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Abstract. Many post-quantum cryptosystems which have been pro-
posed in the National Institute of Standards and Technology (NIST)
standardization process follow the same meta-algorithm, but in different
algebras or different encoding methods. They usually propose two con-
structions, one being weaker and the other requiring a random oracle.
We focus on the weak version of nine submissions to NIST. Submitters
claim no security when the secret key is used several times. In this pa-
per, we analyze how easy it is to run a key recovery under multiple key
reuse. We mount a classical key recovery under plaintext checking at-
tacks (i.e., with a plaintext checking oracle saying if a given ciphertext
decrypts well to a given plaintext) and a quantum key recovery under
chosen ciphertext attacks. In the latter case, we assume quantum access
to the decryption oracle.

1 Introduction

By anticipating that quantum computers will eventually compute discrete log-
arithms and integer factorization [22], all public key cryptosystems which are
being used today will break down. There is an urgent need to replace them. For
this purpose, the US National Institute of Standards and Technology (NIST)
initiated a standardization process for post-quantum algorithms. The call for
proposals expired in 2017 resulting with many submissions. Among these, only
a very few types of algorithms are proposed such as lattice-based, code-based,
hash-based, or isogeny-based. One of the most promising algorithms is lattice-
based.

Many of the lattice-based cryptosystems are inspired by the Regev cryp-
tosystem [20] such as the Lyubashevsky-Peikert-Regev cryptosystem [18]. We
can easily extract a common pattern in proposals which followed them. All pro-
posed constructions require never to reuse the secret key because of possible
attacks. In other words, the proposed cryptosystems are ephemeral in the sense
that the secret key is meant to be used only once. The approach of designers is to
start from this ephemeral construction and then to transform it into a strongly
secure (i.e. with reusable keys) key encapsulation mechanism (KEM) by using
the Fujisaki-Okamoto transformation or one of its variants [12,13,15,25]. What



transformations share in common is that they imply a computation overhead.
Concretely, after normal decryption, a re-encryption is made to check if the ci-
phertext was correctly formed. This re-encryption does not seem so useful to
non-experts. Additionally, these transformations need a random oracle which
has no practical existence.

When there is a cryptosystem which is practical but comes with a warning
and an extension which looks only motivated by academic people, we believe
that users will eventually try to use the weakly secure cryptosystems and pay
little attention to the warning, or even misunderstand the strengthened version,
just because the threat is not clear. For this reason, we should understand what
are the risks under misuse of keys.

Another observation was made by Lepoint [17]. He checked that several
implementations of the strongly secure KEM have side channels leaking the
result of the decryption under the weak cryptosystem. It comes from a mis-
implementation of the Fujisaki-Okamoto (FO) transform. In the FO transfor-
mation, the decryption is done, then the verification checks that the ciphertext
is well-formed. The result is released only if the test passes. However, Lepoint
has shown that side channels in implementations were leaking the result in any
case, no matter whether the ciphertext was well-formed or not.

In 2015, the NSA [16] reported some concerns about recurring problems with
key leakage in key agreement protocols. They suggested to explicitly check that
ciphertexts are well-formed by using the FO transform. This recommendation
was followed by designers, as mentioned above.

In 2016, Fluhrer [11] published an attack based on the key reuse. In his attack,
an adversary encrypts a message by deviating a bit from the protocol. Then, he
sends the ciphertext for decryption and checks if the decryption matches what
he expected. After a few trials, the adversary recovers the secret key. The attack
applies to all protocols using a special signaling (a.k.a. error-reconciliation) func-
tion. In 2017, Ding et al. [10] expanded this attack to a class of key agreement
protocols based on ring-LWE with signaling. Our goal is to apply the Fluhrer
attack model to more protocols and to minimize the number of key reuse to
recover the key and to be able to assess how weak those protocols are under key
reuse.

At CT-RSA’2019, Bauer et al. [5] presented an attack on the weak version
of NewHope-CPA-PKE [1]. For n = 1024, they recover the secret with high
probability using 214 queries to a key mismatch oracle, what we herein call a
plaintext checking oracle (PCA).

Our contribution. In this paper, we first define the meta-structure of construc-
tions with ephemeral keys. Then, we formalize the noise learning problem which
is required to break these constructions. We identify optimal bounds in terms of
the number of oracle calls to solve this problem. Then, we mount a classical key
recovery under plaintext checking attack (KR-PCA), which is also the model of
Fluhrer attacks [11]. This model makes sense when an adversary can play with
a server with a modified ciphertext and check if it still decrypts to the same
plaintext as before. Compared to Fluhrer [11], we apply it to different classes
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of protocols, we optimize the number of oracle calls, and we identify the link
with the noise learning problem. We give optimal lower bounds for the number
of oracle calls to solve this problem. We finally propose a quantum variant of
the attack in an “imaginary” model where the adversary has quantum access
to a decryption oracle. This is a key recovery under chosen ciphertext attack
(KR-CCA). Our quantum attack is based on the GKZ algorithm [14] to solve
LWE from a superposition of inputs. We also adapt the AJOP attack [2] based
on the Bernstein-Vazirani algorithm [7] to solve the LPN problem from a su-
perposition of inputs.1 The AJOP-based attack has better performances but is
more restrictive. It only works for cryptosystems of a special form and it also
assumes a quantum decryption oracle working with addition in a special group
instead of the XOR. Our result shows that a single use of the key leads to a full
or partial key recovery with a probability of success proving the attacks are a
big threat.

Table 1. Attacks on post-quantum cryptosystems. For two types of attacks (classical
KR-PCA and quantum KR-CCA), we report the number of oracle calls as O, the
probability of success as P , the number of collected linear equations in Zq as E, and
the number of unknowns in Zq as U . We also indicate for information the expected
total number T = OU

PE
of oracle calls obtained to recover the full key with probability

1 by iterating the attacks.

classical GKZ-based quantum AJOP-based quantum
KR-PCA attack KR-CCA attack KR-CCA attack

U O P E (T ) O P E (T ) O P E (T )

EMBLEM128 210 29 1 25 (214) 2 2−16 210 (217) 1 1 210 (1)
R.EMBLEM128 29 213 1 29 (213) 2 2−24 29 (225) 1 2−1 29 (2)
Frodo-640 212 210 1 26 (216) 2 2−13 29 (217) 1 2−2 212 (22)
KINDI256 210 212 1 28 (214) 2 2−14 210 (215) 1 2−1 210 (2)
Lepton Light I 213 213 1 212 (214) - - - - - - - -
LIMA227-2p 210 214 1 210 (214) 2 2−17 210 (218) 1 2−1 210 (2)
LIMA152-sp 210 215 1 210 (215) 2 2−24 210 (225) 1 2−1 210 (2)
Lizard536 217 - - - - 2 2−9 29 (218) 1 2−1 29 (29)
RLizard536 210 - - - - 2 2−8 210 (29) 1 2−1 210 (2)
LOTUS128 216 211 1 27 (220) 2 2−13 29 (221) 1 2−1 29 (28)
NewHope512 29 - - - - 2 2−28 29 (229) 1 2−1 29 (2)
TitaniumStd128 211 212 1 28 (215) 2 2−16 210 (218) 1 2−1 210 (22)

We report our results for both types of attacks in Table 1. For information
only, the table indicates the total number of oracle calls we need, by iterating,
to recover the full key with probability 1. We should, however, take this mea-
surement with care. This is because running a single instance of the attack may

1 The AJOP attack was released after we submitted this paper. For completeness, we
include its adaptation here.
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be enough to decrease the security of the cryptosystem and to recover the secret
by other means.

2 A Meta-PKC Construction

We define a cryptosystem as follows.

Definition 1 (Public-key cryptosystem). A public-key cryptosystem (PKC)
with security parameter λ consists of four algorithms:

– PKC.setup(1λ; coinS)
$−→ pp

– PKC.gen(pp; coinA)
$−→ (sk, pk)

– PKC.enc(pp, pk, pt; coinB)
$−→ ct

– PKC.dec(pp, sk, ct) → pt′

Correctness implies that for any pt, by running all these algorithms, we obtain
pt = pt′ with probability 1− negl(λ), over the random selection of the coins.

In this paper, we consider two types of security notions.

Definition 2 (KR-PCA and KR-CCA). We use the key recovery game with
oracle O of Fig. 1. We consider two types of oracles: PCO and DecO which are
defined on the figure. The KR-PCA game uses O = PCO. The KR-CCA game
uses O = DecO.

PCO(ct, pt) is a plaintext checking oracle which receives ct and pt, runs the
decryption and only returns one bit saying if it decrypts to pt. KR-PCA is an
adaptive key recovery attack. Security against KR-PCA is implied by IND-CCA
security. KR-PCA attacks are not in the IND-CPA security framework. Hence,
a PKC could be IND-CPA secure but still vulnerable to a KR-PCA attack.

Game KRO
A(λ):

1: pick coinS, coinA
2: setup(1λ; coinS)→ pp
3: gen(pp; coinA)→ (sk, pk)
4: AO(·)(pp, pk)→ sk′

5: return 1sk=sk′

Oracle PCO(ct, pt):
1: dec(pp, sk, ct)→ pt′

2: return 1pt′=pt

Oracle DecO(ct):
3: return dec(pp, sk, ct)

Fig. 1. KR-PCA and KR-CCA games.

The PCAmodel makes sense in several cases. For instance, in the client-server
protocol where the encryption is used to transport a symmetric key to start
secure messaging, an adversary can try to encrypt a symmetric key by deviating
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from the protocol. He generates malformed ciphertexts which may decrypt to the
chosen symmetric key or not. By sending the malformed ciphertext to the server,
the adversary can easily see if secure messaging with the server is possible, hence
simulate a PCO oracle. Clearly, it is devastating that such an attack would lead
to a key recovery.

