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Abstract Anonymity is a primary ingredient for our digital life. Several tools have been designed
to address it such as, for authentication, blind signatures, group signatures or anonymous credentials
and, for confidentiality, randomizable encryption or mix-nets. When it comes to complex electronic
voting schemes, random shuffling of ciphertexts with mix-nets is the only known tool. However, it
requires huge and complex zero-knowledge proofs to guarantee the actual permutation of the initial
ciphertexts.
In this paper, we propose a new approach for proving correct shuffling: the mix-servers can simply
randomize individual ballots, which means the ciphertexts, the signatures, and the verification keys,
with an additional global proof of constant size, and the output will be publicly verifiable. The
computational complexity for the mix-servers is linear in the number of ciphertexts. Verification
is also linear in the number of ciphertexts, independently of the number of rounds of mixing.
This leads to the most efficient technique, that is highly scalable.Our constructions make use of
linearly-homomorphic signatures, with new features, that are of independent interest.
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1 Introduction

A shuffle of ciphertexts is a set of ciphertexts of the same plaintexts but in a permuted order
such that it is not possible to trace back the senders after decryption. It can be used as a building
block to anonymously send messages: if several servers perform a shuffle successively, nobody
can trace the messages. More precisely, one honest mix-server suffices to mask the order of the
ciphertexts and this produces a random permuted set of messages. These mix-servers constitute
the notion of a mix-net protocol introduced by Chaum [Cha81]. The higher the number of mix-
servers is, the safer the protocol gets, as one honest mix-server is enough even if all the other
ones are dishonest. But the more costly the protocol becomes!

1.1 State of the Art

Usually, a shuffle of ciphertexts is a permutation applied to randomized ciphertexts. Random-
ization of the ciphertexts provides the privacy guarantee, but one additionally needs to prove
the permutation property. This last step requires huge and complex zero-knowledge proofs.
In the main two techniques, Furukawa and Sako [FS01] make proofs of permutation matrices
and Neff [Nef01] considers polynomials which remain identical with a permutation of the roots.
While the latter approach produces the most efficient schemes, they need to be interactive:
more recently, Groth and Ishai [GI08] exploited this interactive approach and proposed a zero-
knowledge argument for the correctness of a shuffle with sub-linear communication complexity,
but computational complexity is super-linear. Since this is an interactive Special Honest-Verifier
Zero-Knowledge protocol with public random coins, the Fiat-Shamir heuristic [FS87] can be ap-
plied to make it non-interactive in the random oracle model. However, with multiple mixing
steps, which are required if one wants to guarantee anonymity even if some mix-servers are ma-
licious, the communication is linear in this number of steps, and the verification cost becomes
prohibitive.
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The former approach with proof of permutation matrix is more classical, with many candi-
dates. Groth and Lu [GL07] proposed the first non-interactive zero-knowledge proof of shuffle
without random oracles, using Groth-Sahai proofs with pairings [GS08], but under non-standard
computational assumptions that hold in the bilinear generic group model. Anyway, computa-
tions are still very high, the overhead proof is linear in Nn, where n is the number of ballots and
N the number of shuffles, which is a bottleneck. In addition, they needed a Common Reference
String (CRS) linear in n.

We propose a totally new approach that can handle each ballot in an independent way, with
just a constant-size overhead. In addition, the overhead after each shuffle can be updated, to
still keep it constant-size, independently of the number of mixing steps. From our knowledge,
this is the most efficient and scalable solution: it will also rely on Groth-Sahai proofs with
pairings [GS08] and under a new computational assumption that holds in the bilinear generic
group model. As a consequence, assumptions are quite similar to [GL07], but we will just have
constant-size CRS and constant-size overhead proof.

1.2 Our Approach

In a mix-net, each ciphertext Ci (encrypted vote in the ballot, in the context of electronic
voting) is signed by its sender and the mix-server randomizes the ciphertexts {Ci} and permutes
them into the set {C ′i} in a provable way. The goal of the proof is to show the existence of a
permutation Π such that for every Ci in the input ballot-box, there is a randomization C ′Π(i)
in the output ballot-box, and vice-versa. Then, the output ciphertexts can be mixed again by
another mix-server, hence the notion of mix-network (a.k.a. mix-net).

