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Abstract. Many crypto-algorithms, Deep-Learning, DSP compute on
words larger than 8-bit. SCA attacks can easily be done on Boolean op-
erations like XOR, AND, OR, and substitution operations like s-box,
p-box or g-box, as 8-bit hypothesis or less are enough to forge attacks.
However, attacking larger hypothesis word increases exponentially re-
quired resources: memory and computation power. Considering multi-
plication, 32-bit operation implies 232 hypothesis. Then a direct SCA
attack cannot be efficiently performed. We propose to perform instead
4 small 8-bit SCA attacks. 32-bit attack complexity is reduced to 8-bit
only complexity.
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1 Introduction

Following the low cost of 32-bit microcontrollers that substitute to 8-bit and 16-
bit microcontrollers in embedded product, more and more algorithms use 32-bit
operators. IoT firmware may then embed technical secret values of processing,
meaning then key-knowledge of the product. SCARE approach (SCA+RE) is
a way to retrieve such secret. It uses Side Channel Analysis (SCA) [I] to ex-
tract statistical information from product behavior (consumption and/or EM
radiation) to perform Reverse Engineering (RE) and the retrieve secret.

Initial work has been done on a Vernam-like cipher using a PRNG based
on Chaotic cell [2], [3], [4], [5]. The purpose of work was to retrieve 15 words
of 32-bit from the secret keys of the PRNG. 12 words are used in a sum of
products for a linear feedback. This article describes a side-channel attack on
32-bit multiplication, alone multiply operation or multiply-and-add operation.
The attack has been performed on "ma" instruction of ARM-v2 which computes
a multiply-and-add operation.

This 32-bit multiplication vulnerability can be applied on multiple other tar-
gets and for a large spectrum of applications. One can consider targets using
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Fig. 1. Attack on sensitive data in neural network

neuronal network for deep learning [6], [7]. (see example in Fig. [I)). Also coeffi-
cients of FIR-IIR filter for signal processing are sensitive goods (eg. FIR param-
eter used for preprocessing by a SCA attack at [8] could be retrieved by SCA
counterattack). (see example in Fig. . Also coefficients of PID for control loop
in avionic or automotive actuators ([9]) are goods for advanced functionalities.
(see example in Fig. . Last examples of applications deal with cryptographic
functions in TPM may also include such 32-bit operations for Linear Return
Function (LRF) in LFSR (pseudo-random generator), for HASH function or for
PUF[I0] (post-processing of PUF measurements). (see example in Fig. [4)).

2 Complexity of attacking 32-bit multiplication

The targeted operation to attack is an arithmetic multiplication of two 32-bit
values. The result is truncated at 32 bits, a modulus 232. This 32-bit multi-
plication vulnerability against SCA has been identified on multiple targets. As
the whole 32-bit word is needed for computation, following [11] statistical SCA
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attacks with a leakage model should need 232 partitions to discriminate the se-

cret multiplicand value. This implies a large memory resource to store 4 billion
independent traces and associated computing power to calculate intermediate
results for CPA or DPA at each new measurement of a multiplication activity.
Actually, current available computer resource can be enough for such parti-
tion and computation power. But it is still a waste of resources (memories and
computation time). For example, attacking with 1k-points traces, makes 232 =
4G partitions of 1k-points of 4 (or 8) bytes each. This imply to manage 16 TB
of memory to store intermediate differential traces. When 10k-traces are enough
to discriminate 8-bit hypothesis, 40k-traces will be needed at least for 32-bit
hypothesis.
This will imply to manage 16 * 102 * 40 * 10% = 640 * 10'® Bytes, meaning
more than 108 operations (31 years of computation on 1GHz computer).

3 Split the attack

Instead of attacking the whole word, we propose a different approach based on
divide and conquer. The single attack with 232 partitions is substituted by 4
small and sequential attacks on 2% partitions.