We define the following algebra. We consider six additive Abelian groups Ssk,
SA, SB , St, SU , and SV and four bilinear mappings which are all denoted with
×. The four bilinear mappings have domains SA × Ssk → SB , SU × Ssk → SV ,
St × SA → SU , and St × SB → SV . We assume associativity in the sense that

(t×A)× sk = t× (A× sk)

for all t ∈ St, A ∈ SA, and sk ∈ Ssk. Hence, multiplication works as in the
diagram on Fig. 2.

St

× SB

× SA SV×

SU ×

Ssk

Fig. 2. Algebra: the four bilinear functions on the six spaces. For instance, one element
of St multiplied by one element of SA gives one element of SU .

We also assume that there is a norm ∥ · ∥ on Ssk, SB , St, SU , and SV (i.e.
all spaces except SA for which we need no norm). By definition, the norm is
positive and satisfies the triangular inequality. We assume that we can upper
bound ∥x× y∥ in terms of ∥x∥ and ∥y∥ for the four bilinear functions.

Finally, we assume two functions encode : M → SV and decode : SV → M
such that encode is injective. The image set C = encode(M) is called a code.
Elements of the code are codewords. The packing radius of C is denoted as ρ−
and the covering radius of C is denoted as ρ+. Around every W ∈ SV , balls of
radius ρ− contain no more than one codeword and balls of radius ρ+ contain at
least one codeword:

∀V, V ′ ∈ C ∀W ∈ SV (∥V −W∥ ≤ ρ− ∧ ∥V ′ −W∥ ≤ ρ−) =⇒ V = V ′

∀W ∈ SV ∃V ∈ C ∥V −W∥ ≤ ρ+

Additionally,

∀W ∈ SV decode(W ) = argmin
pt

∥W − encode(pt)∥
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in the sense that encode(decode(W )) is one closest codeword to W (which may
be ambiguous if there is no unique closest codeword). This implies

∀W ∈ SV ∀pt ∥W − encode(pt)∥ ≤ ρ− =⇒ decode(W ) = pt
∀W ∈ SV ∥W − encode(decode(W ))∥ ≤ ρ+

An element δ such that ∥δ∥ ≤ ρ− will be called sparse. In what follows, we use
small letters to designate sparse elements.

Algorithm setup(1λ):
1: set up the algebra and define pp
2: return pp

Algorithm gen(pp; coinA):
3: pick a random A ∈ SA and random

sparse sk ∈ Ssk and d ∈ SB by us-
ing coinA

4: B ← A× sk+ d
5: pk← (A,B)
6: return (sk, pk)

Algorithm enc(pp, pk, pt; coinB):
1: parse pk = (A,B)
2: pick random sparse t ∈ St, e ∈ SU ,

and f ∈ SV by using coinB
3: U ← t×A+ e
4: V ← t×B + f + encode(pt)
5: return ct = (U, V )

Algorithm dec(pp, sk, ct):
6: parse ct = (U, V )
7: W ← V − U × sk
8: pt′ ← decode(W ).
9: return pt′

Fig. 3. The meta-cryptosystem defined on the algebra.

We define a PKC as on Fig. 3 in which the choice of the algebra, norm,
encoding/decoding, and the probability distributions are left free. Thanks to
bilinearity and associativity, we have W = δ + encode(pt) with

δ = t× d+ f − e× sk (1)

This value δ will be called the noise. By controlling the size of t, d, f , e, sk (with
their respective probability distribution), we can make sure that the noise δ is
sparse. Hence, decode(W ) = pt.

In what follows, for an element X ∈ Zq, |X| is the absolute value of X ∈ Zq
when represented modulo q such that − q

2 ≤ X ≤ q
2 . As an example of norm over

Znq , we can consider the L∞ norm ∥X∥ = max(|X1|, . . . , |Xn|), or the L1 norm
∥X∥ = |X1|+ · · ·+ |Xn|, or a combination of both ∥X∥ = maxi

∑
j |Xi,j |.

As an example of encode/decode with the L∞ norm, we could consider M =
{0, 1, . . . , z−1}n (z is the alphabet size) and encode(pt) = L ·pt in SV = Znq , for

a positive integer L such that L > 2ρ− and zL ≤ q. We define decode(X) =
⌊
X
L

⌉
component-wise when the coordinates of X are taken modulo q.

We only give three examples below. More are provided in Appendix A.
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Example 3 (Frodo). FrodoPKE [8] works with Ssk = SB = Znn̄q , SA = Zn
2

q ,

St = SU = Zm̄nq , and SV = Zm̄n̄q with the L∞ norm and M = {0, 1}ℓm̄n̄. It
uses q = 215, ℓ = 2, m̄ = n̄ = 8, and n = 640 (for the Frodo-640 parameters).
The bilinear mappings are matrix multiplications. I.e., elements of Ssk = SB are
n × n̄ matrices, elements of SA are n × n matrices, elements of St = SU are
m̄ × n matrices, and elements of SV are m̄ × n̄ matrices. Frodo uses the L∞
norm (when considering elements as vectors). Encoding ℓ bits per Zq elements is
done by taking them as an integer and multiplying them by L = q2−ℓ. Decoding
takes the ℓ most significant bits. So, each Zq element is at a distance up to
ρ+ = ρ− = q2−ℓ−1 to a codeword. Elements of t, d, f , e, sk, are sampled in
{−11, . . . ,+11} with Gaussian-looking distribution.

Example 4 (NewHope). NewHope-CPA-PKE [1] defines Ssk = SA = SB = St =
SU = SV = Znq . Elements are considered as polynomials in variable X modulo
Xn + 1. Bilinear mappings are simply multiplications of polynomials in this
structure. Message bits are encoded by multiplication to L = q/2 and represented
twice in NewHope512-CPA-PKE. Namely, if Y = encode(pt), the bit pti of the
message appears at position i and i + 256 of Y by Yi = Yi+256 = pti

q
2 . How

decoding works is also important. Namely, if Y ∈ SV , the algorithm decodes
b = (decode(Y ))i to the value b minimizing |Yi − b q2 |+ |Yi+256 − b q2 |, i.e. the L1

distance. For this reason, it uses an L1 norm on pairs of components at position
i and i+ 256 and the L∞ norm over all i. Namely,

∥Y ∥ = max
i

(|Yi|+ |Yi+256|)

Hence, ρ− = q
2 and ρ+ = q

2 . For t, d, f , e, sk, sparse elements of Zq are sampled
by taking the difference of the Hamming weight of two uniformly distributed
random bytes. Hence, they are in {−8, . . . ,+8}. NewHope deviates a bit from
our meta-construction in the sense that encryption replaces V by its compression
V̄ = ⌈pqV ⌋ and decryption replaces V̄ by V ′ = ⌈ qp V̄ ⌋. This adds an error bounded

by q
p in δ. In NewHope512-CPA-PKE, the parameters are n = 512, q = 12 289,

and p = 8.

Example 5 (Lepton). Lepton.CPA [26] defines Ssk = SA = SB = St = SU = Zn2
and SV = Zℓ2 with the Hamming weight norm. All bilinear functions are the
GF(2n) multiplications represented with the trinomial Xn +Xm + 1, except for
St×SB → SV which does the multiplication then truncate to ℓ bits. For t, d, f ,
e, and sk, of weight bounded by k, it is proven that δ has a weight bounded by
4k2 + k + 2m − 2. Encoding uses a BCH code and a repetition code to correct
at least this amount of error. The Light I version of Lepton.CPA uses n = 8100,
k = 16, m = 9, and ℓ = 4572. The BCH code is a [508, 256] binary code which
can decode up to 30 errors. After BCH-encoding, it uses a repetition code with
9 repetitions. By design, ∥δ∥ ≤ 1 056.
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3 The Noise Learning Problem

In this section, we will introduce a noise learning problem with examples for
different metrics. Solving it is the heart of the KR-PCA attack that we describe
in the next section. We prove lower bounds for the number of oracle calls to
solve this problem.

3.1 Definition

We consider a sampling algorithm S generating a sparse δ (which we call noise),

a threshold ρ, and an algorithm learnBOO(·) which makes r queries to a bounded
offset oracle BOO. We will later give a few instances of the learning problem.
We define Adv(LEARNρS(λ)) as the probability that the game on Fig. 4 gives 1.

Game LEARNρ
S(λ):

1: pick coinS
2: setup(1λ; coinS)→ pp
3: pick the noise δ using the sampling

algorithm S
4: learnBOO(·)(pp)→ δ′

5: return 1δ=δ′

Oracle BOO(x):
1: return 1∥δ+x∥≤ρ

Fig. 4. The noise learning game with threshold ρ.

In all cases, the idea of the learning algorithm is to start with x = 0 and to
gradually increase ∥x∥ (i.e. reduce the sparsity of δ+x) until the decoding is no
longer the same. This is a hill-climbing method. Then, we can explore the top
of the hill with small modifications of this critical x and analyze the decoding
algorithm to deduce the value of δ.

3.2 Lower Bounds for the Noise Learning Problem

Theorem 6. Given a probability distribution for δ, we assume that an algorithm
learn has an advantage of 1 in the LEARN game, using r queries. We have

E(r) ≥ H(δ)

where H is the Shannon entropy.

Proof. Since we do not consider the running time, we assume without loss of
generality that learn uses the random coins minimizing E(r). Hence, we consider
it as deterministic. We let C(δ) be the sequence of answers from the oracle BOO
when δ is sampled. When running learn alone with oracle answers simulated by
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the sequence b1, . . . , br, we let D(b1 · · · br) = δ′ be the output from learn. We let
rδ be the length of C(δ). Due to the hypothesis that the advantage is 1, we have
D(C(δ)) = δ for all δ. Thanks to this property, the Kraft Inequality says that∑
δ 2

−rδ ≤ 1. We have

E(rδ)−H(δ) =
∑
δ

Pr[δ] log2(2
rδ Pr[δ])

≥ 1

ln 2

∑
δ

Pr[δ]

(
1− 1

2rδ Pr[δ]

)

=
1

ln 2

(
1−

∑
δ

2−rδ

)
≥ 0

by using lnx ≥ 1− 1
x . ⊓⊔

Theorem 7. Given a probability distribution for δ, we assume that an algorithm
learn has an advantage of p in the LEARN game, using r queries. We have

E(r|success) ≥ H∞(δ) + log2 p

where H∞ is the min-entropy and success is the event that LEARN returns 1.