Our approach avoids the proof of an explicit permutation on all the ciphertexts (per mixing
step) but still guarantees the appropriate properties deeply using the linearly-homomorphic
signature schemes:

– each voter is associated to a signing/verification key-pair for a linearly-homomorphic signa-
ture scheme [BFKW09], and uses it to sign his ciphertext and a way to randomize it. This
guarantees that the mix-server will only be able to generate new signatures on randomized
ciphertexts, which are unlinkable to the original ciphertexts, due to the new random coins.
However, the verification keys and signatures still allow linkability;

– each verification key of the voters is also signed with a linearly-homomorphic signature
scheme, that allows randomization too, and provides unlinkability.

When talking about linearly-homomorphic signature schemes, we consider signatures that are
malleable and that allow to sign any linear combination of the already signed vectors [BFKW09],
this is thus an homomorphism on the messages. In order to be able to use this property on the
latter scheme that signs the verification keys of the former scheme, it will additionally require
some homomorphism on the keys.

However, whereas ciphertexts are signed under different keys, which excludes combinations,
the verification keys are all signed under the authority’s key. And a linearly-homomorphic
signature scheme not only allows multiplication by a constant, but also linear combinations,
which would allow combinations of keys and thus, possibly, of ballots. In order to avoid such
combinations, we require the additional notion of non-miscibility: only linear combination on
one message is possible, and thus just the multiplication by a constant.

We will thus use two distinct notations: (Keygen, Sign,Verif) for a linearly-homomorphic
signature, and (Keygen∗,Sign∗,Verif∗) for a linearly-homomorphic signature that additionally
guarantees non-miscibility. We first provide a generic technique that can apply to any linearly-
homomorphic signature: by adding Square Diffie-Hellman tuples (g, gwi , gw2

i ) in the signed vector
(later called expanded vector), we get non-miscibility. This indeed limits signatures to multipli-
cations by constant values only. We then present and exploit a dedicated scheme, that is more
efficient. These constructions present different advantages and constraints: the former is more
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generic, while the latter is more efficient. We will thus focus on the latter in the body of the
paper, and give details on the former in the appendices.

Unforgeability of the signature schemes together with the non-miscibility property will es-
sentially provide the soundness of the proof of correct mixing (and thus for both constructions):
only permutations of ballots are possible. Eventually, unlinkability (a.k.a zero-knowledge prop-
erty) will be satisfied thanks to the randomizations that are indistinguishable for various users,
under some DDH-like assumptions. With the above linear homomorphisms of the signatures, we
can indeed guarantee that the output C ′j is a randomization of an input Ci, and the verification
keys are unlinkable. But the proofs must be specific to the actual signature schemes.

More precisely, the signature unforgeability will guarantee that all the ballots in the output
ballot-box come from legitimate signers: we will also have to make sure that there is no du-
plicates, nor new ballots, and the same numbers of ballots in the input ballot-box and output
ballot-box for the formal proof of permutation.

This technique of randomizing ciphertexts and verification keys, and adapting signatures,
can be seen as an extension of signatures on randomizable ciphertexts [BFPV11] which however
did not allow updates of the verification keys. This previous approach excluded anonymity
because of the invariant verification keys. Our new approach can find more applications where
anonymity and privacy are crucial properties.

1.3 Related Work

Groth and Lu [GL07] protocol is definitely the closest approach to ours. This was the first
efficient non-interactive zero-knowledge proof for correctness of a shuffle, in the standard model.
They use BBS encryptions [BBS04] to have only 3 group elements in a ciphertext and Groth-
Sahai proofs [GS08] to obtain a zero-knowledge proof of the implicit permutation matrix. As
us, they rely on a non-standard assumption that holds in the generic bilinear group model.
However, their assumption is very close to their goal, as it is a permutation pairing assumption
that essentially assumes there exists a permutation when manipulating Square Diffie-Hellman
tuples with some invariant requirements. They also required a quite huge CRS. In our case, for
the general conversion that provides non-miscibility, we assume the existence of an extractor
for linear combinations of signatures, which is close to the extractability assumptions used in
SNARKs [GW11, BCCT12, GGPR13]. All our properties are proven in the generic bilinear
group model, and we get a construction with a constant-size proof.

Indeed, the main drawback of their paper is the size of the proof: to shuffle n ciphertexts,
the proof consists of 15n + 120 group elements and because one needs to commit one scalar
and 2n+ 10 group elements and to satisfy n quadratic equations and 6 equations of n-element
products, the prover needs to make at least 3 × 1 + 3 × (2n + 10) + 6 × (6n + 6) = 48n + 33
exponentiations in a symmetric bilinear group. Whereas with our construction, the prover only
needs to make 8 exponentiations in G1 and 9 exponentiations in G2 per ciphertext plus a
constant overhead of 7 exponentiations in G1 and 5 exponentiations in G2. In addition, from
the communication point of view, after N mixing protocols, our global proof does not grow and
just consists of 4 group elements, whatever the value N .

