abstracted away.

We thus provide some justification for the equational theory we use to model AEAD, which was introduced in
Example |1} by showing a necessary, but not sufficient, condition for the soundness of the symbolic attacker. As we will
see, we have to impose a condition on the protocol. Luckily, this condition can be proven to hold using Tamarin.

Formal models rely on an abstract representation of cryptography for efficient tool support. The relationship between
results in this formal model and the complexity-theoretic model of cryptography was first established by Abadi and
Rogaway [1] under the name of computational soundness. Computational soundness says that each attack that occurs
with non-negligible probability in the computational model is represented in the symbolic model. It thus ensures that
the symbolic model and the semantics of the protocol calculus are adequate models of the cryptographic primitives and
the behaviour of the protocol parties.

Rather than extending the existing body of work with an additional computational soundness result for a small set
of primitives, we opted to extend the deduction soundness framework [17] by Cortier and Warinschi. The distinguishing
feature of this framework is that it allows for the composition of deduction soundness results for different primitives. As
PKCS#11 covers many different cryptographic primitives this is a very useful feature. The downside is that deduction
soundness does not guarantee computational soundness. The research question of defining a composable framework for
computational soundness is still open, thus we opted for extending Bohl et. al.’s deduction soundness result [9] at the
expense of a weaker guarantee. Their result includes public key encryption, secret key encryption, signatures, MACs,
hashesﬂ and also public data structures. All these primitives are supported by PKCS#11, and thus it is very attractive
to use this model and be able to reason about higher-level protocols building on our PKCS#11 configuration.

We extend Bohl et.al.’s result with deterministic authenticated encryption, so we can reason about schemes like
AES-GCM and AES-CCM as supported by PKCS#11. We can only sketch the result here, and refer to Appendix [D] to
Appendix [G] for the details. We keep the notation minimal in this section and use BShl et. al.’s notation in the appendices.

Cryptographic requirements. We introduce a cryptographic security notion, DAE-N security, which is a version of
DAE security [40| Definition 1], modified to give the adversary access to the IV. DAE [40] security is logically equivalent
to AEAD security [38]] and formalises the confidentiality and authenticity for AEAD. Our modification, DAE-N security,
differs from DAE security [40]] in that oracles can be called with arbitrary IVs, as long as they do not repeatE]

Definition 1 (Deterministic Authenticated Encryption with IVs). Let II = (Gen, Enc, Dec) be an IV-based authenticated
encryption scheme that can handle an associated header. That means: Given IV space S, associated dataP|space Hap

and message M, the encryption algorithm Enc takes as input a key k & Gen(1"), an IV n € S, a string of associated
data H, with H € Hap and a message m with m € M. It returns a cyphertext ¢ = Enc(k,n, H,m) with ¢ € M.

Decryption takes a key k & Gen(1"), an IV n € S, a string of associated data H, with H € Hap and a cyphertext ¢
with ¢ € M as input and returns m with m € M v {L}.

The DAE-N-advantage of an attacker A with access to two oracles (the first called left-hand, the second called
right-hand) in 11 is defined

AdvieT (A) = [Pr[ACF" ()08 (o) = 1]
— PI-[A$(‘7'7')7J~('7‘7') = 1]|

where k < Gen(17) and OF™(-,-,-) and OP*(-, -, ) denote an encryption oracle and a decryption oracle, respectively.
Further, let $(-,-,-) be an algorithm returning a random bitstring ¢ with ¢ € M and L(-,-,-) an algorithm always
returning 1.

The adversary may not repeat an IV in a left-query and may not ask a right-query (H,IV,Y) if some previous
left-query (H, 1V, X) returned Y. (MRAE security defines Adv'™""™*° just the same, but restricts the adversary to not
repeat a left-query and may not ask a right-query (H,IV\Y) if some previous left-query (H,IV, X) returned Y.)

A scheme 11 is DAE-N secure iff, for all ppt algorithms A,

Advilee=m(A) < negl(n)
Sor a negligible function negl() and a security parameter 1.

AEAD security [39] has been proven for CCM by Jonnson [24] and for GCM by McGrew and Viega [32]]. In
Appendix [A] we show that this implies DAE-N security.

3. PKCS#11 supports a SHA-1-based key-derivation mechanism.

4. DAE-N security can also be seen as a weaker version of Rogaway’s notion of misuse-resistant AE (MRAE) security [40, Definition 5]. GCM
and CCM mode provide AEAD security and thus DAE-N security, but not MRAE security. If used appropriately, SIV mode provides both MRAE
and DAE-N security.

5. In the context of our work header, additional data and associated data are interchangeable terms.



Symbolic model and deduction relation. We represent the equations in Example [I| in the deduction soundness
framework as a typed symbolic model and deduction relation - between a set of terms the adversary knows, and
a term the adversary can deduce from this set. A term is deducible if it can be constructed from other deducible terms
or obtained by applying decryption and similar operations. In our case, the symbolic model consists of a two randomized
function k' and k!, representing AEAD key generation, an encryption function E with four arguments, and a function
cong that transforms terms into IVs. The superscript I marks k. and k; as randomized, as opposed to E and cong
which are deterministic. Both k. and k; are implemented in an identical way, but different symbols are used to mark
keys that may be corrupted initially, and keys that shall not be revealed. This is ensured by the protocol conditions
below. We use k, to make statements that hold for both k; and kcﬁ

For each I, k! represents a different, randomly chosen key. The types make sure that the first argument to encryption
is always a key and that the second is an IV. The other two arguments, the authenticated information and the message,
can be arbitrary terms. The deduction relation is defined by the following four rules:

kL() cong(n) H m E(KL(), cons(n), H,m)
E(kL(), cong(n), H,m) cong(n)

E(KL(), cons(n), H,m) E(k.(), cons(n), H,m)
H m
From top left to bottom right, they allow (a) the attacker to construct encryptions if he knows all inputs, (b) to extract
the IV, (c) to extract the authentication information and (d) to deduce the message if the key may be corrupted initially.
The protocol conditions in the following paragraph ensure that the adversary only learns keys that are initially corrupted,
and hence (d) correctly represents the first equation in Example [I] as w.Lo.g., the symbolic adversary corrupts all keys
kL from the start.

Implementation. An implementation consist of a Turing machine that computes each function symbol, a length function
that for each term predicts the length its corresponding bitstring has, an interpretation function that defines how bitstrings
are interpreted as terms and a valid predicate that restricts the operations an attacker can perform. The latter is used
to define protocol conditions. These are necessary for soundness results that have only standard assumptions on the
cryptographic primitives, as the following example illustrates. It is well known that IND-CCA security does not guarantee
anything in the presence of key-cycles [3]. Hence soundness can only hold if the deduction soundness attacker (and
thus the protocol) is restricted to not produce them. Alternatively, stronger notions of security such as key-dependent
message security can be used. There is a trade-off between protocol conditions and requirements on the cryptographic
algorithms.

In our case, the Turing machine implementation is constructed using a DAE-N secure encryption scheme and an
injective function that maps the bitstring representation of any terms in S into the IV space. For GCM and CCM, e.g.,
this can be a simple concatenation if we can guarantee that all terms in S can be represented in 32 bit. Our result is
parametric in this .S. We define the bitstring representation of an encryption to contain the authenticated information
and the IV in the clear. The length function and the interpretation function are straight-forward. (See Appendix [E| for
details.)

The validity predicate enforces the following protocol conditions (paraphrased for simplicity):

1) AEAD keys k' can only occur in the first position of an E-term or in an initial corruption query.
2) No n in E(k!, cong(n), H,m) occurs twice for the same .
3) Whenever cong(t) appears in some term, ¢t € S.

Proof overview. Due to its size (about 15 pages), we need to refer to the full version [5] for the proof, but will outline
its structure here. We show deduction soundness in a stepwise proof over four games, starting from the deduction
soundness game. This game is used to state that an adversary can never generate a bitstring that can be parsed to a term
that he should not be able to deduce according to . In this game, the adversary interacts with an oracle that gives him
access to the bitstring representation of terms of his choice. In the first step, it is shown that terms only collide with
negligible probability. In the second, cyphertexts under honest keys are replaced with random bitstrings. In the third,
the winning condition is made stricter by adding a rule to the deduction system that allows the adversary to generate
honest cyphertexts — any adversary that can distinguish between the deduction soundness game with or without this
rule is able to break the authentication property of the scheme. In the fourth and final step, it is shown that the modified
deduction system is compatible with Cortier and Warinschi’s notion of composability.

At this point, the model is not yet suited for key-wrapping, as keys can only appear at key positions and thus not
be encrypted. Bohl et. al.’s framework handles this in an additional step. Function symbols carry an annotation to mark
some of their input positions as forgetful; in our case, the fourth position of E. We show that a forgetful implementation,
i.e., an implementation that substitutes each input at a forgetful function with a random bitstring of the same length, is
also deduction sound. This allows us to relax the first condition of the validity predicate:

1) AEAD keys k! can only occur in an initial corruption query, in the first position of an E-term, or as a subterm of
a forgetful position of a function symbol that we compose with (but not E itself).

6. There is a similar distinction for E that we gloss over here, but is explained in detail in Appendix



dep. lemma steps  seconds
Q origin 2087 103
Q counter_mono 1880 79
¢} uniqueness_IV 8 16
o key_usage 86 18
Q key_int_conf 443 46
©) key_level_handle 170 22

TABLE 3: Results for SIV mode.
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Figure 3: SIV encryption (left) and decryption (right).

©

The last disjunct implicitly excludes key-cycles: by composing our AEAD model and implementation M 4g4p with (a
renamed version) of itself, M/ 4, keys of Magap can encrypt keys of M’y 4, but not vice versa.

Relation to our model. Our model has to make sure that for all possible traces, all three conditions of the validity
predicate hold. The first condition can be checked syntactically: keys are indeed only output within encryptions terms,
where they occur at position one or four. The only use at the fourth position is in the rule for key-wrapping|’| There, key-
cycles are avoided by means of the restriction Lt(el, wl). The lemma key level handle ensures that the level associated
to each key is always the same. We can hence iteratively apply the compositionality result for all keys of level 1, 1+ 1,
etc.; the restriction associated to Lt makes sure that keys in the fourth position are always of lower level than the key
at position one.

As a side-effect, however, the dynamic corruption of encryption keys is not guaranteed to be deduction sound. This
is unfortunate, because the policy we propose implements a key-hierarchy to limit the potential damage due to wrapping
keys that leak, e.g. due to side-channel attacks or brute-forcing.

Consequently, we refrained from formalising this property, as the soundness of a model that includes dynamic
corruption cannot be guaranteed. There is an existing proposal that permits computational soundness without such
protocol restrictions [6] that applies to a hybrid encryption scheme based on CBC-mode and an arbitrary MAC [46].
We leave extending these results and investigating the resistance against key-leakage to future work.

The second condition requires the protocol to make sure each IV is only used once per key, for all protocol traces.
This is guaranteed by the lemma uniqueness 1v, which can be verified using Tamarin.

The third restriction can be checked syntactically, if we fix an implementation of cong. For instance, we can set S
to the set of terms (t1,t2) such that ¢; has a suitable type for device ids, e.g., {0,1}3? and ¢ represents {1,...,232}.
We then define the implementation of cong to decode their bitstring representation and concatenate them.

Limitations of deduction soundness. We stress that deduction soundness is only a necessary criterion for computational
soundness, as it only argues about the term representation and the deduction relation, but not the process representation.
Our symbolic results do not necessarily carry over to the computational model. However, it was helpful in determining
the validity conditions. Cortier and Warinschi point out that, in addition to deduction soundness, a so-called commutation
property is necessary to establish computational soundness [[17]. It is not known how to do this in a modular manner.

Roughly speaking, deduction soundness by itself talks about secrecy, not integrity. We opted for deduction soundness
because of the composability it offers. How to obtain composability and computational soundness at the same time
remains an interesting open question but we consider this question out of the scope of this paper.