Proof. As in Th. 6, we assume without loss of generality that learn is deter-
ministic. Let S be the distribution of δ and we define S̄ = [S|δ′ = δ], i.e. the
distribution S conditioned to δ′ = δ. The advantage with δ of distribution S̄ is
1. Due to the previous result, we have that ES̄(r) ≥ H(S̄). We have

H(S̄) = −
∑
δ=δ′

Pr[δ]

p
log2

Pr[δ]

p
≥
∑
δ=δ′

Pr[δ]

p
(H∞(δ) + log2 p) = H∞(δ) + log2 p

and
ES̄(r) = ES(r|δ = δ′) = ES(r|success)

therefore, E(r|success) ≥ H∞(δ) + log2 p. ⊓⊔

3.3 Example: Learning a Small Integer

We consider the learning problem over Zq. We assume that ρ and p are defined
parameters. If ρ = ⌊ q2⌋, the BOO oracle always answers 1 and the problem is
unsolvable. Hence, we assume that ρ < ⌊ q2⌋. We design a learning algorithm with
parameter p by a cut-and-choose algorithm as shown on Fig. 5. We first assume
that ρ is known.

Theorem 8. Assume that ρ < ⌊ q2⌋. The algorithm on Fig. 5 succeeds with prob-
ability at least p. The number r of oracle calls satisfies

E(r) ≤ 1.41 + 2.41× (H(δ) + log2 p) + rmax
1
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Algorithm learn(pp):
1: define q from pp
2: set a = −ρ ▷ we have BOO(−a− ρ) = 1
3: set b = ρ
4: if ρ > q

6
− 1

3
then

5: ℓ = ⌊ q
2
⌋ − ρ ▷ −ρ ≤ a ≤ δ ≤ b

6: while maxδ∈[a,b] Pr[δ] < p · Pr[δ ∈ [a, b]] and b− a ≥ ℓ do
7: b′ = a+ ℓ− 1
8: if BOO(−b′ − 1− ρ) = 1 then a← b′ + 1 else b← b′

9: end while
10: end if ▷ we have BOO(−b− 1− ρ) = 0 and b− a ≤ ℓ− 1
11: while maxδ∈[a,b] Pr[δ] < p · Pr[δ ∈ [a, b]] do ▷ we have a ≤ δ ≤ b
12: cut [a, b] = [a, c] ∪ [c+ 1, b] which minimizes

max (Pr[δ ∈ [a, c]],Pr[δ ∈ [c+ 1, b]])

▷ the median of (δ|[a ≤ δ ≤ b]) is either c or c+ 1
13: if BOO(−c− 1− ρ) = 1 then a← c+ 1 else b← c
14: end while
15: pick δ = argmaxδ∈[a,b] Pr[δ]
16: return δ

Fig. 5. Learning an integer with probability p.

with rmax
1 = 2ρ

⌊ q
2 ⌋−ρ

if ρ > q
6 − 1

3 and rmax
1 = 0 otherwise. When δ is uniform in

[−ρ,+ρ], we have
E(r) ≤ H(δ) + log2 p+ 1 + rmax

1

For ρ ≈ q
4 , r

max
1 is typically 2. If we neglect this overhead, we deduce that

the learning algorithm is optimal up to a factor of 2.41 in general. It is further
optimal for a uniform distribution.

Proof. Let ℓ = ⌊ q2⌋ − ρ and b′ = a + ℓ − 1. If −ρ ≤ a ≤ δ ≤ b, we have
δ−b′−1−ρ = δ−a−ℓ−ρ ≥ −ℓ−ρ = −⌊ q2⌋ and δ−b

′−1−ρ = δ−a−ℓ−ρ ≤ δ−ℓ ≤ ρ
thus ∥δ − b′ − 1− ρ∥ ≤ ρ is equivalent to δ − b′ − 1− ρ ≥ −ρ. This means that
BOO(−b′ − 1− ρ) = 1 is equivalent to δ ≥ b′ + 1. This shows that the condition
−ρ ≤ a ≤ δ ≤ b is preserved in the loop in Step 6–9.

The loop in Step 6–9 terminates as soon as soon as BOO(−b′ − 1 − ρ) = 0.
The previous argument shows that the loop terminates when δ ≤ b′. Hence, the
number r1 of iterations of this loop is bounded by r1 ≤ 2ρ

ℓ which is rmax
1 .

The purpose of both loops is to find an interval [a, b] containing δ such that
maxδ∈[a,b] Pr[δ] < p ·Pr[δ ∈ [a, b]]. The loop in Step 6–9 either directly finds this

interval or finds one containing δ such that b− a ≤ ℓ− 1. If ρ ≤ q
6 −

1
3 , this loop

is skipped but we already have b− a = 2ρ ≤ ℓ− 1.
We can repeat the previous argument: if δ and c belong to [a, b], b−a ≤ ℓ−1,

and b − a ≤ 2ρ, then δ − c − 1 − ρ ≥ δ − a − ℓ − ρ ≥ −ℓ − ρ = −⌊ q2⌋ and
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δ−c−1−ρ ≤ b−a−ρ ≤ ρ thus ∥δ−c−1−ρ∥ ≤ ρ is equivalent to δ−c−1−ρ ≥ −ρ.
This means that BOO(−c − 1 − ρ) = 1 is equivalent to δ ≥ c + 1. Hence, we
prove by induction that at every step of the loop in Step 11–14, δ belongs to
[a, b], b− a ≤ ℓ− 1, and b− a ≤ 2ρ.

When the algorithm terminates, it returns δ in the interval with maximal
likelihood. The loop enforces that Pr[δ|a ≤ δ ≤ b] ≥ p for all δ in the interval.
Hence, the probability that the best δ in the interval is correct is at least p.

Let r2 be the number of iterations. Let a1, bi, ci be the values of a, b, c in the
ith iteration. In the ith iteration, we let pi = Pr[ai ≤ δ ≤ bi], xi ∈ {ci, ci + 1}
be the median point in the [ai, bi] interval, mi = Pr[δ = xi], and we set di =
1xi∈[ai+1,bi+1]. We have a0 = −ρ, b0 = ρ, p0 = 1.

When cutting [ai, bi] in two intervals [ai, ci] and [ci + 1, bi], we let xi in the
most probable of these two intervals. Hence, pi+1 ≤ pi+dimi

2 .
Another property of the xi is that when di = 1, it becomes one border of

the next interval. Hence, if it is taken in a further iteration as a median point,
it can only be the final iteration reducing the interval to the point xi, which is
the r2th iteration. We deduce that the sequence of xi is non-repeating until the
r2th iteration. One consequence is that mi +mi+1 + · · · +mr2−1 ≤ pi for any
i < r2.

Let Si = dimi+di+1mi+1+ · · ·+dr2−1mr2−1. We have Si ≤ pi. We also have

pi+1 ≤ pi + Si − Si+1

2

for all i < r2. By induction, we prove

pi ≤ 2−i + 2−i−1S0 +

i−1∑
j=0

2−i+j−1Sj −
1

2
Si

for all i < r2. We deduce

2ipi ≤
3

2
+

1

2

i−1∑
j=0

2jpj

and hence 2ipi ≤
(
3
2

)i+1
by induction. Therefore, pi ≤ 3

2

(
3
4

)i
for i < r2.

For i ≥ log( 2 Pr[δ]
3p )

log 3
4

, we have Pr[δ] ≥ 3
2

(
3
4

)i
p ≥ pip. So, any δ with probability

of occurrence Pr[δ] makes r2 ≤ log( 2 Pr[δ]
3p )

log 3
4

iterations. Hence,

E(r2) ≤
log 2

3

log 3
4

+
1

log2
3
4

E

(
log2

Pr[δ]

p

)
=

log 2
3

log 3
4

− 1

log2
3
4

(H(δ) + log2 p)

≤ 1.41 + 2.41(H(δ) + log2 p)
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We treat the uniform case similarly. We let ℓi = bi−ai+1. We have ℓ0 = 2ρ+1.
We have ℓi+1 ≤ ℓi+1

2 . Hence, ℓi ≤ 21−iρ+ 1. For i ≥ log2(2ρ) + log2 p, we have
ℓip ≤ 1 + p. The ℓi sequence is strictly decreasing until i = r2. Hence, if i < r2,
then ℓi+1 ≤ ℓi − 1 so ℓi+1p ≤ 1 which implies i + 1 = r2. Therefore r2 ≤ i + 1.
Hence,

E(r2) ≤ log2(2ρ) + log2 p+ 1 ≤ H(δ) + log2 p+ 1

The number of oracle calls is r = r1 + r2. ⊓⊔

In Znq with the L∞ norm, we can run this algorithm for each coordinate and
use r ≤ 1.41+ 2.41× n log2(2ρ+1) queries to learn δ (using that the entropy of
a single component is bounded by log2(2ρ+ 1)).

Learning an integer with unknown threshold. The previous algorithm does not
work if the threshold ρ is unknown. However, we could learn the offset x such
that δ + x reaches this unknown threshold, either +ρ or −ρ, by using an upper
bound ρ′ on this threshold. We write the algorithm on Fig. 6 for the uniform
distribution and ρ′ ≤ q

6 − 1
3 , for simplicity. (For ρ′ > q

6 − 1
3 , we apply the same

strategy as previously to first find a small interval and run the algorithm on this
interval.) The algorithm first learns ρ− δ on Step 8. Similarly, it learns −ρ− δ
on Step 15. Finally, it deduces both δ and ρ.