You can note this strategy to attack 32-bit word can be extended to larger
word, (N x 8) bits word can be attacked through N successive attacks on 8-bit
value.
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The proposed approach will split this single attack into 4 small attacks on 8
bits of secret key but computation still uses 32-bit multiplicationﬂ

First of all is to describe the operands and elementary operations of the
multiplication.
Each 32-bit word can be assumed as a vector of four 8-bit bytes:

—Y=[Y3Y2Y1LY0 :result Y = K*X
— K =[K3,K2,K1,K0] : secret key which is the multiplier constant
— X =[X3,X2,X1,X0] : data to multiply

Note: "<" operator corresponds to a bit-shifter operator, ¢ = a < b sets ¢
to a value left shifted from b bits. The operation of "left shift from 1 bit" is
equivalent to "multiply by 2". Using the "<" operator, Y can be rewrite in byte
sub-operation as the following:

As result of multiplication is truncated to 32-bit, "Y" expression can be
simplified as:

5 Actually, for some cryptographic operations, such as AES, it is natural to cut the 128-
bit datapath in 16 bytes, as the algorithm is programmed this way. But regarding
the 32-bit multiplication, it is less obvious that the attacker can choose to focus
specifically on sub-words, which actually normally have interactions between them
(through carries). This is the point which makes our result remarkably non-obvious
and interesting in terms of divide-and-conquer approach.
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Amongst 16 initial intermediate multiplications, only 10 multiplications are
really needed. This triangle representation reveals that part of the key can be
selected in operation only by selecting Xi values.

4 Attack steps

4.1 Step 1 - Retrieve KO

If X0, X1 and X2 can be forced to zero (0), then

Y = ((K0.X3) < 24) & 0xFF000000.

A SCA attack with variation on X3 enables to retrieve KO with only 256 parti-
tions and up-to 256 traces. The leakage model is (only 8 low weight bits):
L(KO0): HW(Y) = HW((K0.X3) & OxFF)

HW(Y) takes value in [0:8]

In case of noisy measurements, multiple traces can be acquired and average for
each X3 value to reduced noise impact.

4.2 Step 2 - Retrieve K1

The attack strategy is the same but with different Xi forced to zero. If X0, X1
and X3 can be forced to zero (0), then

Y = (K1.X2) < 24 + (K0.X2) < 16.

A SCA attack with variation on X2 enables to retrieve K1 with only 256 parti-
tions and up-to 256 traces. This attack needs to know the value of KO.
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The leakage model is:
L(K1): HW(Y) = HW(((K1.X2) & 0xFF) < 8 + (K0.X2))
L(K1): HW(Y) = HW(((K1 < 8 + K0).X2) & 0x0000FFFF)
HW(Y) takes value in [0:16]
In case of noisy measurements, multiple traces can be acquired and average for
each X2 value to reduced noise impact.

4.3 Step 3 - Retrieve K2

The attack strategy is the same but with different Xi forced to zero. If X0, X2
and X3 can be forced to zero (0), then

Y = (K2.X1) <24+ (K1.X1) < 16 + (K0.X1) < 8.

A SCA attack with variation on X1 enables to retrieve K2 with only 256 parti-
tions and up-to 256 traces. This attack needs to know the value of K0 and K1.
The leakage model is:

L(K2): HW(Y) = HW(((K2.X1) & 0xFF) < 16 + (K1.X1) <« 84+ (K0.X1))
L(K2): HW(Y)=HW(((K2 <« 16+ K1 <« 8+ K0).X1) & 0xO0FFFFFF)

HW(Y) takes value in [0:24]
In case of noisy measurements, multiple traces can be acquired and average for
each X1 value to reduced noise impact.

4.4 Step 4 - Retrieve K3

The attack strategy is the same but with different Xi forced to zero. If X1, X2
and X3 can be forced to zero (0), then

Y = (K3.X0) <« 24+ (K2.X0) < 16 + (K1.X0) < 8 + (K0.X0) < 0.

A SCA attack with variation on X0 enables to retrieve K3 with only 256 parti-
tions and up-to 256 traces. This attack needs to know the value of K0, K1 and
K2.