8. Results for SIV

As we have pointed out before, user-provided IVs constitute a considerable attack vector. An alternative to generating
IVs internally is to get rid of them altogether. Rogaway proposed a construction where the initialisation vector is
synthesised from the authenticated information and the message using a hash function [41]] (see Figure [3).

We can readily apply the deduction soundness result to SIV mode, if we apply the construction sketched in Figure [4]

7. The payload in the rule for encryption (3 is guaranteed to not be a key by lemma key _int_conf.
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Figure 4: DAE-N/MRAE secure scheme from SIV mode.

As Rogaway showed, this construction can turn SIV mode into a MRAE secure scheme [41, Section 7], which
implies DAE-N security. Interestingly, the construction effectively vanishes if either v or h are always set to the
empty string €. We can therefore argue about SIV mode by slightly modifying our model so that the fourth position
of senc/4, i.e., the authenticated information, is always set to €. As concatenation cancels out, SIV by itself is a valid
cryptographic implementation and the existing deduction soundness result applies. We must still ensure uniqueness of
i, so we include the device identifier and counter in the header. Finally, we thus verify all lemmas from Section [6] in
284 seconds overall (see Table [3] for details). SIV mode was considered for inclusion in PKCS#11 v3.0 [44], but as of
now, it is not supported [35].

9. Related work

The search for logical attacks on security APIs goes back to Longley and Rigby [31]] and Bond and Anderson [[10].
There is a huge body of work specifically on PKCS#11 [11} 15} |18]], but there have also been academic proposals for new
APIs [28] |16} 27]]. While attacks were often a driving factor, a lot of effort was directed towards finding configurations
that are secure, i.e., that preserve secrecy of keys.

There are three major approaches to the analysis of PKCS#11 configurations. The first is using program verification
techniques, but this was not automated and therefore has largely been discarded [20, 21]]. The second approach is using
security type-checking on the implementation, e.g., C-code [13] or a domain-specific language [2]. This technique was
used to show secrecy of keys against a Dolev-Yao attacker, but the type-system needs to be modified to reflect new
cryptographic primitives like AEAD encryption. With the third approach, adoption of new primitives is easier. Here,
protocol verification techniques are used. Essentially, the security token is the only participant in a protocol, and the
API-level adversary is represented by the network attacker. Early results were based on model-checking [18] and thus
limited to a fixed number of keys, but under certain assumptions, the soundness for an unbounded number of keys can be
established [22]. The high degree of automation even allows for automated attack reconstruction [[11]. More flexibility
can be achieved by using protocol verification tools in the unbounded model, as existing results for the soundness of a
bounded model do not apply if the API itself is modified, e.g., by introduction of stronger cryptographic primitives [[29].
To our knowledge, the two most functional yet secure configurations that were discovered either have keys that lose
functionality on wrapping and reimporting [[11]] or do not allow to export wrapping keys [[11, 29].

In contrast to finding configuration which are secure against logical attacks, cryptographic security proofs for
Security APIs [27, |12]] achieve stronger guarantees, but have not been automated so far. Even though some results
retain compatibility with PKCS#11 [42], their focus is on secure design, not identification of secure configurations.
Furthermore, following cryptographic necessity, the proposed design forbids that keys may be used for more than one
purpose, e.g., the keys used for wrapping and encryption need to be separated by design, in contrast to the policy
identified here. While this is cryptographic good practice, PKCS#11 policies often provide this functionality to allow
for more flexibility in HSM-based protocols.

The idea of relating symbolic abstractions to cryptographic security notions goes back to Abadi and Rogaway’s
introduction of computational soundness [1]]. Various results established the soundness of symmetric encryption [7],
signatures [8]], and hash function [23], just to name a few. Most results exclude key-cycles [7]], however, it is possible to
overcome this limitation by strengthening the cryptographic requirements [3|] or the Dolev-Yao attacker [30]]. A priori,
these results do not compose, hence Cortier and Warinschi proposed deduction soundness [|17] as a framework that
allows for some amount of composability. Subsequent work in this framework covered most cryptographic primitives
present in PKCS#11, including MACs, hashes, signatures, symmetric and public key encryption [9]. To be sure that we
handle device-internal nonce generation correctly, we introduce deterministic authenticated encryption with associated
data to this framework.

10. Conclusion

We summarize our suggestions for PKCS#11 version 3.0 and other Security APIs and point out challenges in the
protocol verification approach.



The addition of AEAD schemes to PKCS#11 has shown great potential for functional and secure key-management
policies. It is vital that HSMs can guarantee network-wide unique IVs, thus this should be mandated for key-wrapping.
The current interface does not provide this IV in the function output, which is making a device-internal generation
impossible or at least unnecessarily complicated. The attributes attached to a key should be authenticated with the
wrapping, and AES keys should either be usable for wrapping and unwrapping, or for encryption and decryption. In
contrast to previous policies, the authenticity of a key’s attribute is guaranteed and thus both encryption and wrapping
keys can be wrapped. While we proposed this policy for PKCS#11, it is also compatible with the Key Management
Interoperability Protocol (KMIP) [26], an independent standard for key-management that is also governed by OASIS.
KMIP allows for (but does not default to) authenticating attributes when exporting and importing keys. It provides
support for the GCM and CCM modes of operation as well as internal IV generation.

Our approach was based on protocol verification, which was flexible enough to handle the introduction of new
primitives, however, finding the correct equations and protocol conditions is not easy. Despite the huge body of work in
computational soundness, there was no result that gave an answer right away. No computational soundness results covers
the range of cryptographic primitives supported by PKCS#11. While Bohl’s deduction soundness result does, thanks to
its composability, it provides weaker guarantees. We thus encourage future research to consolidate existing knowledge
on computational soundness and to facilitate the adoption of new primitives by investigating the composability of
computationally sound cryptographic primitives.
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Appendix

1. AEAD security implies DAE-N security

We now want to show that for “AE with AD” schemes that are secure considering privacy and authenticity as defined
above, it holds that those schemes are also DAE-N secure.

Lemma 1 (AEAD security [40, Proposition 8]). Let Il = (Gen, Enc, Dec) be a authenticated encryption with associated
data with AD space H ap, 1V space N and message space M[38]. Let A be an adversary with access to two oracles.
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Suppose A runs in time U and asks qy, queries to its left oracle, these totaling uy bits, and asks qr queries to its right
oracle, these totaling up bits. Then there exist adversaries D and F such that

Adviee="(A) < Advi™ (D) + qr AV (F)

where D runs in time UO(uy, +ur) and asks qr, queries totaling uy, bits, and F runs in time U + O(up, + ur), asking
at most qy, left-queries and one right-query, these totaling at most u; + ug bits.

Proof. This proof is exactly the proof of [40, Proposition 8], however, instead of the modified syntax for deterministic
authenticity/privacy, the original syntax [38]] needs to be employed, i.e., the oracles take a third input for the IV, hence
O(+,-) is replaced by O(, -, -) for every oracle. Both definitions restrict the adversary to not query the same IV twice. [

2. Deduction Soundness: Background

Cortier and Warinschi [[17] defined the notion of deduction soundness which was a first step towards a framework,
helping to prove the computational soundness of cryptographic protocols more easily. Bohl et al. [9] extended their work
by getting rid of some prior limitations and adding more security primitives (like MACs or hashes) to their framework.

Our contribution, is to extend the work of Bohl et al. by adding AEAD schemes to the composition theorems. To
achieve this in a more readable way, we will try to use a very similar notation and writing style.

2.1. Symbolic model. Symbolic models in our sense are used to represent an abstract and formal environment to verify
the security of cryptographic protocols for specific security notions in the “symbolic world”. Extending the work of
Bohl et al. we will adopt their symbolic model making the extension more easy and increase the readability of the
work.

We define our symbolic model M to be a tuple of the form M = (T,<,%, D), where T defines the set of data
types, < the corresponding sub type relation, X the signature and D defines the deduction system. We will define them
in detail step by step in the following paragraphs.

Data types 7 and sub type relation <
We define the symbolic model to have data types 7, which we require

« to have a base type T, and

« to have a sub type relation <.
We require < to be a preorder and that for every 7 € T, it holds that 7 < T (every type 7 € T\T is a sub type of the
base type T).

Signature > and variables
Let the signature X be a set of function symbols and corresponding arities, such that each function symbol f has an
arity of the form

ar(f) =71 X . X Ty > T

with n being a natural number (n > 0) and 7,73 € 7 for 0 <i < n.
For function symbols ¢ with 0 arguments (meaning n = 0), we call ¢ a constant.
We also refer to 7 as the type of the function f (type(f) = 7), with 7 & T for all function symbols. The only exception
to this rule are garbage terms of the base type T, called gr.
Garbage of type 7: We require from our signature to contain constants g,, such that for all 7 € 7, g, represents the
garbage of type 7. Typically bit-strings produced by an adversary, which cannot be parsed to a meaningful term, are
associated with garbage terms. Those constants are randomized. Randomization is denoted with labels (see Labels and
randomness) applied to function symbols.
In addition to function symbols, we also define an infinite set of variables variables where for each variable z €
variables, x is of some type 7 € T.

Labels and randomness
For each symbolic model M we fix an infinite set of labels 1abels = labelsH U labelsA where both sets are disjoint
and labelsH denotes an infinite set of honest labels, while 1abelsA denotes an infinite set of adversarial labels. Labels
denote randomness, therefore it is essential, that we distinguish between honest and adversarial labels.

Example 3. ¢ := enc'» (k,m) with l;, € labelsH and ar(enc) = Tgeys X T — Teipher
Example 4. ¢ := nla() with I, € labelsA and ar(g) = Thonce
Example 5. t := f(t1,t2) with ar(f) =71 X 70 > T

We see one application of an honest, randomized function in Example [3] whereas we see an adversarial, randomized
function application in Example 4] In Example [5] we see an application of an deterministic function.



Set of terms
We define Terms (X, 7, <) := | J o set of terms of type T, where the latter is defined inductively by

t:=
| z
|f(t17"7tn)
| f'(t1,..,tn) 1€ labels

where ¢ is a term of type 7, x is a variable of type 7, f(t1,..,t,) is an application of a deterministic f € ¥ and
fi(ty,..,t,) is an application of a randomized f € ¥ For f(t1,..,t,) and f!(t,..,t,) , we further require that each ¢;
is of type 7] with 7/ < 7; and that the arity of f is ar(f) =7 x ... x 7, = 7.
We also write Terms instead of Terms (X, 7, <) if M is clear from the context and also write ¢t = f!(ty,..,t,) for
general terms (also for deterministic function symbols).
Substitutions
For z;,t; € T and i € {1,..,n} we write § = {1 = t1,..,2, = t,} to refer to a substitution with domain dom(9) =
{x1..,2,}. A substitution § = {x1 = t1,..,z, = t,,} is well-typed if for each i € {1,..,n} : t; < x;. In our symbolic
model we only consider well-typed substitutions. We write 6(¢) = ¢ for an application of a substitution J of a term ¢.
Deduction systems
Each symbolic model contains a deduction relation —: 2™ x Terms , which is used to model the capabilities of a
symbolic adversary to retrieve information from terms.
With T t we describe the capability of a symbolic adversary to build ¢ from the set of terms T" and say ¢ is deducible
from T'. Usually deduction relations are defined through deduction systems which we formally specify as follows.

Definition 2. (DEDUCTION SYSTEM). A deduction system D is a set of rules @ such that
t1, . tn,t € Terms (X, T, <). The deduction relation -p< 2™™ x Terms associated to D is the smallest relation
satisfying:
o« TtptforanyteT < Terms (3, 7,<)
o if T +p t16,..,T p t,6 for some substitution § and % € D then T +p té.
Review of Definition 1 by Bohl, Cortier, and Warinschi [|9]
Further we require for all deduction systems the rule T for all g%— € X and | € labelsA .
Note that we omit D from \p if D is clear from the context.
Additional Notes:
o For § being a substitution we say tha is an instantiation of % eD
o We require deduction relations to be efficiently decidable. Knowing this, for T — t we can always efficiently find
a sequence 7 = T 25 Ty 225 . 2% T), such that for all i € {1,..,n} it holds that:
1) a; = t1¢'t~,tn
2) t17 tn € T‘ifl
3)t¢Ti
4) t' e T;
5)teT,
We refer to m as an deduction proof for T - t.

t16,.,tnd
=35

2.2. Implementation. As well as the symbolic model, we also redefine the corresponding implementation of Bohl,
Cortier, and Warinschi [|9)].
We define T as an implementation of a symbolic model M with T = (M,,[],,len,,open ,,valid ,), being a family
of tuples. In the following, we will omit the security parameter 1 for readability.