Algorithm learn(pp):
1: define q from pp
2: set a = 0 ▷ we have BOO(a) = 1
3: set b = 2ρ′ + 1 ▷ we have BOO(b) = 0
4: while b > a+ 1 do ▷ we have a ≤ ρ− δ < b
5: set c =

⌊
a+b
2

⌉
6: if BOO(c) = 1 then a← c else b← c
7: end while
8: x← a ▷ x = ρ− δ
9: set a = −2ρ′ − 1 ▷ we have BOO(a) = 0
10: set b = 0 ▷ we have BOO(b) = 1
11: while b > a+ 1 do ▷ we have a < −ρ− δ ≤ b
12: set c =

⌊
a+b
2

⌉
13: if BOO(c) = 0 then a← c else b← c
14: end while
15: y ← b ▷ y = −ρ− δ
16: return −x+y

2
▷ we deduce ρ = x−y

2
as well

Fig. 6. Learning an integer with a bound ρ′ ≤ q
6
− 1

3
on the unknown threshold ρ.
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3.4 Example: Learning a Vector which is L1-Small

When δ is a vector with components in Zq and the norm is the L1 norm, we can
learn δ easily when ρ ≤ q

6 −
1
3 . The idea is first to learn δ1 and ρ−|δ2|−· · ·−|δn|.

Then we can iterate and learn every δi. We can easily see that the number of
oracle calls is roughly (2n− 1) log2 ρ.

This is more complicated when ρ > q
6 − 1

3 . Below, we study the ρ = q
2 case

in dimension n = 2 which is significant for NewHope [1].

Lemma 9. We consider the LEARN game over Z2
q with the L1 norm and ρ = q

2 .
Given c ∈ [−ρ, ρ], we have BOO(c− ρ, 0) = 1 ⇐⇒ |δ1 + c| ≥ |δ2|.

Similarly, BOO(0, c− ρ) = 1 ⇐⇒ |δ2 + c| ≥ |δ1|.

Proof. If δ1 + c − ρ ≥ − q
2 , we observe that δ1 + c − ρ ≤ q

2 since c ≤ ρ, so
∥δ + (c − ρ, 0)∥ = |δ1 + c − ρ| + |δ2|. Hence, BOO(c − ρ, 0) = 1 is equivalent to
|δ2| − ρ ≤ δ1 + c − ρ ≤ −|δ2| + ρ. The second inequality is always true because
∥δ∥ ≤ ρ and c ≤ ρ. BOO(c−ρ, 0) = 1 is therefore equivalent to |δ2|−ρ ≤ δ1+c−ρ,
thus to |δ2| ≤ δ1+ c. Furthermore, δ1+ c−ρ ≥ − q

2 implies that δ1+ c ≥ 0 (since
ρ = q

2 ). Hence, BOO(c− ρ, 0) = 1 is equivalent to |δ2| ≤ |δ1 + c|.
If δ1 + c − ρ ≤ − q

2 , we observe that δ1 + c − ρ ≥ − 3q
2 , so ∥δ + (c − ρ, 0)∥ =

|δ1+ c−ρ+q|+ |δ2|. Hence, BOO(c−ρ, 0) = 1 is equivalent to |δ2|−ρ ≤ δ1+ c−
ρ+q ≤ −|δ2|+ρ. The first inequality is always granted, hence BOO(c−ρ, 0) = 1
is equivalent to δ1 + c ≤ −|δ2|. Furthermore, δ1 + c − ρ ≤ − q

2 implies that
δ1+ c ≤ 0, therefore BOO(c− ρ, 0) = 1 is equivalent to −|δ1+ c| ≤ −|δ2| as well.

The equivalence between BOO(0, c− ρ) = 1 and |δ2+ c| ≥ |δ1| is obtained by
swapping the two coordinates of the BOO oracle and of δ. ⊓⊔

Theorem 10. We consider the LEARN game over Z2
q with the L1 norm and

ρ = q
2 . There exists a learning algorithm making up to 3 log2 ρ+ 2 oracle calls.

Proof. Using Lemma 9 with c = 0, we can first learn if |δ1| ≤ |δ2| by making
an oracle call BOO(0,−ρ). We assume without loss of generality that |δ1| < |δ2|.
(If not, we flip the pair of entries in the BOO oracle and learn a flipped δ; the
|δ1| = |δ2| case will solve by itself.) Hence, the inequality |δ1 + c| ≥ |δ2| is not
satisfied for c = 0 but it may be for c = ρ or c = −ρ, or even both. By two
cut-and-choose algorithms, we find a threshold c making it an equality in both
intervals [−ρ, 0] and [0, ρ], if there exists one. This requires up to 2 log2 ρ oracle
calls. If there are two, the smallest one has the same sign as δ1. If there is one, it
has the same sign as δ1. The |δ1| = |δ2| case gives c = 0 and any oracle query with
c ̸= 0 gives the sign of δ1. In all cases, we learn the sign of δ1 and the smallest
value c such that |δ1 + c| = |δ2|. We can also learn if δ1 is null and isolate this
case as we already learned δ1 = 0 and |δ2| = |c|. For δ1 ̸= 0, we continue with
Lemma 9 again. We have BOO(0,−|c| − 1 − ρ) = 1 ⇐⇒ |δ2 − |c| − 1| ≥ |δ1|,
which is equivalent to δ2 < 0. Hence, we learn the sign of δ2 too with one oracle
call. So far, with 2 log2 ρ+ 2 oracle calls, we found the sign of δ1 and δ2, and a
smallest c such that |δ1 + c| = |δ2| = 1

2∥δ + (c, 0)∥.
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Let εi ∈ {−1,+1} such that εiδi ≥ 0 for i = 1, 2. Let d ∈ [0, ρ]. We consider

oracle calls of form BOO(c + ε1
d
2 , ε2

d
2 ). We have |δ1 + c| = ∥δ+(c,0)∥

2 ≤ ρ
2 so

|δ1 + c+ ε1
d
2 | ≤ ρ and similarly, |δ2 + ε2

d
2 | ≤ ρ. Hence,∥∥∥∥δ + (c+ ε1

d

2
, ε2

d

2

)∥∥∥∥ =

∣∣∣∣δ1 + c+ ε1
d

2

∣∣∣∣+ ∣∣∣∣δ2 + ε2
d

2

∣∣∣∣ = ∥δ∥+ d

By cut-and-choose, we learn d ∈ [0, ρ] such that ∥δ∥ + d = ρ. We deduce ∥δ∥
then δ completely. ⊓⊔

3.5 Example: Learning a String of Small Hamming Weight

As another example, consider that δ lives in {0, 1}n and that ∥x∥ is the Hamming
weight of x. We consider ⊕, the bitwise XOR, as an addition. We assume ρ ≤ n

2 .

Algorithm learn(pp):
1: define n from pp
2: set x = (0, 0, . . . , 0) ▷ we have BOO(x) = 1
3: set y = (1, 1, . . . , 1) ▷ we have BOO(x⊕ y) = 0
4: while ∥y∥ > 1 do ▷ during the loop, BOO(x) = 1 and BOO(x⊕ y) = 0

5: split at random y = u⊕v with u∧v = 0, ∥u∥ =
⌊

∥y∥
2

⌋
, and ∥v∥ =

⌈
∥y∥
2

⌉
,

6: if BOO(x⊕ u) = 1 then
7: x← x⊕ u
8: y ← v
9: else
10: y ← u
11: end if
12: end while
13: z ← x ▷ we know that ∥δ ⊕ x∥ = ρ
14: set idone such that yidone = 1
15: for i = 1 to n except i ̸= idone do
16: set y to x with the i-th bit flipped
17: if BOO(y) = 1 then in z, flip the i-th bit
18: end for
19: return z

Fig. 7. Learning a bitstring.

We can have a learning algorithm by a cut-and-choose algorithm.

Theorem 11. The algorithm on Fig. 7 succeeds with probability 1. The number
of iterations r satisfies

r ≤ n+ log2 n
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The analysis is similar as before.
When δ is uniformly distributed among the strings of Hamming weight at

most ρ, the entropy is

H(δ) = log2

(
ρ∑

w=0

( n
w

))
≤ nH

( ρ
n

)
where H is the binary entropy function.

For ρ = n
2 , we obtain H(δ) ≤ n. The number of queries is asymptotically

equivalent to n and it is nearly optimal.
For ρ = n

4 , we obtain H(δ) ≤ 0.82n, meaning that the algorithm is not
optimal.

4 Key-Recovery with a Plaintext Checking Oracle

With the meta-PKC construction, there is a fixed sk and the adversary can play
with an oracle PCO(U, V, pt) checking if the noise is sparse, i.e. if encode(pt) is
the closest codeword to V − U × sk. One strategy consists of learning the noise
δ = t × d + f − e × sk by playing with PCO. Actually, by defining O(x) =
PCO(U, V +x, pt), we simulate a bounded offset oracle to run the LEARN game.

Learning δ gives a linear equation with unknown d and sk. We can eliminate
d using the known relation B = A× sk+ d. With a few equations (depending on
the selected algebra), we deduce sk.

More precisely, if we can learn δ sampled by S which generates δ like δ =
t×d+f−e×sk, we assume that for some k (typically, k = 1 if all sets are equal),
there exists an algorithm such that given k equations of form (ti×A+ei)× sk =
ti ×B + fi − δi with sk unknown, it solves sk. We use the algorithm on Fig. 8.

We obtain the following result.

Theorem 12. Let t, d, f , e, sk follow the random distributions of the cryp-
tosystem. We define

δ = t× d+ f − e× sk

With probability 1, the algorithm of Fig. 8 gives at every iteration of the for loop,
one linear equation over SV with unknown sk ∈ Ssk, using the same number of
oracle calls as learn with the distribution of δ.