The leakage model is:

L(K3): HW(Y) = HW(((K3.X0)& 0xFF) < 244 (K2.X0) < 16+(K1.X0) <
8+ (K0.X0))

LK3) : HW(Y) = HW(((K3 < 24+ K2 < 16 + K1 < 8+ K0).X0)&
OxFFFFFFFF)

HW (Y') takes value in [0:32]

In case of noisy measurements, multiple traces can be acquired and average for
each X0 value to reduced noise impact.
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4.5 Conclusion

The complex attack on K (32-bit) is replaced by 4 small attacks on 8-bit word:
K =[K3,K2,K1, K0]. The order of the sequence of attacks remains as the last
constraint to know few sub-keys K; before attacking next sub-key K.

5 Benchmark

5.1 SCA attack on 8-bit multiplication

Each of 8-bit SCA attack presented in the previous chapter is based on the same
attack scenario.

The 8-bit attack, used by the previous attacks, is a classical statistical SCA.
CPA is chosen as distinguisher as it can converge quickly, even in noisy condition.

5.2 Performance on Software implementation

A single 8-bit attack on 1k-points traces requires 256 * 1024 x* 8 = 2M bytes of
memory and for computational resources 32 * 1024 x 256 = 8M multiplications
and 256 x 1024 x 256 = 32M additions.
For the whole attack, this corresponds to 2M-bytes of memory, 32M-multiplications
and 128M-Additions.

In comparison, a direct 32-bit attack needs 16 TB (16 Million of MB) of
memory and 10'® operations (10'2 * 1M operations).

6 Conclusion

By splitting big-word variables into an array of bytes, the complex attack of a N-
Bytes word multiplication can be substituted by N small attacks on 8-bit words.
The attack complexity O(23?) is replaced by 4xO(28). The gain of memory is over
10 million and the gain of computation is 1 billion. Then the new method allows
to compute the attack in 1 second on embedded computer (1GHz mono-core,
4MB of memory) instead of 31 years with 16 TB of memory.

7 Glossary

Chaotic Cell Compute a value x(n+1) with z(n + 1) = f(z(n)) that
makes a prediction of x(n+p) very complex if p>1.

CPA Correlation Power Analysis.

CEMA Correlation Electro-Magnetic Analysis.

Double an extended floating-point value on 64-bit (8 bytes), IEEE
defined.

EM ElectroMagnetic.

FIR Finite Impulse Response, a filter defined by:
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Y(n) = i, [X (n =) * a(i)]
a floating-point value on 32-bit, IEEE defined.
Giga-Bytes = 10° Bytes (Billion).
Data transformation to produce a compressed signature.
This signature is used to test data integrity.
Hamming Distance, HW of the transition of a register value
when update: HD(reg(n)) = HW ( reg(n) XOR reg(n—1)
).
Hamming Weight, number of "1" in binary representation
of a number.
Infinite Impulse Response, a filter defined by

Y(n) = 3 [X (n—i)xa(i)] = 55 [Y (n—5) #b(j)]
Linear-Feedback Shift Register.
Linear Return Function.
Multiply-and-Accumulate, same as Multiply-and-Add.
Mega-Bytes = 10% Bytes (Million).
Two operation executed by a single instruction Y = ax X +
b.
In Artificial Intelligence (A.L.) context, set neurons orga-
nized and interconnected in layers to process and reduce
number of values.
Each neuron of a layer computes a value from sum of prod-
uct of its inputs and propagate a post-processed value to
upper layer of neurons.
Proportional, Integral and Derivative; definite a three-term
controller in a control loop feedback mechanism.
Pseudo-Random Number Generator, produce a predeter-
mined sequence of value that simulate random, an initial
seed give the beginning of the sequence.
Physical Unclonable Function. Use silicon intrinsic prop-
erty to produce a unique ID, even from the same logical
gate/transistor definition. Post-processing using multipli-
cation can be used to forge better quality PUF.
Reverse Engineering.
Random Number Generator, can be a TRNG or a PRNG.
Side-Channel Analysis for Reverse Engineering.
Side-Channel Analysis.
Tera-Bytes = 10'? Bytes (Millions of million).
Trusted Platform Module.
True Random Number Generator, use physical property to
produce unpredictable random number (Eg. atomic desin-
tegration).
eXclusive OR.
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