The components of T are defined as follows:

o Turing machine M
Provides concrete algorithms for the corresponding function symbols in the signature of the symbolic mode. Those
algorithms operate on bitstrings.

o Mapping function []
The function [-] : T — 2{0,1}* maps each type to a set of bitstrings.

o Length function len
The function len : Terms — N returns for each term the length of its corresponding bitstring.

o Interpretation algorithm open
The algorithm open interprets bitstrings as terms.

o The valid predicate
To get computational soundness results we usually have to restrict the implementation. In our very case, the valid
function takes care of this. The valid function takes a trace T as an input (we will formally introduce traces later
on in Definition [7) and returns a boolean value representing the validity of this trace.

Additionally we have the following requirements on the implementation I (to the symbolic model M corresponding).
Requirements:



1) For each T € T we require [7] < {0,1}" to be nonempty. For the base type T we require [T] = {0,1}* and that
Sor all T,7" € T it holds that, if T < 7' then [7] < [7'] and otherwise [7] n [7'] = &

Further we define
o« [7] as UTET/{T}[[TH
o {c1,..,Cn, Ty as a bijective function that encodes cy, ..,cp, to ¢’ with ¢ € [r].

2) The Turing Machine M is required to be deterministic, but has a random tape R provided at each run. Precisely,
we require for each f € ¥ which is not a garbage symbol and has arity ar(f) := 71 X .. x 7, — T, that M
calculates a function (M f) on input f. The domain of (M f) should be [11] x .. x [1.] x {0,1}* and the range
[7]-

To generate a bitstring for a term t = f'(ty,..,t,) we apply (M) to the bitstrings of the subterms t; of t and
use some randomness (except for deterministic function symbols). The recursively resulting bitstring [t] is called
concrete interpretation of t.

Interpretations
In cryptographical applications, it occurs that the same random values occur multiple times within the same term,
for instance, if a random nonce appears multiple times in an encryption. To deal with such occurrences within our
interpretation, we will use a partially defined mapping L :{0,1}* — HTerms from arbitrary bitstrings to so-called
Hybrid Terms, which acts as a library.

Hybrid Terms are either garbage terms or t = f'(cy,..,c,) where f € ¥ with ar(f) := 71 X .. X T, — T and
¢i €[] for i €{1,..,n} . The domain of L dom(L) < 200.1* s the set of bitstrings for which L is already defined.
The interpretation of bitstrings c € dom (L) with respect to L is defined as L[c]:= f'( L[c1], ...L[c,] ) if L(c) =
flei, .., cn) and L[c]:= L(c) for L(c) being a garbage term. A complete mapping is given, if ¥(c, f'(ci,..,cn)) € L
€1, .-y Cn € dom(L). Generating function
In the following we will define a generate function using a mapping L introduced in section [B.2] This generate function
takes a term t = f'(t1,..,t,) as input and produces a bitstring c corresponding to t.

To produce c, the Turing machine M has to use the random tape R as a source of randomness, using an algorithm
R(t) : Terms — {0, 1}" which produces a different random bitstring r depending on a term t € Terms .

Listing 1: generate

generate,, »(t, L):
if for some cedom(L) we have L[c] ==t then
return (c, L)
else
for ie{l,...,n} do

let (ci,L):= generatey, (ti, L)
let R(t)
let (Mf)(01,...,cn;7“)
let ( ) := f'(a1, ..., a,))(l € labesH)

return (c, L)

Additional notes:

« generate also updates L.

» generate depends on M and R, but we will omit them if they are clear from the context.

o If L is complete, it holds that for all terms t € Terms with t =f!(ty,..,t,) and (c,L') := generate (t,L), L' is
also complete.

o For all subterms t' =f'(t,...,t,) of t where | € labelsA , there is a c € dom(L) with L[c] = t'

o There is no t" being a subterm of t, s.t. " = g'() and | € labelsH .

The last point ensures that all bitstrings generated by the generate function only contain non-garbage function
applications where the function symbols carry an honest label | € 1abelsH .

Parsing function
In addition to the generate function which produces bitstrings from terms, we require from the implementation the
definition of a function which produces terms from bitstrings. The function takes a bitstring c and a mapping L as input
and returns a term t € Terms and an updated mapping L'.
Since the function depends on the open : {0,1}* x libs —{0, 1}* x HTerms function provided by an concrete
implementation, we have to omit an exact definition of parse but require the following structure:

Listing 2: parse
parse(c, L):
if cedom(L) then
return (L[c], L)
else
let Ly := {(G f'(...)) € L|l € labelsH }
let L:=(Ueg, yer open (¢, Ln))
let G:={(c, ng<°) )} (I € labelsH )
while G+ ¢ do



let L:=(L\G)v (Ue. )eG open (¢, L))
let G:={(©¢")|@E f'(.,c..) e L n e dom(L)
return (L[], L)

Additional notes:

o has to provide a concrete context such that different open functions can be composed

« open is only allowed to use honestly generated bitstrings

o Foreign bitstrings, meaning bitstrings of a data type which is not part of the implementation, are ignored by open

« open functions are commutative due to the properties stated above, which is important for the composition theorems

in

Good implementation

Starting in this section we will describe several requirements and restrictions towards the behavior of an imple-
mentation. The term good implementation refers to those implementations which satisfy all properties defined in this
section.

Length regularity

We require that len(f!(t1,....,tn)) := |(M f)(c1, ..., cn,7)| only depends on the length of c;. Such a length function
len is equivalent to a set of length functions leny : N — N for each function symbol f € ¥ with ar(f) := 71 X...xT, —
7. This equivalence is needed to be able to compose length functions of different implementations as described in Section

D
b 4

Collision freeness

Problems occur if values in the mapping L are overwritten. Assume a bitstring ¢ € dom(L) is then parsed to a
term t' instead of the intended term t. This could prevent an adversary from winning the deduction soundness game, so
a good implementation should be collision free. To define what collision freeness means we also need to introduce the
notion of a supplementary transparent function to model the capability of an adversary to choose arbitrary bitstrings
for arguments of type T. This is needed since transparent implementations also need to be collision free, because we
want them to be composable, too.
In Definition [3|we introduce the mentioned supplementary transparent functions and in Definition [d| we finally introduce
the notion of collision freeness.

Definition 3. Supplementary transparent functions
For a set of bitstrings B  {0,1}* we define the transparent model M%7 %" (B) as follows:

supp
o Trran . (T glrany plran jg g subtype of T.

supp supp supp
E%’{[}Z :={fc : ce B} (all function symbols are deterministic)
. DSZ%’Z = {T() : CEB}
and an lmplementation Iﬁ;‘;ﬁ( ) as follows:
|I tran
(Mst;;gfc)() returns c
o (ME2" func)(c) returns f. if c € B, L otherwise

(Review of Definition 2 by Bohl, Cortier, and Warinschi [|9])

Definition 4. Collision-free implementation
Let DS/, M, 4(n) be the deduction soundness game from Listing |5| where we replace the generate function by the
function generate’ from Listing [I} We say an implementation I is collision free if for all p.p.t. adversaries A
PT[DSMthmn([[T]]) Iul't'ran([[’]‘]]) A( ) 1]

supp supp

—PrDS\ o megan (171 zozian (g7),4 (M) = 1]

supp supp
is negligible.
(Review of Definition 3 by Bohl, Cortier, and Warinschi [9|])

Type safety

We define type safety in the following sense
Definition 5. Type safe implementation

We say that an implementation I of a symbolic model M is type safe if

(i) open(c, L) = (c,g%) for L € labelsA if c ¢ [T].

(i1) open(e, L) = open(c, L|[T]) where L| [T] :={(c,h) e L: 31 e T\{T}:ce [r]}
(Review of Definition 4 by Bohl, Cortier, and Warinschi [|9])

Intuitively, (i) states that open should not work on foreign bitstrings and only return garbage of type T, while (ii)
states that the behavior of the open function is not altered by any foreign bitstring in L. This guarantees that composed
open functions do not interfere with each other, meaning they do not work on each others bitstrings.



Since we demand to run in polynomial time in size of the mapping L, we therefore demand a reasonable run time for
open (since is based on open ). valid requirements

Before we can start to define our requirements on the valid function, we will now introduce the notions of queries and
traces.

Definition 6. Query
Queries in our case are requests sent by the adversary to the deduction soundness game (or any variation of it). A
query q is either “generate t”, "sgenerate t”, "c” or 7init T, H”.

Definition 7. Trace
We define a trace T as a time ordered list of queries T :=q1 + q2 + ... + qn

Knowing this, we now state the requirements on valid which we need to be able to compose valid functions later
on.
(¢) If valid(T + q) = true then for any variation § of q, which we define explicitly below, it holds that valid(T + §)
= true.
If q = “generate t” and G = "generate 7
Here, a variation t of t is defined as follows: Any subterm fUt1, ..., t,) of t where f is a foreign function symbol,
ie. f¢3, can be replaced by f! (fl, ...,fn) where [ is another foreign function symbol and for all i € {1,...,n}
t; is either t; for some j € {1,...,n} (where each t only can be used once) or t; does not contain any function
symbols from Y. As a special case, if for example f is “empty”, we may replace fUte, ..., tn) with a term 1.
Ifqg="init T,H” and ¢ = "init T, H": X
T = (t1,....,tn) and T' = (t1, ...,tn) where for each i € {1,...,n} t; is a variation of t;; and H = (ha, ..., hy,) and
H = (hq, ..., hy,) where for each i € {1,...,m} h; is a variation of h;.
(ii) We demand that, if valid(T +q) = true and term t € q, then for any t € st(t) it holds that valid(T+ ”sgenerate
t'”) = true.
(ii7) The run time of valid(T) should be polynomial and should only depend on T.

To conclude: If an implementation T is length regular, collision free, type safe and if the requirements on valid hold,
we call T a good implementation.

2.3. Transparent functions. 7o conclude the idea from Definition |3} we will now start to formally define the notion of
transparent functions (and also transparent symbolic models and transparent implementations). We need those notions,
because we want to achieve our soundness results in the presence of any public data structure, for instance: tuples,
arrays, XML files etc. We call those public data structures transparent functions and will define transparent symbolic
models and transparent implementations using such functions in the following.

Transparent symbolic models:

A transparent symbolic model Miyan = (Teran, <tran, Stran, Dtran) IS defined similar to the symbolic model from
but having a specific definition of the deduction system Dy, stated below:

ty - tn

I l € labelsA, f € Yiran

Tt t) fes
Uiy vn tn

% 1<i<n,lelabelsA, f € Xiran

Transparent implementations:

A transparent implementation Tiran = (Miran, [Jtrans l€Ntran, 0OPeNtran, Validirqn) of a symbolic model is also an
implementation, meaning it meets the same requirements as in [B.2] For the Turing machine M,,,, we require two
additional modes of operations: func and proj. We define them right below:

For all function symbols f € ¥ with arity ar(f) = 71 X ... X T, — T we define

(Mypan func): {0,1}* -2 o {1}
(Miran prod f4):{0,1}* — {0,1}*
such that for all c¢; € ;] with 1 <i < n and r € {0,1}"

(Mtran func)((Mtran f)(cla <y Cnj T)) = f
(Mtran p’I“Od f i)((Mtrcm f)(cla cs Cpy ’I")) =

and require that (Myyan func) = L for all ¢ ¢ [T]. We also require that (Miyqn func) and (Miyan prod f i) both
run in polynomial time (depending on 7).