In the case that Ssk = Znsk
q , SA = ZnA

q , SB = ZnB
q , St = Znt

q , SU = ZnU
q ,

SV = ZnV
q , when the considered norm is the L∞ norm, this means that we

obtain nV linear equations over Zq with nsk unknowns. We use H(δ) oracle calls
and we can approximate H(δ) ≈ nV log2(2ρ+). (This can only over-estimate the
entropy.)

One difficulty is to know what happens when the distance of V − U × sk to
the code is between ρ− and ρ+. If ρ− = ρ+, there is no problem. If decryption
aborts when the number of errors exceeds ρ−, then ρ− becomes de facto the
threshold to be used in the LEARN game. Otherwise, the learn algorithm must
be refined.
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Algorithm APCO(·)(pp, pk):
1: parse pk = (A,B)
2: for i = 1 to k do
3: pick pti at random
4: run enc(pp, pk, pti)→ cti ▷ this defines ti, ei, fi
5: parse cti = (Ui, Vi)
6: run learnO(·)(pp)→ δi ▷ deduce (ti ×A+ ei)× sk = ti ×B + fi − δi
7: end for

8: solve

 t1 ×A+ e1
...

tk ×A+ ek

( sk ) =
 t1 ×B + f1 − δ1

...
tk ×B + fk − δk


9: return sk

Oracle O(x):
10: return PCO(Ui, Vi + x, pti)

Fig. 8. KR-PCA attack based on learning.

Example 13 (Frodo continued). The Frodo-640 parameters are nsk = nB = nn̄ =
640 × 8 and nV = m̄n̄ = 8 × 8. Since ρ+ = ρ− = q2−ℓ−1 = 212, we need about
210 oracle calls to recover 26 equations in 212 unknowns. (By iterating, we have
a full key recovery using 216 oracle calls.)

Example 14 (NewHope continued). NewHope512 defines nsk = nB = nV = n =
512, ρ− = q

4 , ρ+ = q
2 , and p = 8. Decoding in NewHope is based on the

cumulative distance. We should rather apply the algorithm in Th. 10 for the
L1 norm in dimension two to learn each pair of components of δ. However,
the use of compression of V into V̄ in NewHope makes the attack learning an
approximation of δ instead of δ completely. Essentially, we learn ⌈pq δ⌋ (i.e., the

log2 p most significant bits of each of the nV components of δ). However, we
already know that δ is sparse, so we learn zero bits only. The attack does not
work but we can adopt another strategy of well selecting (U, V̄ ) to progressively
learn the bits of sk. This was done by Bauer et al. [5].

Example 15 (Lepton continued). With Lepton.CPA Light I, δ is a string of length
ℓ = 4572 of Hamming weight bounded by 1 056. Encoding consists of d = 9
repetitions of a BCH code which can correct up to 30 errors. One problem is
that decoding fails if decoding the repetition code results in more than t = 30
errors in BCH decoding. Nevertheless, we can adapt the attack based on the
learn algorithm of Fig. 7. In learn, instead of considering a string of ℓ bits, we
consider a string of ℓ

d packets of d bits in which the packet 1 represents the
packet of d bits set to 1, and flipping a packet means xoring it to the packet 1.
Thus, we learn which packets of δ have an error using up to ℓ

d + log2
ℓ
d queries.

Then, for each packet, we modify δ to have exactly t− 1 incorrect other packets
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and we apply the learn algorithm of Fig. 7 at the bit level. For each packet, we
need up to d+ log2 d oracle calls. In total, the number of oracle calls is bounded
by ℓ+ ℓ

d log2 d+
ℓ
d + log2

ℓ
d ≈ 213. This gives 4 572 equations in 8 100 unknowns.

So we use k = 2 and recover the entire sk using 214 oracle calls.

5 Quantum Key-Recovery with a Decryption Oracle

5.1 GKZ-Based Attack

We build a KR-CCA attack which is inspired by the quantum LWE solving
algorithm from Grilo, Kerenidis, and Zijlstra (GKZ) [14]. This algorithm works
with a quantum superposition of LWE entries. In this attack, we consider an
adversary with quantum access to a decryption oracle. More precisely, we assume
that the oracle makes the following mapping:

|ct x Z⟩ 7→ |ct (x⊕ Dec(sk, ct)) Z⟩

Instead of calling this oracle on a chosen ct, we will call it on a superposition of
ct states.

We denote ωq = e
2iπ
q , a qth primitive root of unity.

We consider our meta PKC construction in which all groups are powers of
Zq for simplicity: Ssk = Znsk

q , SA = ZnA
q , SB = ZnB

q , St = Znt
q , SU = ZnU

q ,
SV = ZnV

q .
We let I ⊆ {1, . . . , nV } be a set of indices i.
We split the quantum state into several registers:

– one register U ∈ SU ;
– one register V ∈ SV ;
– a plaintext in M;
– one register Z ∈ ZIq .

We assume that we have an operator L mapping

|U V pt Z⟩ 7→ |U V pt (Z ⊕ (V − encode(pt))I)⟩

where VI denotes the restriction of the vector V on indices in I. This means that
we compute the ith coordinates of V − encode(pt) and XOR it to the working
register Z.

We run the algorithm on Fig. 9. Steps 6–7 of our attack are equivalent to the
GKZ algorithm [14]. As usual quantum algorithms, the algorithm is deterministic
until we perform a measurement (in Step 7). What follows the measurement in
Step 7 is done by a classical computer.

We define WU = V − U × sk, ptU = decode(WU ), ZU = (V − encode(ptU ))I ,
δU = WU − encode(ptU ). Due to the property of the encoding/decoding algo-
rithms,2 we have ∥δU∥ ≤ ρ+. We define

ψU = (δU )I = (WU − encode(decode(WU )))I (2)

2 We recall that we assume that decoding is defined over the entire SV space.

17



Input: I ⊆ {1, . . . , nV } and V ∈ SV

Decryption oracle: |U V x Z⟩ 7→ |U V x⊕ Dec(sk, (U, V )) Z⟩
1: set the quantum state to |0 V 0 0⟩
2: make a quantum Fourier transform on the first register and obtain

q−
nU
2
∑

U |U V 0 0⟩
3: make a decryption oracle call and obtain q−

nU
2
∑

U |U V ptU 0⟩
4: apply the L operator and obtain q−

nU
2
∑

U |U V ptU ZU ⟩
5: make a decryption oracle call again and obtain q−

nU
2
∑

U |U V 0 ZU ⟩
6: make a quantum Fourier transform on the U and Z registers and obtain

q−nU−#I
2

∑
U,α,β

ω(α·U)+(β·ZU )
q |α V 0 β⟩

7: measure the two active registers to get (α, β)
8: solve the linear system αj + (β · (ej × sk)I) = 0, j = 1, . . . , nU , where ej is

the U vector with coordinates set to 0 except the jth bit which is set to 1
9: if not solvable then abort
10: set s to the solution
11: if s not sparse then abort
12: return s

Fig. 9. GKZ-based key recovery with quantum access to a decryption oracle.

Hence, ZU = (U × sk)I + ψU with ψU small. Hence, the state after Step 4
resembles a quantum superposition of LWE entries, but with a spurious register
pt. This spurious register has a dramatic impact on the probability of later
measurements, as it will be shown below. It was noticed by Ambainis, Magnin,
Roetteler, and Roland [3] that getting rid of it is hard in general. Fortunately,
we can call the decryption oracle again to clear pt completely. Step 5 is doing it.
This is why we need a double query to the decryption oracle.

We call a pair (α, β) ∈ SU × ZIq good if β ̸= 0 and α satisfies the property
αj + (β · (ej × sk)I) = 0 for j = 1, . . . , nU . For all β ̸= 0, we have a unique α
such that (α, β) is good. When this property is satisfied, since U =

∑
j Ujej , we

have (U × sk)I =
∑
j Uj(ej × sk)I , thus

(α · U) + (β · ZU ) = (α · U) + (β · (U × sk)I) + (β · ψU )
= (β · ψU ) +

∑
j

Uj ((α · ej) + (β · (ej × sk)I))

= (β · ψU )
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We compute the probability pg to measure a good (α, β) pair. We have

pg =
∑

(α,β) good

∣∣∣∣∣q−nU−#I
2

∑
U

ω(α·U)+(β·ZU )
q

∣∣∣∣∣
2

=
∑
β

1

q2nU+#I

∣∣∣∣∣∑
U

ωβ·ψU
q

∣∣∣∣∣
2

− q−#I

where the q−#I term cancels the β = 0 term in the sum. By using |z|2 = z × z
over complex numbers, we have

pg =
∑
β

1

q2nU+#I

(∑
U

ωβ·ψU
q

)(∑
U ′

ω−β·ψU′
q

)
− q−#I

=
∑
β

1

q2nU+#I

∑
U,U ′

ωβ·(ψU−ψU′ )
q − q−#I

=
1

q2nU

∑
U,U ′

1

q#I

∑
β

ωβ·(ψU−ψU′ )
q − q−#I

=
1

q2nU

∑
U,U ′

1ψU=ψU′ − q−#I

= Pr[ψU = ψU ′ ]− q−#I

= 2−H2(ψU ) − q−#I

where H2 is the collision entropy (or Rényi of degree 2).
Without the second decryption call, with the same method, we would have

obtained pg = 2−H2(ψU ,ptU ) − q−#I2−H2(ptU ) which is too small. This shows
the importance of this second call, just to clear one register, although it works
against intuition when we are used to classical computing.

Our analysis is based on the decode function being defined on the entire do-
main SV . However, instances of our construction may rely on a partially defined
decode algorithm. In that case, we may have Dec(sk, ct) = ⊥. By convention, we
set encode(⊥) = 0. The same analysis gives

pg = Pr[ψU = ψU ′ ]− q−#I

≈ Pr[ptU ̸= ⊥]2
(
Pr[ψU = ψU ′ |ptU ̸= ⊥, ptU ′ ̸= ⊥]− q−#I

)
This may be too small if Pr[ptU ̸= ⊥] is small. This is the case with Lepton.