The bitstring mapping [-tran as well as the length function lenyyq, are not defined any different as in The open
function openi,q, on the other hand is defined explicitly below:



Listing 3: openy,.q,,
Opentra'n(cy L)
if ¢ €[T] n dom(L) then
return (c, L(c))
else if (Myan func)(c) == L1 then
find unique 7€7T s.t. ce[r] and c¢[7]
for all 7/ €T with [r'] < [7]
return (c,g5) (i(c) € labelsA)
else
let f:=(Miran func)(c) with
ar(f) = M X ... XTh > T
if  (Miran prod f i) == 1
for any i€ [1l,n] then
return (c,g"?) (I(c) € labelsA)
else
for i=1 to n do
let ¢ = (Miran prod f i)(c)
return (¢, fX(c1, ..., cn))(I(c) € labelsA)

With this function, we can easily show that the implementation is type safe by using the two properties required by
Definition [3] The first property is already required above (see func) and the second property holds because L is not
used by the openg,qy function.

Also transparent functions are not restricted in any way so we define validi.q,,(T) = true for all possible traces T.

2.4. Compeosition. In this we will explain how to compose two symbolic models My = (T1,<1,%1,D2) and My =
(T2, <2, 32, Ds) and there corresponding implementations T, and I in a general way.
We define the composition of My and My as

M =(THuTz, <1 U <2,%1 UXe, Dy uDs)

if

1) 21 ﬂZQ = {gT}

2) inTa={T}
To compose two implementations 11 and Ly we require that

i) for all 1y € TIN{T}, 72 € To\{T} we have [11] n [r2] = &

ii) and further that T' = T; U Iy is a good implementation of M’
To fulfill requirement ii) we now start to define T' := T, U Zy. The Turing machine M' = My v My returns (M’ f) :=
(Myf) if feXy or (M'f) := (Mxf) otherwise.
For all T € Ty we set [7] := [r]1 and for all 7 € Ty we set [7] := [7]a. Further we require all [T] = [T]1 =
[T] = {0,1}*
As we saw in section the length functions are easy composable. We have len; := leny, : NY — N with f; € 3,
and lens = leny, : N — N with fy € o. We simply define len’ := len; U lenas.
We define the composition of the open function in the following way:

Listing 4: open’
(open; o openy)(c, L) :
let (c,t):= open(c, L)
if t=g4 for some [elabelsA then
return openy(c, L)
else
return (c,t)

Therefore we have open’ := open; o open,.

From the valid predicate valid’, we demand both valid, and valids to remain valid, so we write valid’(T) =
valid; (T) A valida(T).

After defining the composition T' = (M, [-]’,len’, open’, valid’) we need to show that ' is a good implementation
of M'.

Type safety holds since Ty T = {T} is given by requirement (2.) of composing symbolic models. This implies
that [T1])' 0 [T2] = [T] and since we have I; and I, being type safe and open; o open, = open, o open; we can
easily conclude that T' is also type safe (see for concrete requirements).

Length regularity is automatically given for len' since £1 n X5 = {¢5} leads to leny n leny = &. Hence, for
any input f € ¥y len/(f'(t1, ..., tn)) returns leny(f'(t1,....t,)), what is length regular by assumption, and returns
lena(fi(t1, ..., tn)) for f € So otherwise, what is naturally also length regular by assumption.

The valid requirements are fulfilled by valid’ by construction since both valid; and validy must hold for valid’
to hold.



Collision freeness is the second requirement for composing implementations as well as one of the requirements of a
good implementation. As a strategy to show that T' is collision free we show that additional requirements for valid;
and validy hold. Those requirements are concretized in Lemma 2]

Lemma 2. Let M1, My be symbolic models with implementations T; and T, respectively. If in addition to requirements
(1.),(2.) [of the symbolic model composition] and i) [of the implementation composition] the following requirements for
valid'(T) := valid;(T) A valids(T) hold:

1) Let T be T with all silent generate “sgenerate t” replaced with normal generate queries “generate t”. Then
valid'(T) = valid'(T).

2) Let x € {1,2}. If valid,(”init T, H”), then for each t € T U H all function symbols in t are from %, or no
Junction symbol in t is from X,.

3) Let x € {1,2}. Let T be an expansion of @ = qi + ... + gy in the following sense: A q; = “generate t” for
i € {1,...,n} is replaced with g}, ...,q" where g/ = “sgenerate t;, t; € st(t) and t; does not contain function
symbols from ¥, for j € {1,...,m}. Then valid,(T) = valid,(T).

then (M1,Z;) and (Ma,Zy) are compatible.
Review of Lemma 1 by Bohl, Cortier, and Warinschi [|9].

Proof. One can prove Lemma [2] by a sequence of games. First one would show that there is no adversary A who can
fhstmgl.nsh Whether he plays DS’ /uMg:;;g([[T/]]),I’uI_ggf;,g([[T’]]),A(77) or the same game in which the generate’ function
is modified with

if cedom(L) n[T1] then
exit game with return value 1 (collision)

instead of

if cedom(L) then
exit game with return value 1 (collision)

After showing that the games described above are indistinguishable, one shows that the latter game is indistinguishable
from the original DS game.

Using Definition E], the indistinguishability of the games described above suffices to proof that Z’ is collision free. (For
the full proof see Bohl, Cortier, and Warinschi [9])) ]

2.5. Deduction soundness. Finally, in this section we will recall the notion of deduction soundness [9)]. We define
deduction soundness with the help of a game, the DS game (see Listing [5).

To explain deduction soundness, we first will introduce the notion of a parameterized transparent symbolic model and
its corresponding parameterized transparent implementation and then continue with explaining the idea behind the DS
game.

Definition 8. (Parameterization)

A mapping Mrqn (V) from a bitstring v to a transparent symbolic model Myyqy is called a parameterized transparent
symbolic model. Respectively, we define a parameterized transparent implementation Ly.q, (V) as mapping from the
bitstring v to a transparent implementation Ly,qy. Further, Ti.qn (V) is an implementation of Myyq, and the length(v)
; length(p(n)) where p is a polynomial function.

We also define v to be good, if Lirqn(v) is a good implementation (see section of Mipan (V).

The DS game is defined 1) between a challenger and an adversary A 2) to show that T is a deduction sound
implementation of M, where M(v) := M U Mypan and Z(v) :=Z U Lipan.
1) The challenger keeps a set of requested terms S, a mapping L and a trace of queries T, while the adversary
provides a parameter v.
At first, with an ”init T, H” query, bitstrings corresponding to a set of terms T and a set of hidden terms H
are generated. Then the adversary has the possibility to parse bitstrings to terms and to generate bitstrings from
terms, while the valid predicate must always hold on T during the game or the adversary losses (return 0). On
the other hand, the adversary wins the DS game, if he is able to create a bitstring which can be parsed, but is
not deducible from S (which would be a non-Dolev-Yao term).
2) Deduction soundness of an implementation T with respect to a symbolic model M is illustrated in the following
Definition.

Listing 5: Deduction Soundness game

DSy, zw),a(m):
Let S
Let L
Lat T :

SIS



R <« {0,1}*
Receive parameter v from A

on request "init T,H" do
add "init T" to T
if valid(T) then
let S := SuT
let C = g
for each teT do
let (¢,L) := generate(t, L)
let C := Cu{c}
for each te H do
let (¢, L) := generate(t, L)
send C' to A
else
return @ (A is invalid)

on request "sgenerate t" do
if valid(T + ”sgenerate ¢”) then
let (¢, L) := generate(t, L)

on request "generate t" do

add "generate t" to T

if valid(T) then
let S := Su{t}
let (¢, L) := generate(t, L)
send ¢ to A

else
return @ (A is invalid)

on request "parse ¢" do
let (t,L) := parse(c, L)
if SEpt then
send t to A
else
return 1 (A produced a non-DY term)

Definition 9. (Deduction Soundness)

Let M be a symbolic model and T be an implementation of M. We call T a deduction sound implementation of M,
if for all parameterized transparent symbolic models M., (V) and for all parameterized transparent implementations
Liran (V) of Mipan that are composable with M and T (see requirements from section we have

PrIDSmoMipan () ZoTpran(v),a(M) = 1]

to be negligible for all probabilistic polynomial time adversaries A sending only good parameters v where DS is the
deduction soundness game from Listing |5 Note that M U Myqn (V) can be generically composed to a parameterized
symbolic model M'(v) and parameterized implementation T'(v), respectively.

(Review of Definition 5 Bohl, Cortier, and Warinschi [9])

Intuitively, we call an implementation I deduction sound with respect to its corresponding symbolic model M, if the
deduction relation \—p reflects all capabilities of the computational adversary. Concretely, this means that no adversary
can produce, given a set of terms S, a bitstrings ¢ corresponding to a term t with S {/ t.

Additionally, since the DS game does not prevent collisions, we naturally want to show that no adversary can
produce those collisions with an overwhelming probability. Since only generate function calls can produce collisions
by producing a bitstring which is already in L (the structure of the function on the other hand prevents collisions), it
suffices to show that the following lemma [3| holds, which is already proven by Béhl, Cortier, and Warinschi [9].

Lemma 3. Let DS_I/\/l(l/),I(V), 4(n) be the deduction soundness game where we replace the generate function by the
collision aware generate function ( see Figure 3 [9)]). Then no p.p.t. adversary A can distinguish DSq(,),z(v),4(1)
from DS;\/I(V),I(V), 4(m) with non-negligible probability. (Note that the transparent functions are already included M (v)
and I(v) in here.)

(Review of Lemma 2 Bohl, Cortier, and Warinschi [9)])

3. Deduction soundness of AEAD schemes

The advantage of deduction soundness is that it is relatively easy to extend. Bohl, Cortier, and Warinschi [9]]
already added public datastructures, public key encryption, signatures, secret key encryption, MACs and hashes to



their framework. Our contribution to this will be, to extend the framework with authenticated encryption schemes with
associated data.

We will define a symbolic model M 4gap and a corresponding implementation Z4p4p. Then we will show that for
any symbolic model M which is composable with M gap (see Section [B.4]) and implementation Z where 7 is a
deduction sound implementation of M, it holds that the composition Z U Zagap is a deduction sound implementation
of MU Mugap if Z is composable with Zyg ap.

To achieve this, we will use the notion of DAE-N security (Definition [I) and rewrite the definition in a game-like way
to fit into the syntax of our computational model.

Listing 6: DAE-N game
DAE _NféGen, Enc, Dec) (77) .

b < {0,1}
oracles := (¥

on request "new oracle” do
let r & {0,1}"
let k := Gen(17, r)
oracles.add (k)
let ciphersy := O
send k to A

on request "OF™(n,H,m)" do
if k ¢ oracles then
send L to A
else
if == @ then
let ¢’:= Encg(n, H, m)
let ¢ & {0, 1}’
ciphersg.add((c, m))
send ¢ to A
else
send Encg(n, H, m) to A

on request "OP®(n,H,c)" do
if k ¢ oracles then
send L to A
else
if b == 0 then
if (c, m) € ciphersy
for some m
then
send m to A
else
send L to A
else
send Decg(n, H, m) to A

on request "guess b’" do
if b == b’ then
return 1
else
return @

Intuitively, the adversary A which now plays DAE-N game still tries to distinguish whether he interacts with real oracles
or with some fake oracles. Concretely, a bit b is chosen at random in the beginning of the game, which decides whether
the adversary gets a response from a real oracle (if b = 1) or from a fake oracle (if b = 0). If the adversary is able to
send a request “guess b’ (and ¥’ == b) with a probability significantly higher than %, he can break DAE-N security
of the encryption scheme. Note that we additionally added a random input parameter r to the key generation algorithm
to clarify that all oracles use a different source of randomness.

4. Symbolic model

At first we define the symbolic model Magpap = (TAEAD, <AEAD, ZAEAD, DAEAD):



Signature Y pap:.