One crucial thing is that the distribution of ψU comes from (2), where U is
uniform, sk comes from the key generation algorithm, and V is fixed. In par-
ticular, ψU does not follow the normal distribution defined by (1) from the
encryption/decryption process which would have a lower H2(ψU ). If we had a
way to sample ψ from (1) without any spurious register, we would have a better
attack.

What we obtain is the following result:

19



Theorem 16. Let I ⊆ {1, . . . , nV } be a set of indices, let V ∈ SV be arbitrarily
fixed, let sk ∈ Ssk following the random distribution of the cryptosystem, and let
U ∈ SU be uniformly distributed. We define

ψU = (V − U × sk− encode(decode(V − U × sk)))I

The algorithm of Fig. 9 gives a pair (α, β) at Step 7 such that β ̸= 0 and

∀j ∈ {1, . . . , nU} αj + (β · (ej × sk)I) = 0

with probability 2−H2(ψU ) − q−#I and using 2 oracle calls. This is a set of nU
linear equations with nsk unknowns over Zq.

For #I = 1 and ψU uniform in [−ρ+,+ρ+], we can assume that H2(ψU ) =
log2(2ρ++1). We obtain that the success probability is roughly 1

2ρ+
− 1
q . Clearly,

it requires ρ+ < q
2 .

Note that when this fails (with probability 1−pg) and nsk ≤ nU , we can easily
filter out those cases because we can eliminate the cases when the equations have
no solution or when the solution is not sparse. Hence, either we recover part of
sk, or we abort. Therefore, we can iterate this attack to recover (at least some
part of) sk with a better probability.

For nsk = nU , we iterate 1/pg times on average until one sparse equation is
found.

For nsk > nU , we should, in general, treat the problem on a case-by-case
basis by studying the structure of the equations we obtain but there are some
general methods we can apply when nsk/nU is small. We could indeed iterate
nsk

pgnU
times to be sure to get enough sets of nU equations to recover the nsk

unknowns. To recover them, we can try all the
(

nsk

pgnU

) nsk
nU combinations of nsk

nU

sets. Each combination gives nsk equations. We can solve each combination until
one sparse sk is found.

However, for each j, the equation αj + (β · (ej × sk)I) = 0 typically depends
on a fixed subset of coordinates of sk and we should better apply those methods
for each of these subset separately.

We assume nsk ≤ nU . If there is a single coordinate i of U×sk which depends
on all coordinates of sk, by using I = {i}, we recover the entire sk with probability
p or abort. Hence, iterating p−1

g times fully recover sk with 2p−1
g decryption calls.

It is not always possible to find a coordinate i which depends on the entire
sk. For instance, in the case of Frodo, U × sk is a matrix multiplication so each
coordinate i depends on one column of sk only.

Interestingly, H2(ψU ) ≤ H(ψU ) so the number of queries when iterating is
lower bounded by 21+H(ψU ). This is a big difference with the previous classical
attack, which recovers one Zq element within only H(ψU ) queries. However, it
is hard to compare an attack finding a piece of the key using two oracle calls
and with probability p to an attack finding linear equations using many oracle
calls and succeeding with probability 1. For applications where the number of
key reuse is strictly limited, the former is more devastating.
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Example 17 (Frodo continued). The Frodo-640 parameters are nsk = nU but we
need to recover each of the n̄ = 8 columns separately if we take #I = 1. We
approximate 2−H2(ψU ) ≈ 1

2ρ+
. Since ρ+ = q2−ℓ−1 = 212 and q = 215, by using

two oracle calls, we recover one column of 640 values with probability 2−13.
(By iterating, we need 217 oracle calls to fully recover sk.) We can recover two
columns at the same time with #I = 2 in two oracle calls, but with probability
2−26.

Example 18 (NewHope continued). With NewHope512, ψU on a single compo-
nent has no information (this is due to ρ+ = q

2 which does not characterize ψU
compared to any other Zq element). Indeed, we obtain p = 0 with #I = 1. We
can use #I = 2 with I = {i, i + 256}. This uses two positions encoding the
same bit. We can see that ψU encodes two values which are either both smaller
than q

4 (with probability 1
2 ) or with exactly one being smaller than q

4 . Hence,

two ψU pairs collide with probability 1
4

(
2
q

)2
+ 1

8

(
2
q

)2
= 3

2q2 . It gives pg ≈
1

2q2 .

This means that with two oracle calls we recover the full secret with probability
2−28. (By iterating, we need 4q2 decryption calls, i.e. 229.) Compressing V in
NewHope does not modify our attack as V is constant.

Example 19 (Lepton continued). Lepton.CPA Light I considers q = 2. With
#I = 1, we obtain p = 0. The encoding function in Lepton is obtained by
first applying a BCH encoding, then using a repetition code. We can focus on
the repetition code and take two repeating bits in the set I with #I = 2. The
distribution of ψU from (2) should be of form Pr[ψU = 00] = 1

2 , Pr[ψU = 01] =
Pr[ψU = 10] = 1

4 . Hence, Pr[ψU = ψU ′ ] = 3
8 and we obtain p = 1

8 . Hence, we
could recover sk with probability 1

8 .
3 Unfortunately, decode is partially defined,

due to the BCH code, and we have Pr[ptU ̸= ⊥] ≈ 2−93 which is too low. That
is why the attack does not work for Lepton.

5.2 AJOP-Based Attack

We let a and b be two integers. We partition [a, a + q − 1] into c intervals
Ik = [a+kb, a+kb+ b−1] for k = 0, . . . , c−2 and Ic−1 = [a+(c−1)b, a+q−1],
with b = ⌈ qc ⌉. We define RF(x) = k such that x ∈ Ik modulo q. Hence, we can
consider RF as a function from Zq to Zc.

Lemma 20. Given f ∈ Znq such that {u · f ;u ∈ Znq } = Zq (we call such f
regular),4 we define

pq,c = q−2n

∣∣∣∣∣∣
∑
u∈Zn

q

ω−RF(v−u·f)
c ωu·(−f)q

∣∣∣∣∣∣
2

3 In this computation, we took the worst case for ambiguous decoding (e.g. when both
01 and 10 decode to 00). If now 01 decode to 00 and 10 decode to 11, the distribution
of ψU becomes Pr[ψU = 00] = Pr[ψU = 01] = 1

2
and we obtain p = 1

4
.

4 For q prime, every nonzero f is regular. For q = 2n, every f with at least one odd
component is regular.
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We write ε = b− q
c . For c = O(1) and q → +∞, we have

pq,c ≥ q−2

(∣∣∣∣∣ sin
πcε
q

sin πε
q

×
sin πb

q

sin π
q

∣∣∣∣∣−
∣∣∣∣∣ sin

πcε
q

sin π
q

∣∣∣∣∣
)2

=
c2

π2
sin2

πb

q
− o

(
1

q

)

If c divides q, we have pq,c ≥ c2

π2 sin
2 π
c .

Proof. Due to the fact that u 7→ v − u · f being balanced, we have

pq,c = q−2

∣∣∣∣∣∣
∑
x∈Zq

ω−RF(x)
c ωx−vq

∣∣∣∣∣∣
2

= q−2

∣∣∣∣∣∣
∑
x∈Zq

ω−RF(x)
c ωxq

∣∣∣∣∣∣
2

= q−2

∣∣∣∣∣∑
k∈Zc

∑
x∈Ik

ω−k
c ωxq

∣∣∣∣∣
2

Hence,

pq,c ≥ q−2

∣∣∣∣∣∑
k∈Zc

a+b−1∑
x=a

ω−k
c ωx+kbq

∣∣∣∣∣−
∣∣∣∣∣∣

a+b−1∑
x=a+q−(c−1)b

ω−c+1
c ωx+(c−1)b

q

∣∣∣∣∣∣
2

= q−2

(∣∣∣∣∣∑
k∈Zc

b−1∑
x=0

ω−k
c ωx+kbq

∣∣∣∣∣−
∣∣∣∣∣
b−1∑

x=b−cε

ωxq

∣∣∣∣∣
)2

= q−2

(∣∣∣∣∣∑
k∈Zc

b−1∑
x=0

ωkεq ω
x
q

∣∣∣∣∣−
∣∣∣∣∣
b−1∑

x=b−cε

ωxq

∣∣∣∣∣
)2

= q−2

(∣∣∣∣∣ sin
πcε
q

sin πε
q

×
sin πb

q

sin π
q

∣∣∣∣∣−
∣∣∣∣∣ sin

πcε
q

sin π
q

∣∣∣∣∣
)2

by using ωq = e
2iπ
q and ωc = e

2iπ
c . We have 0 ≤ ε < 1, c = O(1). When q → +∞,

this bound tends towards c2

π2 sin
2 πb
q with a o( 1q ) difference. ⊓⊔

In Fig. 10, we adapt the AJOP algorithm to make a KR-CCA attack using
a single query to a quantum oracle making

|U V z⟩ 7→ |U V z + Dec(sk, U, V )⟩

where the addition is in ZnV
c . It works assuming a special form of the cryptosys-

tem. Compared to our GKZ-based attack, this is more restrictive but it uses a
single oracle call and has a better success probability.

Theorem 21. We consider meta-PKC constructions of the following form. We
assume that M = ZnV

c , decode(W )j = RF(Wj), and that we can write U =

(U1, . . . , Um) ∈ Z
n1
U
q × · · ·Zn

m
U
q , (U × sk)j = Ug(j) · fj(sk) for some functions

g and fj, for j = 1, . . . , nV . Given a subset J over which g is injective, the
algorithm on Fig. 10 recovers all fj(sk) for j ∈ J with probability p ≥ p#Jq,c with
pq,c defined in Lemma 20, when they are regular.
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Proof. We compute the probability Pr[α]:

Pr[α] = q−2nU c−nV

∥∥∥∥∥∥
∑
U,z

∏
j∈J

ωzj−(ptU )j
c

ωU ·α
q |α V z⟩

∥∥∥∥∥∥
2

= q−2nU c−nV

∑
z

∣∣∣∣∣∣
∑
U

∏
j∈J

ωzj−(ptU )j
c

ωU ·α
q

∣∣∣∣∣∣
2

= q−2nU

∣∣∣∣∣∣
∑
U

∏
j∈J

ω−(ptU )j
c

ωU ·α
q

∣∣∣∣∣∣
2

= q−2nU

∣∣∣∣∣∣
∑
U

∏
j∈J

ω
−RF(Vj−Ug(j)·fj(sk))
c

ωU ·α
q

∣∣∣∣∣∣
2

= q−2nU

∣∣∣∣∣∣
∑
U

∏
j∈J

(
ω
−RF(Vj−Ug(j)·fj(sk))
c ω

Ug(j)·αg(j)
q

) ∏
j ̸∈g(J)

ωUj ·αj
q

∣∣∣∣∣∣
2

For α such that αg(j) = −fj(sk) for all j ∈ J and αj = 0 for j ̸∈ g(J), we have

Pr[α] = p#Jq,c when the fj(sk) are regular. ⊓⊔

Example 22 (Frodo continued). Frodo has c = 2ℓ. We regroup U by rows, i.e.,
Ug(j) is the g(j)th row of U and fj(sk) is the g(j)th column of sk. We have m̄

columns in sk. We recover #J columns with probability at least p#Jq,c . The Frodo-
640 parameters are q = 215, ℓ = 2, and m̄ = 8. This gives ε = 0 and pq,c ≥ 81%.
We can be greedy with #J = m̄ and fully recover sk with probability greater
than 18% which we approximate as 2−2 in the table.

Example 23 (NewHope continued). To adapt the attack to NewHope, we observe

decode(W )j = RF(|Wj |+ |Wj+256|) = 1|Wj |+|Wj+256|≤ q
2

and we cut an interval of 2q values into c = 2 intervals. We use #J = 1. For
simplicity, we use J = {0} so j = 0. We modify the algorithm by sampling V̄0 and
V̄256 and letting all other components of V̄ constant, and by making the Fourier
transform on the V̄0 and V̄256 registers as well. We obtain that we measure the
final state

q−nU p−2
∑

α,U∈SU
V̄0,V̄256,β1,β2∈Zp

c−
nV
2

∑
z∈Z

nV
c

(−1)z0−(ptU )0ωU ·α
q ωV̄ ·β

p |α β z⟩

where V̄ · β means V̄0β1 + V̄256β2. By similar computation as before, we obtain

Pr[α, β] = q−2nU p−4

∣∣∣∣∣∣
∑

U,V̄0,V̄256

(−1)(ptU )0ωU ·α
q ωV̄ ·β

p

∣∣∣∣∣∣
2
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Input: J ⊆ {1, . . . , nV } and V ∈ SV

Decryption oracle: |U V z⟩ 7→ |U V z + Dec(sk, (U, V ))⟩
1: prepare the state |0 V (1j∈J)j=1,...,nV ⟩ in ZnU

q × ZnV
q × ZnV

c

2: make a quantum Fourier transform on all registers except V and obtain

q−
nU
2

∑
U∈SU

c−
nV
2

∑
z′∈Z

nV
c

(∏
j∈J

ω
z′j
c

)
|U V z′⟩

3: apply the decryption oracle and get (by writing z = z′ + ptU )

q−
nU
2

∑
U∈SU

c−
nV
2

∑
z∈Z

nV
c

(∏
j∈J

ω
zj−(ptU )j
c

)
|U V z⟩

4: make a quantum Fourier transform on the first register and obtain

q−nU
∑

α,U∈SU

c−
nV
2

∑
z∈Z

nV
c

(∏
j∈J

ω
zj−(ptU )j
c

)
ωU·α
q |α V z⟩

5: measure the first register and obtain α with some probability Pr[α]

Fig. 10. AJOP-based key recovery with quantum access to a decryption oracle.

Let s be such that U · s = (U × sk)0. Clearly, there is a one-to-one mapping
between sk and s. The probability that α = −s, β1 = 1, β2 = 0 is

Pr[−s, 1, 0] = q−2nU p−4

∣∣∣∣∣∣
∑

U,V̄0,V̄256

(−1)(ptU )0ω−(U×sk)0
q ωV̄0

p

∣∣∣∣∣∣
2

= q−4p−4

∣∣∣∣∣∣
∑

u,v∈Zq,V̄0,V̄256∈Zp

(
1− 2 · 1|u|+|v|≤ q

2

)
ω
u−V ′

0
q ωV̄0

p

∣∣∣∣∣∣
2

= 4q−4p−2

∣∣∣∣∣∣∣∣
∑

u,v∈Zq

|u|+|v|≤ q
2

ωuq
∑
V̄0∈Zp

ω
−V ′

0
q ωV̄0

p

∣∣∣∣∣∣∣∣
2

with V ′
j = ⌈ qp V̄j⌋, u = V ′

0 − (U × sk)0, and v = V ′
256 − (U × sk)256. We can

compute experimentally this sum as Pr[−s, 1, 0] ≈ 16.4%. We can also compute
literally for p = q (i.e., we ignore compression). The terms of the inner sum are
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1. We have

Pr[−s, 1, 0] = 4q−4

∣∣∣∣∣∣2
q−1
2∑

v=0

q−1
2 −v∑

u=− q−1
2 +v

ωuq −

q−1
2∑

u=− q−1
2

ωuq

∣∣∣∣∣∣
2

= 4q−4

∣∣∣∣∣∣2
q−1
2∑

v=0

ω
q
2−v
q − ω

− q
2+v

q

ω
1
2
q − ω

− 1
2

q

− ω
q
2
q − ω

− q
2

q

ω
1
2
q − ω

− 1
2

q

∣∣∣∣∣∣
2

= 4q−4

∣∣∣∣∣∣∣2
(
ω

q+1
4

q − ω
− q+1

4
q

)2
(
ω

1
2
q − ω

− 1
2

q

)2 − ω
q
2
q − ω

− q
2

q

ω
1
2
q − ω

− 1
2

q

∣∣∣∣∣∣∣
2

Since ω
q
2
q = −1 and ω

q
4
q = i, we obtain

Pr[−s, 1, 0] = 16q−4

∣∣∣∣∣ω
1
4
q + ω

− 1
4

q

ω
1
2
q − ω

− 1
2

q

∣∣∣∣∣
4

=

∣∣∣∣∣∣ 2

q
(
ω

1
4
q − ω

− 1
4

q

)
∣∣∣∣∣∣
4

=
1

q4 sin4 π
2q

∼
(
2

π

)4

which is also 16.4%. We also have Pr[s,−1, 0] = Pr[−s, 1, 0]. Similarly, let s′

be such that U · s′ = (U × sk)256. We have Pr[∓s′, 0,±1] = Pr[s, 1, 0] and all
four cases reveal sk. Hence, we recover sk with probability about 66%. The
compression of V in NewHope does not modify the attack.

6 Conclusion

We have shown how to make efficient key recovery attacks against the weak ver-
sion of many post-quantum cryptosystems under classical PCA mode or quan-
tum CCA mode, even with one or two CCA queries.

When trying to adapt this attack strategy to various algorithms, we observed
that a binary code followed by an encoding in the high bits in Zq makes the attack
more difficult. However, the repetition code helps the attacker quite a lot.

Our attacks do not work for some algorithms. For instance, KINDI does not
encode the plaintext but rather a seed (our attack only works because decryption
outputs the seed for some reason). Compressing V does not harm quantum
attacks but makes our classical attack impossible. Compressing U sometimes
makes the quantum attack harder (this is the case in Kyber [6] but not in
Lizard [9]). Lepton does not decode on the entire domain. We let as future work
to investigate if attacks are still possible in those cases. Attacking other NIST
applications is also left as an open problem.

References
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A Post-Quantum Cryptosystems

We list here several algorithms for which we could adapt our attacks. The algo-
rithms are available from

https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions

For the KR-PCA attack, we estimate to (logq#SV ) log2(2ρ++1) the number
of oracle calls. For the GKZ-based attack, the probability of success is estimated
to 1

(2ρ+)#I − 1
q#I . For the AJOP-based attack, the probability of success is p#Jq,c .

EMBLEM. EMBLEM-CPA [21] works with SA = Zm×n
q , Ssk = Zn×kq , SB =

Zm×k
q , St = Zv×mq , SU = Zv×nq and SV = Zv×kq . The bilinear mappings are

matrix multiplications. The message space is {0, 1}ℓ and a message is encoded
by t-bit chunks. Each block of t-bits is padded with a 1 bit and 0 bits to match
a length of log2(q) bits. Then, all

ℓ
t blocks are arranged in a v× k matrix. Thus,

for a message pt, each log2(q)-bits element of the matrix M = encode(pt) is
pti,j∥1∥00 . . . 0, where pti,j is a t-bit block of the original message. Decoding
takes the t most significant bits of each element and concatenate them to obtain

27



the original message. Therefore, we have ρ− = ρ+ = q2−t−1. Components of
sk, t are sampled in [−B,B] uniformly at random and components of d, e, f are
sampled from the discrete Gaussian distribution on Z with standard deviation
σ. This is similar to Frodo. Hence, we have nk unknowns and each δ gives
vk equations. The GKZ-based attack with #I = 1 recovers one column of n
unknowns. The AJOP-based attack uses ε = 0, c = 2t, and #J = k. For 128-
bit security, the following parameters are used: m = 1003, n = 770, ℓ = 256,
q = 224, σ = 25, t = 8, B = 1, v and k can be tuned such that v×k×t = ℓ = 256,
typically v = 32, k = 1. We compute pq,c ≈ 1.