. ka
ket Tamap
cong : T = Tapabp
K iph

Ey: Tymap X TApap X T X T = 74pap
are the featured function symbols, with x € {h,c} and S being a set of possible nonces.
The randomized function kj, returns honest keys while k. returns corrupted keys.
The deterministic function cong maps an arbitrary input value to a nonce from the set .S.
The deterministic function E}, returns an honest cyphertext using an honest key, a nonce, and two additional arbitrary
values as input.
The only difference of E. to Ej}, is that . uses some corrupted key as input and returns a corrupted cyphertext.

Set of types Tapap-.
@ iph
Tapap = {T, Tf(EAD? TABAD TAEAD
Sub type relation <srap. All types introduced above are direct sub types of the base type T.

Deduction System Dagpap:.

kL() cong(n) H m E.( kL(),cons(n), H,m)
E.( kL(),cong(n), H,m) cong(n)

E.( kL(),cons(n), H,m) E.(kL(),cong(n), H,m)
H m

5. Implementation

We now define a concrete implementation Zapap = (Magap, []agap,lenagap,openagap,validagap) for
authenticated encryption schemes with associated data. The implementation uses some DAE-N secure authenticated
secret key encryption scheme Ilpapny = (DAEN.Gen, DAEN.Enc, DAEN.Dec). llpagpn additionally is collision
free by construction since a collision would break the authenticity of the encryption scheme. We fix a set of bitstrings
S’ < {0,1}*, which we will later require to correspond to a specified set of terms used to derive IVs. We also fix
an arbitrary injective and efficiently computable function ¢ : S’ — [r¥gapl- We can now define the model and
implementation as follows:

Turing machine M4 p4p. Now we will give the computational interpretations of the function symbols defined in [D}
e (MargaD kmg(r): Let k := DAEN.Gen(1",r).
Return <k, 3% 4p)
« (Magap con)(n): Return {¢(n), Thgap)
o (MapapEy)(k,#', H,m): Parse k as (kymh% 1 ).
Parse 7 as {0/, Thgap)-
Let ¢ := DAEN.Enci(n', H,m) '
Let H := (H,T) Return {c, 7/, H, k, Tﬁlg}fg
are the computational interpretations of k,, con and E,, respectively.

The mapping function [-]4gap. The mapping function [-Jagap : T — 2{0.1}* is a function which maps each type
T €T to a set of bitstrings. [-]agap should fulfill all conditions stated i_n Namely, we demand from our concrete
implementation that [T] = {0,1}* and for each 2 € {75 , 1, 7% o ap, To by} that [z] = {0,1}7. Further, we demand
that for all z,y € {75z, 77001, ToPRY [2] A [y] = &.

The length function len 4 4p. The function lensgap : Terms — N computes the length of a term if interpreted as a
bitstring, in other words lenapap(f'(t1,t2,....tn)) := [(Magapf)(c1,Ca, ..., cn; 7)|. The length regularity of lenapap
(and therefore of our implementation) follows directly from the construction of AEAD schemes.

The interpretation function open 4z 4. The open function for AEAD is defined as follows:

Listing 7: openspap

openspap(c, L)
if ¢ EHEEAD]]AEAD N dom(L) then
return (c, L(c))
else if ¢ = (k,74%,,> then



return (c, giiCE)ADkw)
else if ¢ = (n/,74gapy then
return (¢,TAgap)
else if ¢ = (¢, 752" then
extract H = (H, T) from c’
extract 7 = (n',Thgap) from c’
for each (k,k"()) € L do
parse k as <k7rf§'§AD>
let m := DAEN.Dec(k, n', H, c¢’)
if m &+ 1L then
return (c, EX9(k, A, H, m))
1
return (¢, g% iner)
else
l(c)
return (c,g77)

open 4 g ap returns (c, ng(C)) for any foreign bitstring and its behavior is in all cases independent on any foreign bitstring
in the library. Since open 4 p therefore fulfills the conditions of Definition [5} our implementation is fype safe.

The validspap predicate. The validagap predicate is dependent on a set of terms S that specifies which terms
can be turned into IVs by ¢. As the IV space is typically finite (e.g. for GCM mode), and ¢ is injective, S needs to be
restricted, too. Our result is parametric in S, S’ and . We may define S as a subset of the set of terms that is defined
by composition, e.g., to derive S from a transparent model. We therefore fix some model M = (7, <,3, D) and its
deduction sound implementation Z to compose with, such that M and Z are composable with Msgap and Zagap
regarding the requirements from Section We then choose S < Terms(X U Xagap, T U Tapap, < U <AEAD)
such that any bitstring representation for any term ¢ € S is in S’.

Formally, for any A and any a parameterized transparent symbolic model M,.q,,(v) with a corresponding parame-
terized implementation Z,q,, (v/) such that My,q, (V) and Zypqn (V) are composable with M U Magap and ZUZapap
regarding the requirements from Section for v being send by the adversary A, we require that for the library L at
any moment in any instance of the deduction soundness game

DS(MuMAEAD)Uthn(V)7(IUZAEAD)Uszn (v) (77)

it holds that Vs'.L[s'] € S < s’ € 5.
For an appropriately chosen S, we can now define validsg4p as follows:
1) We demand that the trace T starts with exactly one init query ”init T, H” where at least one of them could be
an empty list.
2) The adversary is not allowed to use F, in the the init query.
3) i) For the query ”init T, H” it should hold that:
+ the function symbol k.. should only occur in a term k'() € T.
+ the function symbol kj, should only occur in a term k! () € H.
ii) For each label [ of k., I should be unique in T U H.
iii) Whenever k! () occurs in a generate query, k. () must have occurred in the init query before.
iv) Except generation, k. () should only occur in E, as its first argument.
This rules guarantee that all keys are generated in the init query.
4) No tuple of (cong(n),H,m) occurs twice in some trace T. In other words, we demand that for every term
E.(kL(),cons(n), Hym) (cong(n), H,m) is different in each “init T, H”, “generate t” or “sgenerate t”
queries. (For all terms E, (kL (), cong(n), H,m), E.(kL(),cons(n’), H',m') € T it has to hold that

(cong(n), H,m) % (cong(n'), H',m’).

5) For each term cong(n), n € S.
These rules guarantee that all keys which may be used by the adversary are generated in the init query. They also
guarantee that the adversary has to decide which keys are corrupted and which keys are honest during initialization,
because we only allow static corruption of keys. Furthermore, to prevent key cycles, keys are only allowed to be used
for encryption and decryption. At last, the rules guarantee the freshness of the used nonces.
For all parse and generate requests of the adversary on the trace T all validagap conditions must be fulfilled.

6. AEAD composability

In this section we will finally prove AEAD schemes to be composable with the deduction soundness framework.
Like Bohl, Cortier, and Warinschi [9], we will proof the composability of AEAD schemes similar to the already existing
proofs of e.g. public key encryption schemes, by using different games, which we show to be indistinguishable from
each other. In other words we will show an implementation of an AEAD scheme to be deduction sound in respect to
its symbolic model. This is concretized in the following theorem.



Theorem 1. Let M be a symbolic model and T its corresponding, deduction sound implementation. If M and T are
composable with M asgap and Tapap regarding the requirements from section and if the encryption scheme is
DAE-N secure, then T U Zpgap is a deduction sound implementation of M U M agap.

Proof. Let A be ap.p.t. adversary and let My,..,,() be a parameterized transparent symbolic model with a corresponding
parameterized implementation Z;;..,, (v). Furthermore, let M., (v) and Zy;.q,, (1) be composable with M U Magap
and Z U Z4pap regarding the requirements from for v being send by the adversary A.
We have to show that the success probability of A winning the deduction soundness game

DS (MOMapan)oMiran (), (ToTapap) T (v) (1) is negligible.
Intuition:
A wins the deduction soundness game if A can provide a bitstring which corresponds to a term t for which it holds that
A cannot deduce t from the previously generated terms, i.e. A does not “know” ¢ symbolically. Only one opportunity
to achieve this is added by adding AEAD.
Proof strategy intuition:
First we show that an adversary cannot find any collision to break the game. In the next step we replace honest
encryptions by random bitstrings. Using the fact that the scheme is DAE-N secure, an adversary cannot learn anything
about the original message except its length. In the third step we add another deduction rule to give the adversary the
opportunity to create honest encryption of chosen messages. If the adversary would note a difference between this two
steps it would break the authentication of cyphertexts, but this could only happen with negligible probability. In the
last step we show that the encryption can be simulated with parameterized transparent functions. So if an adversary
would come up with a non-DY term this would lead to a non-DY request in the DS game of M and Z. But this would
contradict our assumption of Z being a deduction sound implementation of M.

6.1. Game 0. In this game, adversary A plays the original deduction soundness game from
DS(MUMAEAD)UMn~an(V)7(IUZAEAD)Uszn(V) (n)

6.2. Game 1. In this game we replace the generate function in the deduction soundness game by the collision aware
generate function [8] If A could distinguish between Game 0 and Game 1, this could be used to break the encryption
scheme.

Listing 8: generate’
generate’ ; »(t, L):
if for some cedom(L) we have L[c] ==t then
return (c, L)
else
for ie{l,..,n} do
let (ci,L):= generatey, (ti, L)
let r:=R(t)
let c:=(Mf)(c1,...,cn;T)
let L(c):= fYa1,...,an))(l € labesH)
return (c, L)

6.3. Claim: Game 0 and Game 1 are indistinguishable.. Since Z UZ;,..,,(v) is a collision-free implementation the only
possibility for the adversary to find collisions is in Z4 g 4p. This on the other hand would only happen if the probability
of DAEN.Enc(k,n,H,m) = DAEN.Enc(k,n', H ;m') with (n, H,m) % (n’, H',m’) is non-negligible. This would
contradict the DAE-N security of AEAD, more concretely, this would break the authentication of the scheme. Knowing
that (Z U Zagap) U Ziran(v) is a collision-free implementation Game 0 and Game 1 are indistinguishable by

6.4. Game 2. In this game we make a few changes with respect to Game 1 concerning the possibilities of the adversary.
We take his option of learning something from cyphertexts or about honest keys, by replacing the cyphertexts created
under honest keys by random bitstrings. We abstract from just using random bitstrings by using encryptions of random
bitstrings under the same keys (because the adversary still needs the possibility to retrieve the nonce and the header)
and also replace all honest keys in the library by random bitstrings with the same length as the keys. Because of the
properties of the DAE-N secure scheme, A should not notice any difference between Game 1 and Game 2.
Concretely, we make the following changes:
1) Replace cyphertexts created under honest keys by encryptions of random bitstrings
In the generate (and generate’) function we insert
if t == Ey (k. (), cons(n), H,m) then
let ' := R(cq)
let c:= (M Ep)(c1,c2,c3,77)
else
let c:= (M f)(c1y.oycnsm)
end if



6.5.

instead of the original line

let c:= (M f)(c1y.cyn;r)
c; resembles the bitstring of the key, co resembles the bitstring of the nonce, c3 resembles the bitstring of the
header and ¢4 resembles the bitstring of the message. With R(c4) we create a random value with the same length
as cy. If the term t represents an encryption under an honest key the corresponding bitstring is generated as usual
(by generating all the subterms first) replace ¢, with a random bitstring of length |c,|, otherwise the generation of
bitstrings works like in Game 1.
Replace honest keys in the library by random bitstrings

If a honest key should be generated, instead of calling (M agap kp)(r), we pick a random r & {0, 1}" of length 7.

Then we normally generate the key k & DAEN.Gen(1", r). Then we generate a second random value & {0, 1}"“‘
with the same length as the key. We then use k := (’, 7%=, , ) as the corresponding bitstring for &y () and remember
k as the true key. The parse function is the rewritten such that the remembered key for is used instead of the random
value in the library.

Claim: Game 1 and Game 2 are indistinguishable.. Intuition:

To show that Game 1 and Game 2 are indistinguishable, we use reduction, i.e. we show that if an adversary A

can distinguish Game 1 from Game 2, we could use A to construct an adversary B which could win the oracle-based
DAE-N game with non-negligible probability.

So we first show how we would construct B from A, i.e we show how B generates and parses bitstrings. Then we

analyze our construction and show indistinguishability between the two games:

1)

How to generate bitstrings.
First, for each key generation request for honest keys (for all ”generate kjﬁl” queries), B does not call the generate
function, but instead request a new oracle from the DAE-N game and hence receives a new encryption and a
corresponding decryption oracle OF™¢ and OP¢¢ (which encrypt and decrypt the given message if b == 1 or
encrypt an random bitstring and return always | for unknown queries otherwise). Furthermore, B picks a random
bitstring &’ in a way such that k := (&', 75, o> € [th"  J]apap and then adds (k, k% () to L (A is not able to
learn the value of k& what is required in the implementation [E).
All other ”generate t” queries are handled as before (by calling the generate function).
To use the encryption oracle O™ to get honest encryptions, we need to change the generate function in the
following way:
In the generate function
if t == Ej, (K} (), cons(n), H,m) then
let ¢ := {OF"(c2,¢3, c4), ¢y, TGEIT)
else
let c:= (M f)(c1y.oyCnsm)
end if
is inserted instead of the original line
let c:= (M f)(e1,..oycn;r)
c1 resembles the bitstring of the key used by the oracle, co resembles the bitstring of the nonce, c3 resembles the
bitstring of the header and ¢4 resembles the bitstring of the message. ¢} resembles the bitstring of the the random
value which was picked by B instead of the original key (which is unknown to B)
This change produces encryptions like in Game 1 if b == 1 (if the oracle produces encryption of the message)
and produces encryptions like in Game 2 otherwise (The oracle produces encryptions of a random string).
How to parse bitstrings.
For B to be able to deal with adversarial encryption under honest keys, the open 4z 4p function has to be modified.
Concretely, the open 4 4p function
if (k. 7505), k() € L then
let m := OP*¢(cons(n), H,c')
else .
parse k as (k, 5%, 0%
let m := DAEN.Dec(k,cong(n), H,c)
end if
is inserted instead of the original line
parse k as (k,7hs, 0%
let m := DAEN.Dec(k,cong(n), H,c)
So B simply uses the decryption oracle in the simulation instead of the key to decrypt (For DAEN secure schemes
this should be same concerning decryption).
Further observation:
— Using the open g 4p function, any adversary A that learns the bitstring representation of an honest key (with
non-negligible probability) is able to win the DAE-N game with non-negligible probability:



If open g 4p is called with input ¢ € [75% , JJapap ( L[] = (k, 755, p) ), B will parse ¢ as (k, 755, ),

pick a random message m & {0,1}" and compute « := DAEN.Dec(k, cong(n), H,O5*(cong(n), H,m)). If
x is the message (r == m), B knows that real encryption/decryption is used and sends ’guess 1” to the DAE-N
game. This leads B to win the DAE-N game with overwhelming probability.

— At this point, we require 4) of the validsgap predicate to hold. If this would not be the case, an adversary A
could trivially win the oracle based DAE-N game by querying the same pair of IV, header and message twice.
Since encryption is deterministic, the same oracle would produce the same cyphertext in both queries if its a
real oracle and different cyphertexts in the other case.

3) Analysis and conclusion

We can split the analysis in two cases: The oracle produces real encryptions i) or the oracle encrypts random

bitstrings ii):

i) The oracle produces real encryptions:
= B simulates Game 1 for A despite having random values instead of the honest keys in the library L.

A can only detect a difference if
# A guesses one of the random bitstrings, or
* parses a bitstring belonging to a key of Game 1.
The first case can only happen with negligible probability depending on 7, while the second case would lead to
B winning the DAE-N game with overwhelming probability as described in the parsing paragraph above.
= If the oracle produces real encryptions, A cannot distinguish the simulation.
ii) The oracle produces “fake” encryptions:
B simulates Game 2 for A perfectly, meaning every correct guess of A in distinguishing the two games leads
to B winning the DAE-N game.

So we see that every correct guess of A in distinguishing Game 1 from Game 2 leads to B guessing correct in the

DAE-N game. But because of the scheme being DAE-N secure this can only happen with negligible probability

= A cannot distinguish Game 1 from Game 2.

6.6. Game 3. In this game we also add another deduction rule to our deduction system to allow the adversary to get
encryptions of chosen messages under honest keys. We add

cong(n) Hm
En (k! (), cong(n), h,m)

to the deduction system. Additionally, we define |- as the deduction relation of Game 2, where the relation is based
on the deduction system Dy = D U Dggap U Dyyqrn. Further we define 3 as the deduction relation of Game 3, where
the relation is based on deduction system D3 (Which is the same as D, despite the rule that was added above).

The idea behind this game is to use the authenticity of the encryption scheme. We show that an adversary which can
distinguish between Game 2 and Game 3 could be used to break authentication (A could forge a cyphertext).

6.7. Claim: Game 2 and Game 3 are indistinguishable. Intuition:

The idea behind this proof is to show that an adversary A that can craft a bitstring ¢, which can be parsed to a term t

for which it holds that S £o t (¢ is a non-DY term in Game 2) and S 3 t (¢ is a DY term in Game 3), can be used

to construct a second adversary B which plays the DAE-N game. We first (1) show how to construct B and how B

simulates A and then (2) show how B can win the DAE-N game using A

(1) Construction of B:

B simulates Game 2 for A in a completely analogous way as in the proof above. Concretely, the way the init
requests are handled is perfectly analogous as well as the way the generate and open 454 p functions are altered.
The simulation from the proof above perfectly simulates Game 2, which means that adversary A should not notice
any difference.

(2) In the case in which A sends a “parse ¢” query to B such that ¢ can be parsed to a term ¢ (¢t := L[c]) and ¢
is non-DY in Game 2 (S /5 t) and DY in Game 3 (S |3 t) , we claim that ¢ must contain a forged encryption
under an honest key, i.e., a term t; = Ej,(kl (), cong(n), H,m) such that t € st(t) but t ¢ st(S).

For contradiction, we assume ¢ does not contain a forgery under an honest key and further let m be a proof for
S 3 t. By this assumption we can, first, remove all instantiations of the deduction rules

k() cong(n) Hm
Eh(kﬁl(), cong(n), h,m)’

from our proof m, as A should not know any honest key due to the static corruption requirement. Second, all
instances of the deduction rule

cong(n) Hm
En (KL (), cong(n), h,m)




can be removed, as they directly produce a forgery in the above sense. These removals would give us a new proof
7’ which should be the same by our assumption (7’ is a proof for S 3 t). But 7’ is also a proof for S 3 ¢,
because the only differences in the two deduction relations are the instantiations of the deduction rule

cong(n) H m
Eh(kﬁb(), cong(n), h,m)

which are not part of 7. This on the other hand contradicts our initial assumption.
Hence,t must contain a forged encryption
Since ¢ can be parsed, the library L contains ¢ and all of the corresponding bitstrings to its subterms. If at some
point in time A generates an honest encryption, A must have guessed the random bitstring &’ (corresponding to
the key k) which was never used to generate/compute a bitstring sent to A before. Hence, this can only happen
with negligible probability.
This means A can create a forgery of encryption without knowing the bitstring of the key with overwhelming
probability. B then could use this forgery and send it to its decryption oracle. If the oracle returns | it means that
the oracle must be fake (because a valid encryption should be decrypted to a message & | ) and B then sends
a “guess 07 query to the DAE-N game instance and “guess 1”7 otherwise. In this case B wins the DAE-N game
with overwhelming probability.
Due to our scheme being DAE-N secure, the probability of crafting a valid forgery should be negligible. Because the
only possibility to distinguish Game 2 and Game 3 is to craft a bitstring ¢ which then is parsed to a term ¢ with S (/5 ¢
and S 3 ¢t (Because the only difference in Game 2 and Game 3 is the deduction system/relation), it also holds that
both games are indistinguishable.

6.8. Game 4. Intuition:
In this game a new adversary B plays the deduction soundness game for M and Z and simulates Game 3 for A
by adding transparent functions to simulate authenticated encryption with associated data.
We first define a transparent symbolic model for authenticated encryption with associated data. Second we show
how to convert terms used in M 4 4p and map them to their corresponding terms in the transparent symbolic model.
Transparent symbolic model for authenticated encryption with associated data
For M%4m - (v) we will use the same typeset and the same subtype relation as for M 44 p. The deduction system
of MYar S(v) is the same as in We further describe the signature X"  in the following:
o deterministic fi ()
ar(fre () = Tﬁ%AD for all labels l e v .
o deterministic feopg(n)
ar(feons(n)) = TApap for all n e S.
o deterministic feong(.)
ar(fcons(-)) =T — TZE’AD'
o deterministic fEh(kil(),COTls(n),H,T)
ar(f g, (k! (),cons (n),H,r) = 7$PheT for all labels [ € v , n € S and r representing a random bitstring.
« deterministic fEh(k;I (),cong(n),,) '
ar(f g, (k1 ) cons(m),)) = 1 % T = TSP for all labels [ € v and n € S.
o deterministic fp,_(xi(),cons(n),-") _
ar(fp, (kL (),cons(n),)) = 1 X T — Tffg};fg for all labels [ € v and n € S.
where v is an encoded triple (I, k, k') with [ € labels, k being a symmetric key and &’ being a value representing honest
keys in the library.
Now we specify the corresponding transparent implementation Z%&% , (). We use the bitstring mapping and the length
function of Zy g4 p. We also take the open function and the valid predicate from@ We now define the Turing machine
MY 5 p for THEhp(v):
o MYE fro o)) returns <K, The )
o« MUY feon s(n))(@) Teturns (', TR o4 p)
o MYEUD feons()@) returns Mapap cong)(n, T))
o (M FBn (kL (cons (n), ,))(@) Teturns Mapap Ep)(E, The apos (0, T pap)s H, 1) where r has the length of
the bitstring corresponding to m.
o MAEUD [B, (kL (),cons (n),.))H, m, 1) returns Magap En)k, i3 apys (W, Thpap). Hy m)
o MUY D fE.(kL0),cons(n),--))(H, m, 1) returns (Magap E)(k, Thn apds (0 T papys Hy, m)
Now we define the mode of operation func as follows:

(M4E%Ap func)(b):

if b == (K,7hz ,,> for some (I, k,k') ev then
return fké()
if b == (0, 74gapy then

return feong()



. iph
if b eryB)F then
cipher

parse b as {¢, T bAD
get nonce n’ and header h’ from c
for each (I,k,k') ev do
let m := AEAD.DEC(k, n’, H’, ¢)
if m £ 1 then
if | belongs to an honest key then
return fp, (k ().cons(n). )
else
return fo,(kLo.cons(n). )
return L

The mode of operation proj shall be defined as in [B.3]
Converting terms:
The adversary A uses function symbols f € X sgap, so B has to map those function symbols to the corresponding
function symbols of X" . To achieve this we define a function convert as follows:
o convert(fi(ty,....t,)) = f'(convert(ty), ..., convert(t,))
for all f¢ Xtan .
o convert(k()) = Tre ()
. tconvert(Eh(k:ﬁL(),cong(n),H, m)) = fg:;}%)(),cons(n)ylim)
0 m.
o convert(Ey (k! (), cons(n), Hym)) = fEh(kzh()7cons(n)7.,,)(convert(H))(convert(m))
o convert(E.(kL(),cong(n), H,m)) = FE.(kL(),cons (n),,-) (convert(H))(convert(m))
Further we define that for a list of terms 7" convert(T) = {convert(t) : t € T'}.
Simulation:
As already stated above, B simulates Game 3 for A while playing the deduction soundness game
DS Mo (MEan (1) 0 Myran (V) ZO(ZER (1) OTran (v)) (1) Because of MYE (1) and Mypqn (V') being both pa-
rameterized transparent symbolic models we could compose them to one parameterized transparent symbolic model by
definition M, (v|v') since both v and / must be good. This also holds for the implementation analogously. We do
not combine them though for readability but we use it in the proof later on.
In the following we describe how the queries sent by A are handled by B:
e init
Initially, v = . At first A sends T, H” to B and starts to fill v; for each k. () € T B generates a key k &
DAEN.Gen(1", ) with r <~ {0,1}". After this, B adds (I, k, k') to v where k' is k if x = ¢ and k' < {0, 1}I¥I
otherwise.
B then sends v|v’ to its game and queries “init convert(T), convert(H)”. After that, B also queries “sgenerate
k! ()” for each k} () e T.
« generate
For each “generate t” request by A, B adds this request to T and also sends “generate t” to its own game. The
response is then send to A again.
For each subterm ' of ¢t where t' = Ej, (k! (), cong(n), H,m) is an honest encryption B also queries “sgenerate
convert(m)”
The same strategy is used for “sgenerate t” queries.
« parse
For each “parse ¢” request by A, B sends “parse ¢” to its own game and receives a term t’. B then converts ¢/
to t (t = convert=1(t')) and sends ¢ back to A.

where r has the length of the bitstring corresponding

6.9. Claim: Game 3 and Game 4 are indistinguishable.. Intuition:

We now show that the simulation by B of Game 3 is indistinguishable for A from the original game. We will do this in

two steps: We first show that (1) every valid trace produced by A (in Game 3) leads to a valid trace by B (in Game 4)

and call them corresponding traces. Then we show that for all pairs of corresponding traces (2) the output is the same

for Game 3 and Game 4. We achieve this using invariants that hold for a relation between the libraries of both games.