R.EMBLEM-CPA is a variant of EMBLEM where the variables are con-
sidered as polynomials in X modulo Xn + 1 with coefficients in Zq. It has

Ssk = SA = SB = St = SU = Znq and SV = Zℓ/tq with L∞ norm. The bilin-

ear mappings are polynomial multiplications. A message m ∈ {0, 1}ℓ is encoded
as in EMBLEM-CPA, except that now the ℓ

t encoded blocks are polynomial co-
efficients and not matrix entries. As before, we have ρ− = ρ+ = q2−t−1. There

is a small subtlety at encryption and decryption: since encode(m) ∈ Zℓ/tq , we
compute V = trunc(t×B+ f, ℓ/t)+ encode(m) and W = V − trunc(U × sk, ℓ/t),
where trunc(x, l) takes only the first ℓ components of a vector x. Coefficients of
sk, t are sampled in [−B,B] uniformly at random and coefficients of d, e, f are
sampled from a discrete Gaussian distribution on Z with standard deviation σ.
For 128-bit security, the following parameters are proposed: n = 463, ℓ = 256,
q = 225, σ = 25, t = 1, B = 1. We have n unknowns and each δ give them
all. The number of oracle calls is about n(log2 q− t) in the classical attack. The

probability of success in the quantum attack is 2t

q for the GKZ-based one, and
pq,c for the AJOP-based one.

KINDI. KINDI-CPA [4] works with the ring Rq = Zq[X]/(Xn+1). It has SA =

Rℓ2

q , Ssk = SB = St = SU = Rℓ
q and SV = Rq. The norm is L∞. The bilinear

mappings are matrix multiplications and scalar product when the elements are
vectors, where elements are considered as polynomials in Rq. The public key B
is compressed by dropping the k least significant bits of all coefficients.

The encoding of a message pt is more complex than in other LWE schemes.
A random polynomial s1 with binary coefficients is uniformly sampled from R2.
This polynomial is used as a seed for a PRNG function (Shake) that returns a
one time-pad ū and the value t. The message is encrypted into u = ū ⊕ pt by
one-time pad and encoded in a value e ∈ Rℓ

q and f ∈ Rq. The ciphertexts are
computed as (U, V ) = (t×A+e, t×B+f+encode(s1)) where encode(s1) = L ·s1
with L = q

2 . Then, the decryption V − U × sk recovers s1 thus t then e and
f , then u. The value of s1 also gives ū which decrypts u into pt. We have
ρ− = ρ+ = q

4 . Elements of A are sampled uniformly at random fromRq, elements
of sk, d, t and the one-time pad are sampled uniformly at random from Rq where
the coefficients of the polynomials are in [−p, p) and e, f are derived from the
message xored with the one-time pad. For KINDI256-CPA, the parameters used
are n = 256, ℓ = 3, p = 4, k = 2, q = 214. In our KR-PCA attack, we have to be
aware that tampering V results in having junk decryption in the last bits, so we

28



must assume that the PCO oracle ignores those last bits. Adapting the quantum
attacks may not be possible because they need s1 and we cannot recover s1 from
pt. Surprisingly, the decryption in KINDI kindly returns s1 in addition to the
plaintext. So, the quantum attacks work well, with ε = 0, c = 2, #I = #J = 1.

LIMA. LIMA-CPA [23] has Ssk = SA = SB = St = SU = SV = Znq with the L∞
norm. Elements are considered as polynomials in Zq[X]/⟨g⟩. LIMA-CPA comes
in two variants, namely LIMA-2p and LIMA-sp. In LIMA-2p, the polynomial
g is Xn + 1 with q ≡ 1 mod 2n and in LIMA-sp, g is a trinomial of degree
n = p − 1 and p is a safe prime (i.e. p = 2q + 1 for a prime q). Each bit of a
message is encoded into a 0 or q/2. Therefore, we have ρ− = ρ+ = q

4 . The sparse
elements sk, d, t, e, f are sampled in {−B, . . . , B} from an approximation of a
centered discrete Gaussian distribution of standard deviation σ =

√
(B + 1)/2.

A subtlety is that a pair (t, e) is accepted only if for yi = ti + ei, it has∣∣∣∣∣
n−1∑
i=0

yi

∣∣∣∣∣ ≤ 11×
√
2× n× σ

for LIMA-2p and∣∣∣∣∣
k∑
i=0

yi +

n−1∑
i=1

yi +

n−1∑
i=k+2

yi

∣∣∣∣∣ ≤ 11×
√
4× n× σ

for LIMA-sp and any k ∈ {0, . . . , n− 1}. For a classical 227-bit security LIMA-
2p-CPA, the parameters used are B = 19, n = 1024, q = 133 121. For a classical
152-bit security, LIMA-sp-CPA uses B = 19, n = 1018 and q = 12 521 473. The
quantum attacks work with c = 2, #I = #J = 1, and pq,c = 41%.

Lizard. Lizard-CPA [9] has SA = Zm×n
q , Ssk = {−1, 0, 1}n×ℓ, SB = Zm×ℓ

q ,

St = {−1, 0, 1}m, SU = Znp , and SV = Zℓp. The norm is L∞. Bilinear mappings
are matrix multiplications in these structures. Each bit of a message is encoded
into 0 or q/2 but U, V are scaled by a p/q factor, then pt ∈ {0, 1}ℓ is encoded
into 0 or p/2. Therefore, we have ρ− = ρ+ = p/4. Actually, encryption is based
on the LWR problem, hence with deterministic e and f . Decryption has form
Dec(sk, U, V ) = ⌈ 2

p (V − U × sk)⌋, which fits the quantum attacks. Elements of

sk are sampled from the distribution Pr[x = 1] = Pr[x = −1] = γ/2, Pr[x =
0] = 1−γ, elements of d are sampled in Zq from a discrete Gaussian distribution
of parameter σ = αq, t is sampled uniformly at random in {x ∈ {−1, 0, 1}m :
HW(x) = h}, where HW(x) counts the number of non-zero elements of x, and
e, f are zero. Proposed parameters are n = 544, m = 840, q = 1024, p = 256,
ℓ = 256, γ = 1

2 , α = 1
171 , and h = 128. The quantum attacks work with ε = 0,

c = 2, #I = #J = 1.
RLizard-CPA is a variant of Lizard which works with rings. It has SA = SB =

Znq , SU = SV = Znp , and Ssk = St = {−1, 0, 1}n. Elements are considered as poly-
nomials in these structures and bilinear mappings are polynomial multiplications
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in the corresponding ring. Messages are encoded similarly as in Lizard-CPA. El-
ements sk, t are sampled uniformly at random in {x ∈ {−1, 0, 1}m : HW(x) = h}
with h = hsk and h = ht, respectively. Coefficients of d are sampled according
to a discrete Gaussian distribution of parameter σ in Zq. Proposed parameters
are n = 1024, q = 1024, p = 256, α = 1

154 and hsk = ht = 128.

LOTUS. LOTUS-PKE-CPA [19] is the same as Lindner-Peikert scheme. We
have SA = Zn×nq , Ssk = SB = Zn×ℓq , St = SU = Znq , and Sv = Zℓq with the L∞
norm. Each bit of a message is multiplied by ⌊ q2⌋. Elements of sk, d, t, e, f are
sampled from a centered discrete Gaussian distribution of standard deviation
σ. Therefore, we have ρ+ = ρ− = ⌊ q4⌋. For LOTUS128-CPA, we have n = 576,
q = 8192, ℓ = 128, σ = 3. For key recovery, we have n × ℓ unknowns and ℓ
equations for each sample δi, hence we need n samples. The quantum attacks
work with ε = 0, c = 2, #I = #J = 1.

Titanium. Let Rq,n be the set of polynomials in X with degree less than n and
coefficients in Zq. Titanium has SA = Rm

q,n, Ssk = Rq,n+d+k−1, SB = Rm
q,d+k,

St = Rm
q,k+1, SU = Rq,n+k and SV = Rq,d with the L∞ norm. The bilinear

mappings use the middle product ⊙ defined as follows: Let a ∈ Rq,da and b ∈
Rq,db s.t. da + db − 1 = d+2k for some integers da, db, d, k. The middle product
⊙d : Rq,da ×Rq,db → Rq,d is the map

a⊙d b =
⌊
(a× b) mod Xk+d

Xk

⌋
i.e. we take the d terms of a × b of degree k, k + 1, . . . , k + d − 1 and divide by
Xk. Titanium extends it to vector multiplication as the dot product with ⊙d
for component multiplications and to polynomial-vector multiplication as the
component-wise middle product with the polynomial. All bilinear mappings are
middle products as described above, except for the St × SA → SU , which is the
dot product with polynomial multiplication in Zq[X]. A message pt is encoded
as a polynomial in R2,d with each coefficient scaled by ⌊ qp⌋. Therefore, we have

ρ− = ρ+ = ⌊ qp⌋/2. The secret key sk is sampled uniformly at random in St and
d is sampled by taking the difference of the Hamming weight of two uniformly
distributed η-bits values, this approximates a discrete Gaussian distribution.
For t, Nt = (k + 1)×m coefficients need to be sampled in Zq. In order to tune
the variance, N1 of them are sampled uniformly in {−B1/2, . . . , B1/2} \ {0}
and Nt − N1 of them are sampled uniformly in {−B2/2, . . . , B2/2} \ {0}. The
elements e, f are null. For TitaniumStd128-CPA [24] with NIST security level
I, the parameters are n = 1024, k = 511, d = 256, m = 9, q = 86 017, p = 2,
η = 4, N1 = 3816, B1 = 26, B2 = 27. The quantum attacks work with c = p
and #I = #J = 1.
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