(1) We first show that any trace T4 produced by A in Game 3 leads to a trace Tp produced in Game 4 with
valid(T 4) = valid(T ). We do this in two steps: The application of the convert function is a variation described
in requirement i) of the valid predicates. Further, the additional ”sgenerate ¢” queries are a variation described in
the valid predicates. Thus, we see that both variation still lead to a valid trace and we see for any term ¢ meeting
the requirements of the generate function in Game 3, convert(t) meets the requirements in the

DS MM a7 1 (1) 0 Miran (V) TO@T4 8% 1 () U ran (v)) (1)

game.
(2) Defining the invariants:
After showing the existence of the corresponding traces, we now have to show that the output of Game 3 and the



simulation is the same. We start doing so by defining an invariant.
We assume that the same random coins are used for Game 3 and the simulation. We can do this w.l.0o.g. by
observing that B and A are using the same amount of randomness to generate keys and that all other uses of
random coins coincide. With this we can now define the two invariants:
i) dom(Lpig) = dom(Lsmaur)

ii) Ve € dom(Lsman) : convert ™ (Lsmaulcl) = Lyig[c]
where Ly is the library in Game 2 and Lgy,,q the library in the simulation.

We now show that the invariants hold for all distinct queries done in both games:

« Initially
Initially, Lyig = Lsmau = & so both invariants hold obviously.

o init T, H
We can divide t € T' U H into three types according to the valid4gap requirements 2 and 3:
-t =k, () (convert(t) = fri )
- t = cong(n) (convert(t) = feons()
— t does not contain any function symbol f € X agap (convert(t) = t)
We see that for all nonces ¢ = consg(n) that are generated in the big game, B adds convert(t) to its init request
which leads to both invariants being fulfilled. We also observe that for each term ¢ = k! () in the big game, B
adds convert(t) to its init request. Doing so leads to

dom(Lyig\{(c, kL) : c € [7hh 4ol 1 € labelsHY}) = dom(Lsman)

because both generated keys coincide but in the small game the key is not added to the library. The invariants still
hold because in the small game , B uses sgenerate queries to add the fake keys corresponding to the real keys
to the library.
Thus, for the init query both invariants hold.

« generate ¢
Assuming our invariants hold for both libraries Ly;q and Lgy,q1, we now show that they still hold after a valid
“generate t” query by A.
In the big game we have that

(Cbig Lgig) := generateyy,,, r(t, Lyig)

while we have

(Csmatty Lsman) := generateny.,, .., = (convert(t), Lsmai)

in the small game. Note that there might be additional generatey,
under honest keys.
Again with a case distinction over ¢ we show that our invariants still hold.

— Myig and My,q are never called for k, and the transparent version of k;, respectively (according to requirement
2 of the validsgap predicates). Therefore, both invariants hold for this case.
— For a term ¢t = Ey, (k! (), cons(n), H,r) being an honest encryption, we would call
(cbig, Ly;y) 1= generateyy, (L, Luig)
in the big game whereas we would call
(csmatts Lypman) = generateMs,,,m”,R(fEh(k;(),cons(n),H,r) (k},)(cons(n))(H)(m), Lsman)
and (Csmait, Lyqy) = generatey, o (m, Lsman
in the small game. Since both resulting bitstrings coincide, both invariants also hold in this case.
— For all other terms ¢ all keys that are already in library are removed from ¢ by applying the convert function
on t but no other changes are done, hence both generated bitstrings coincide. Concluding, both invariants hold.

This works analogously for ”sgenerate ¢ queries.
So we see that our invariants hold for Lj; and L, ;.
i.e. the same response in both settings.

« parse c
Assuming our invariants hold for both libraries Ly;; and L4, we now show that they still hold after a valid
“parse ¢’ query by A. We can show this by observing the cases of c:
If ¢ € dom(Ls;gy) there are no changes in L and due to the invariant i¢) the response will be the same in both
games.
The other case, where ¢ ¢ dom(Ly;y) (meaning if we have to parse an unknown bitstring) can be reduced to
observing the open functionality in respect to [Tagap], because both implementations should be type-safe (so we
do not need to care about foreign bitstrings). Thus, because both open functions handle those queries the same
way (Concretely, they only handle them the same way by applying conversion) our invariants still hold.

w calls if ¢ contains honest encryptions

smalls

implying that the response sent to A is ¢ = cpig = Csmalls



6.10. Claim: If A wins, then B wins Game 4..
1) We first showed that playing the original deduction soundness game

DS(M UMapap)UMiran(V),(ZUZagap)Ultran (V) (77)

from Game 0 is indistinguishable to Game 3.

2) In the last proof we have shown that Game 3 and Game 4 are indistinguishable, meaning due to the invariants
from above, we know that for every bitstring sent by A, c is parsed as ¢ in the big game and hence parsed as
convert(t) in the small game. This shows, by checking both deduction systems, that if ¢ is non-DY convert(t) is
also non-DY. This would be a contradiction to Z being a deduction sound implementation of M
Therefore, A can win Game 3 only with negligible probability.

Taking 1) and 2) into account we see that A can win Game 0 only with negligible probability which concludes our
proof. O

7. Forgetfulness

The drawback of the Theorem |l| and the theorems proven by Bohl, Cortier, and Warinschi [9]] lies in the valid
predicates, which forbids that keys are used in non-key positions; this means that keys cannot be sent around, i.e. key
wrapping is forbidden by validsgap.

Because deduction soundness does not guarantee that no information about non-DY terms, e.g. a few bits of an
used nonce, is leaked by the implementation, Bohl, Cortier, and Warinschi [9] introduced forgetful symbolic models
and implementations. Intuitively, we mark positions in the forgetful symbolic model as forgetful and the forgetful
implementation guarantees that no information about arguments, except their length, at those forgetful positions is
leaked to the outside.

For this paper to be self-contained, we will first recall the definitions by Bohl et al. Afterwards, we extend our
contribution by also showing forgetfulness for (deterministic) AEAD, which puts a large class of protocols (protocols
using key wrapping, key exchange protocols) in the scope of our result.

7.1. Review: preliminaries. In this section, we will simply adopt all the needed preliminaries and in the following
section the definitions concerning forgetfulness from Bohl, Cortier, and Warinschi [9]]. Bohl er al.extend the previous
setting as follows.
o Changed hybrid terms for function symbols with forgetful arguments.
Let f be a function symbol f € ¥ with arity ar(f) = 7 x ... x 7, — 7. Let f(a1,...,a,) be the corresponding
hybrid term where each a; is either a bitstring with a; € [;] as usual or a term with type(a;) = 7; for the forgetful
position 4. The definition of completeness of a library as well as the definition of L[c] has to be changed to adapt
to the change above.
o New valid requirements
We introduce a new signature X.,4;;¢4 Which features function symbols with forgetful position. We change the valid
requirements, such that they use 3,454 in the following way:
(1) If valid(T +g) = true then for any variation § of g, which we define explicitly below, it holds that valid(T + §)
= true.
If ¢ = “generate t” and § = “generate t”:
Here, a variation ¢ of ¢ is defined as follows: Any subterm fY(t1,...,t,) of t where f is a foreign function
symbol, i.e. f ¢ ¥ U X, 414, can be replaced by fl (t1,...,t,) where f is another foreign function symbol and
for all i € {1,...,n} #; is either ¢; for some j € {1,...,n} (where each t; can only be used once) or ¢; does not
contain any function symbols from X U ¥,,41;4. As a special case, if for example f is “empty”, we may replace
fH(t1, ..., t,) with a term #;.
If ¢ = 7init T,H” and ¢ = "init T,f[”:
T = (t1,...,t,) and T = ({1, ...,%,) where for each i € {1,...,n} t; is a variation of ¢;; and H = (hy,..., hy,)
and H = (iLl, ...,ilm) where for each i € {1,...,m} h; is a variation of h;.
(#4) If valid(T + ¢) = true and t is a term which occurs in ¢, then valid(T+ “sgenerate ") = true for any ¢’
being a subterm of ¢ and ¢’ not being a subterm of a forgetful position.
(7i7) The evaluation of valid(T) can be done in polynomial time (in the length of trace T).

7.2. Review: Forgetful symbolic models and implementations. We call a symbolic model M a forgetful symbolic
model if there are function symbols with forgetful positions, i.e. if there are arguments of a function symbol which
are marked as forgetful. To define the corresponding forgetful implementation we need to introduce the oblivious
implementation, which is defined like the implementation seen in Section [B.2] but for all forgetful positions, the inputs
are natural numbers instead of bitstrings. More precisely, the input will be the length of the actual input of the forgetful
position.

Definition 10 (Oblivious implementation). Let M be a forgetful symbolic model. T = (M, [-],len, open, valid) is an
oblivious implementation of M if T is an implementation of M with a slightly changed signature: For each function



symbol f € ¥ with arity ar(f) = 71 X ... X T, — T the signature of (M f) is 0(11) x ... x 0(1,,) x {0,1}" — [7] where
0(;) = N if the ith argument of f is forgetful and [r;] otherwise.
Review of Definition 8 by Bohl, Cortier, and Warinschi [|9]

Let generate’’N be a generate function that also deals with forgetful arguments in the following way (Review
of Figure 14 by Bohl, Cortier, and Warinschi [9]):

Listing 9: generate ™V

generate%{%(t, L):
if for some cedom(L) we have L[c] ==t then
return c
else
for i€ {l,...,n} do
if 2 is a forgetful argument then
let ¢ :=len(t;)

let a; = ti
else
let (ci, L) := generatey, (i, L)
let a; ‘= ti
let r:=R(t)
let c:=(Mf)(c1,...,cn;T)
let L(c):= fYa1,...,an))(l € labesH)
return (c, L)

Let FIN?M ()T Z() (1) be a game in which an adversary tries to distinguish if he interacts with a real implementation
7 and an oblivious implementation T (Review of Figure 15 by Bohl, Cortier, and Warinschi [9]):

Listing 10: FIN game
FINZ;\A(V),I(D),T(U),A (m):
Let S := &
Let L %)
Lat T :=
R « {0,1}*

if b == @ then

let generate := generate
else

let generate := generate, r

FIN

M,R

Receive parameter v from A

on request "init T,H" do
add "init T" to T
if valid(T) then
let § := SuT
let C := g
for each teT do
let (e,L) := generate(t, L)
let C := Cu{c
for each te H do
let (¢, L) := generate(t, L)
send C' to A
else
return @ (A is invalid)

on request "sgenerate t" do
if valid(T + ”sgenerate t”) then
let (¢, L) := generate(t, L)

on request "generate t" do

add "generate t" to T

if valid(T) then
let S := Su{t}
let (¢, L) := generate(t, L)
send ¢ to A

else
return @ (A is invalid)

on request "parse ¢" do



let (t,L) := parse(c, L)
if Skpt then
send t to A
else
return 1 (A produced a non-DY term)

on request "guess b'" do
if ¥ ==b then
return 1 (A wins)
else
return @ (A loses)

where S is the set of requested terms, L is the library, T the trace of queries, R the random tape and C' the list of
replies.

Definition 11. (Forgetful Implementation). We say that an implementation T = (M, [-],len, open, valid) is a forgetful
implementation of a forgetful symbolic model M if there is an oblivious implementation T = (M, [-],len, open, valid)
such that for all parameterized transparent symbolic models My, (V) and for all parameterized implementations
Liran (V) of Miran(v) that are compatible with (M, T) we have that

)
PT[FIN(MUMtran;IUItmnufUZt'ranyA(n) - 1]
1 —
“PIIFIN (s 20T ToTiran, AU = 1

is negligible for every p.p.t. adversary A.

(Review of Definition 9 by Bohl, Cortier, and Warinschi [|9]])

Thus we see that an forgetful implementation T as defined _in Definition [[1] is an implementation that is indistin-
guishable from an oblivious implementation T (see Definition of a forgetful symbolic model M.

Lemma 4. Let M be a forgetful symbolic model, T be an forgetful implementation of M and T a corresponding
oblivious implementation. If T is deduction sound, then 1 is deduction sound with respect to the deduction soundness
game DS’ that uses generatef VNV instead of generate.

(Review of Lemma 5 by Bohl, Cortier, and Warinschi [|9])

7.3. Solving the key wrapping problem. We now will extend our model (and its corresponding implementation) from
Section [D] (and Section [E)) in a way, s.t. we allow to send keys around. Therefore we have to change validagap to
depend on X4 (See . Additionally, we replace requirement 3) of the validspap predicate with

3) i) For the query ”init T, H” it should hold that:

+ the function symbol k.. should only occur in a term k'() € T.
+ the function symbol kj, should only occur in a term k! () € H.

ii) For each label [ of k., [ should be unique in T U H.
iii) We demand that every time k. () occurs in a generate query, k. () must have occurred in the init query before.
iv) Except generation, k. () should only occur in E, as its first argument or as a sub term of f in a forgetful position
with f € Yvalid-
Further, we extend Zagap t0 Zapap[Xvaiia], an implementation featuring forgetful positions. Note that ¥,,,;;4 needs
to be fixed at the time of composition.
Further note that if we, i.e. want to send AEAD keys around using authenticated encryption, we need to compose
(Magap, Zagap) With My paps ZhpaplEarap]) where
1) Muagap, Zagpap) are forgetful regarding the message position of the encryption function symbol F,,
2) Yapap the signature of Mgap and X'y 54 p of Mypap
3) and the valid predicate of Zyg4p does not depend on function symbols of X'y 4 -
Intuitively, the third point prevents key cycles by stating that dependencies in the valid predicates can only be one-
directed, allowing E, to have key symbols of M’ 4, in its fourth position, but forbids that key symbols of M spap
can occur at a non key position of E’. We will generalize the composition to allow key wrapping of AEAD keys in
Theorem [2] and show that we can use authenticated encryption to wrap keys in Theorem
Bohl, Cortier, and Warinschi [9] already proved forgetfulness of public key encryption and secret key encryption in
respect to the message position as a forgetful position. Now we want to show that we can send AEAD keys (and also
other bitstrings produced by Z4r4p) using such forgetful implementations. This idea is concretized in Theorem

Theorem 2. Let 7 be a deduction sound forgetful implementation of the forgetful symbolic model M and let Typap
:= Tagap|X] where X is the signature of M. If (M, I) is composable with (Magap, Zagap) and if valid (of Z)
does not depend on X agap, then T U Zapap is a deduction sound implementation of M U M agap.

Proof. Instead of the five different games used in the previous proof of Theorem |[lI} we will include another game,
so we have to show indistinguishability between six games. In this additional game we will replace the forgetful
implementation Z of the forgetful symbolic model M with its corresponding oblivious implementation Z. This gives



us an additional guarantee: If an adversary A sends the request "generate t” with honest keys at a forgetful position
of ¢t to the DS game then we know that the bitstring interpretations of those honest keys are not used to compute the
bitstring corresponding to term t.

Our strategy in proving Theorem [3] will stay the same as in the proof of Theorem [} We will describe the games and
show that they are indistinguishable from each other. For completeness we will also describe the games that do not
differ from the proof of Theorem [I}

Game 0 As in proof [I] in this game the adversary A plays the original deduction soundness game from [B.5]

DS(MUMAEAD)UMtran(V)7(IUIAEAD)UIM‘(ML(V) (77)

Game 1 In Game 1, we replace Z by the corresponding oblivious implementation 7. By Definition [3| Z must exist
and Z must also be composable with Zopap. We also replace the function generate with generate N from listing
[0 The adversary A then plays

DS(MuMAEAD)qu,mn(V),(fuIAEAD)qu,mn(l/)(n)
Claim: Game 0 and Game 1 are indistinguishable To prove that Game 0 is indistinguishable from Game 1 for
A, we first construct an adversary B who plays

FIN®

MOM g0t (V) ZOT gt (V/)’fuztran (v),A (77)

and simulates Game b for A with b € {0, 1}. B simulates Z4 g4 p using transparent functions and checks the validity of
A’s requests like it would be done in Game 1. This simulation is perfect since B uses transparent functions to simulate
Tapap and therefore knows all generated terms and does not need to hide any sub terms.

If A could distinguish between Game 0 and Game 1 and would return &’ to B (where &’ is A’s choice in distinguishing
the games), then B would simply send a “guess b'” request to its own game and win with non-negligible probability.
But, B can only win its game with negligible probability according to Definition Therefore: A can only distinguish
between Game 0 and Game 1 with negligible probability.

Game 2 In this game we replace the generate " function in the deduction soundness game by the collision aware
version (like in Game 1 from [F.2).

Claim: Game 1 and Game 2 are indistinguishable The proof of indistinguishability is completely analogous to
the proof in

Game 3 In Game 3 we make similar changes to those of Game 2 from We take the adversary’s option of
learning something from cyphertexts or about honest keys, by replacing the cyphertexts created under honest keys with
random bitstrings. We abstract from just using random bitstrings by using encryptions of random bitstrings under the
same keys (because the adversary still needs the possibility to retrieve the nonce and the header) and also replace all
honest keys in the library by random bitstrings with the same length as the keys. Because of the properties of the AEAD
secure scheme, A should not notice any difference between Game 2 and Game 3.

The concrete changes are completely analogous to those in

Claim: Game 2 and Game 3 are indistinguishable In this proof, we will use the fact that we have to deal with
T instead of Z. Z guarantees that bitstrings representing honest keys are not used to generate other terms. So if we
replace the keys with random bitstrings, the games will be indistinguishable by construction. The rest of the proof is
analogous to the proof in Section [F.3]

Game 4 In this game, we also give the adversary the possibility to produce honest encryptions of arbitrary messages.
The game is constructed like in

Claim: Game 3 and Game 4 are indistinguishable The proof of indistinguishability is analogous to the proof in
But we need to simulate Z4 g 4p using transparent functions (for the simulator B) for which we need the fact that
valid of the forgetful implementation Z does not depend on function symbols from > 4p4p (Wwhat we demand in the
valid predicate). Game 3 and Game 4 are therefore indistinguishable, too.

Game 5 Game 5 is completely analogous to Game 4 from Section We create an adversary B who plays the
deduction soundness game for M and Z and again simulates Game 4 for A by adding transparent functions to simulate
authenticated encryption with associated data.

Claim: Game 4 and Game 5 are indistinguishable We have to show that the simulation by B of Game 4 is
indistinguishable for A from the original game. This can be done in two steps analogously to proof First one shows
that every valid trace produced by A (in Game 4) leads to a valid trace by B (in Game 5) and call them corresponding
traces. Then one can show that for all pairs of corresponding traces the output is the same for Game 4 and Game 5.
Additionally we use the indistinguishability of Z from Z stated in lemma Analogously to proof Game 4 and
Game 5 are therefore indistinguishable.

Claim: If A wins, then B wins Game 5 Again, B can only win its game with negligible probability with the same
arguments as in [F.10} Therefore A can only win Game 4 with negligible probability and since Game 4 is indistinguishable
from Game 0, the same holds for the winning probability of A playing Game 0.

We can conclude that Z U Z4gap is a deduction sound implementation of M U M agap. O

Now we want to show that, if we mark the message position of encryption under AEAD as a forgetful position,
we are able to send keys around. Let M agap be a forgetful symbolic model which is based on M g4p but for



honest encryption Ej, (kL (), cong(n), H,m) m is marked as a forgetful position. If we then pick Zapap[X] as the
implementation of M 4gap the the following should hold:

Theorem 3. Let I be a deduction sound forgetful implementation of the forgetful symbolic model M and let Zapap
;= Zapap|X] where ¥ is the signature of M. If (M, 1) is composable with (M agap, Tapap), then T U Lagap is
a forgetful implementation of M U M agap.

Proof. Intuitively, we want to show that we can use encryption under AEAD to send keys around. Therefore, we have to
show that ZUZ g ap is a forgetful implementation of M UM 4z ap. Using Deﬁnition we simply have to show that
no adversary A can efficiently distinguish between Z U Zagap and T UZagap where 7 is the corresponding oblivious
implementation of Z and T apap the corresponding oblivious implementation of Z4g 4 p. For T apap we further set the
application of the oblivious Turing machine on an honest encryption function symbols (M agap Ep)(k,n', H,m Forget)
= (M apap Epn)(k,n’, H,r) with r being a random value in the size of m.

Hence, we have to show that

1 —
PT[FIN(MuﬂAEAD)UMtTan(V)v(IUIAEAD)UItT“” (V)v(TUTAEAD)UItran (I/),A <,,7) o 1]

0 —
—pr [FIN(M UMapaDp)oMiran(¥),(Z0ZapaD) 9 Ttran (V) ,(ZUTapaD) U ltran(V),A (77) B 1]

is negligible small.

We can prove that this equation holds, using an intermediate step.
Analogously to Game 1 from Theorem we first only replace Z with its corresponding oblivious implementation Z.
Since 7 is a forgetful implementation, Z must be composable with Z4gap, too. So, analogously to Game 1 we can
show that

1 -
PrIFIN R 2 5)0 Moran (00, (ZUT 454 D) UTiran (0, EST A AD) U Turan (), =11

0 —
7PT[FIN(MUWAEAD)u./\/ltmn(V),(IuIAEAD)uItmn(V),(fuIAEAD)UItmn(V)’A(n) =1]

is negligible in respect to the security parameter 7. So finally we have to show that

0 -
Pr[FIN(MuﬂAEAD)UM”an(V),(IUIAEAD)UItran(V)v(fUIAEAD)UItran(V)vA(n) - 1]

0 -
~PITFIN R4 0) 0 Moran )T TR AD) O Tiran (BT ap D) Tiran (1,4 1) = 1]

is negligible in respect to the security parameter 7, too.



In this step we simply replace Zopap Wwith its corresponding oblivious implementation Zzap and replace the
keys in the library by random bitstrings.
Since an adversary needs to break authentication of the implementation to be able to distinguish both games, what can
only happen with negligible probability since the scheme is DAE-N secure, the statement is valid.

Using both steps, we finally have shown that

1 —
PT[FIN(MUHAEAD)UMWG,W(l/)y(IUIAEAD)UItra,n(V)y(TUTAEAD)UItrarn(V)vA(n) o 1]

0 —
- PT[FIN(MUHAEAD)UMm‘an(V)7(IUIAEAD)UIM‘(ML(V)v(foAEAD)UIM‘an(V)vA(77) - 1]

< negl(n)

for some negligible function negl() and security parameter 7.
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