1.4 Organization

In the next section, we recall some usual assumptions in pairing-based groups, and we introduce
a new unlinkability assumption that will be one of the core assumptions of our applications.
Note that it holds in the generic bilinear group model. In Section 3, we recall the notion of
linearly-homomorphic signatures, with a compact construction and its security analysis in the
generic bilinear group model. Then we extend it to handle the non-miscibility property. We then
apply these constructions to mix-networks (Section 4), followed by a detailed security analysis
in Section 5. Eventually, we explain application to electronic voting in Section 6.
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2 Computational Assumptions

In this section, we will first recall some classical computational assumptions and introduce a
new one, of independent interest, as it can find many use cases for privacy-preserving protocols.

2.1 Classical Assumptions

All our assumptions will be in the Diffie-Hellman vein, in the pairing setting. We will thus con-
sider an algorithm that, on a security parameter κ, generates param = (G1,G2,GT , p, g, g, e)←
G(κ), an asymmetric pairing setting, with three groups G1,G2,GT of prime order p (with 2κ
bit-length), g is a generator of G1 and g is a generator of G2. In addition, the application
e : G1 ×G2 → GT is a non-degenerated bilinear map, hence e(g, g) is also a generator of GT .

Definition 1 (Discrete Logarithm (DL) Assumption). In a group G of prime order p, it
states that for any generator g, given y = gx, it is computationally hard to recover x.

Definition 2 (Square Discrete Logarithm (SDL) Assumption). In a group G of prime
order p, it states that for any generator g, given y = gx and z = gx

2 , it is computationally hard
to recover x.

Definition 3 (Twin Discrete Logarithm (TDL) Assumption). In groups G1 and G2 of
prime order p, it states that for any generators g and g of G1 and G2 respectively, given f = gx

and f = gx, it is computationally hard to recover x.

Definition 4 (Decisional Diffie-Hellman (DDH) Assumption). In a group G of prime
order p, it states that for any generator g, the two following distributions are computationally
indistinguishable:

Ddh(g) = {(g, gx, h, hx);h $← G, x, $← Zp}

D4
$(g) = {(g, gx, h, hy);h $← G, x, y, $← Zp}.

This is well-know, using an hybrid argument, or the random-self-reducibility, that this assump-
tion implies the Decisional Multi Diffie-Hellman (DMDH) Assumption, which claims the indis-
tinguishability, for any constant n ∈ N, of the distributions:

Dnmdh(g) = {(g, (gxi)i, h, (hxi)i);h $← G, (xi)i $← Znp}

D2n+2
$ (g) = {(g, (gxi)i, h, (hyi)i);h $← G, (xi)i, (yi)i $← Znp}.

Definition 5 (Decisional Square Diffie-Hellman (DSDH) Assumption). In a group G of
prime order p, it states that for any generator g, the two following distributions are computa-
tionally indistinguishable:

Dsdh(g) = {(g, gx, gx2), x $← Zp} D3
$(g) = {(g, gx, gy), x, y $← Zp}.

It is worth noticing that the DSDH Assumption implies the SDL Assumption: if one can break
SDL, from g, gx, gx

2 , one can compute x and thus break DSDH.

2.2 Unlinkability Assumption

For anonymity properties, we will use some kind of credential, that can be defined as follows
for a scalar u and a basis g ∈ G1, with g ∈ G2, r, t ∈ Zp:

Cred(u, g; g, r, t) =
((

g
g

)
,

(
g
g

)t
,

(
g
gt

)r
×
(

1
gu

)
, gu

)
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Definition 6 (Unlinkability Assumption). In groups G1 and G2 of prime order p, for any
g ∈ G1 and g ∈ G2, with the definition below, it states that the distributions Dg,g(u, u) and
Dg,g(u, v) are computationally indistinguishable, for any u, v ∈ Zp:

Dg,g(u, v) =
{

(Cred(u, g; g, r, t),Cred(v, g; g′, r′, t′)); g
′ $← G2,

r, t, r′, t′ $← Zp

}
Intuitively, the third component is an ElGamal ciphertext of the gu, which hides it, and makes
indistinguishable another encryption gu from an encryption of gv while, given (g, gu) and (g′, g′v),
one cannot guess whether u = v, under the DDH assumption in G2. However the pairing relation
allows to check consistency:

e(grt · gu, g) = e(gr, gt) · e(g, gu) = e(gr, gt) · e(g, g)u

e(gr′t′ · gv, g′) = e(gr′ , g′t
′
) · e(g, g′v) = e(gr′ , g′t

′
) · e(g, g′)v

Because of the independent group elements g and g′ = gs in the two credentials, this assumption
clearly holds in the generic bilinear group model, as one would either need to compare u = v or
equivalently rt = r′t′, whereas combinations only lead to e(g, g) to the relevant powers rt, sr′t′,
as well as u and sv, for an unknown s.

Thanks to this unlinkability assumption, and the randomizability of the above credential,
proving knowledge of u can lead to anonymous credentials. But our main application will be
for our anonymous shuffle presented in Section 4.

3 Linearly-Homomorphic Signatures

The notion of homomorphic signatures dates back to [JMSW02], with notions in [ABC+12],
but the linearly-homomorphic signatures, that allow to sign vector sub-spaces, were introduced
in [BFKW09], with several follow-up by Boneh and Freeman [BF11b, BF11a] and formal security
definitions in [Fre12]. In another direction, Abe et al. [AFG+10] proposed the notion of structure-
preserving signature, where keys, messages and signatures all belong in the same groups. Then
Libert et al. [LPJY13] combined both notions and proposed a linearly-homomorphic signature
scheme, that is furthermore structure-preserving. Our work is inspired from this construction.

3.1 Variant of the LPJY Signature
We first adapt the LPJY signature [LPJY13], that was initially designed in the symmetric
pairing setting, to the asymmetric setting. The basic construction (the one-time version) can
be adapted as follows:
Keygen(κ): Given a security parameter κ, let param = (G1,G2,GT , p, g, g, e) ← G(κ), where g

and g are random generators of G1 and G2 respectively. One randomly chooses (gu, gv, hu,
hw) $← G4

2, as well as ski = (ui, vi, wi) $← Z3
p, for i = 1, . . . , n, which defines the signing

key sk = (ski)i and the verification key vk = (param, gu, gv, hu, hw, (vki)i) for vki = (gi =
guiu gviv , hi = huiu hwiw ).

Sign(sk, (Mi)i): Given a signing key sk = (ui, vi, wi)i and a vector-message (Mi)i ∈ Gn
1 , one sets

σ = (σ1, σ2, σ3) ∈ G3
1, where

σ1 =
n∏
i=1

M−uii , σ2 =
n∏
i=1

M−vii , σ3 =
n∏
i=1

M−wii

Verif(vk, (Mi)i, σ): Given a verification key vk = (param, gu, gv, hu, hw, (gi, hi)i) and a vector-
message (Mi)i ∈ Gn

1 with the signature σ = (σ1, σ2, σ3) ∈ G3
2, one can check whether both

equalities hold or not

e(σ1, gu) · e(σ2, gv) ·
n∏
i=1

e(Mi, gi) = 1GT = e(σ1, hu) · e(σ3, hw) ·
n∏
i=1

e(Mi, hi).
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They proved the unforgeability under the Simultaneous Double Pairing assumption, which is
implied by the linear assumption in the symmetric case. But the unforgeability is not the
usual notion, because of the linear homomorphism: given several vector-messages with their
signatures, this is possible to generate the signature of any linear combination of the vector-
messages (actually, in the exponents): given two vector-messages M = (Mi)i and M ′ = (M ′i)i,
with their signatures σ = (σ1, σ2, σ3) and σ′ = (σ′1, σ′2, σ′3), then σ′′ = (σ′′1 = σ1

ασ′1
β, σ′′2 =

σ2
ασ′2

β, σ′′3 = σ3
ασ′3

β) is a valid signature of M ′′ = Mα ·M ′β = (Mi
αM ′i

β)i.
The security proof thus guarantees that no adversary can generate a valid signature for a

message outside the linear span (in the exponents) of the already signed messages.

3.2 Improved Construction in the Generic Bilinear Group Model

This linear homomorphism is a very nice property, but this would be good to have the additional
information of the explicit linear combination produced from the input vector-messages. This is
actually possible when one focuses on algebraic adversaries [EHK+13, FKL18], or in the generic
group model [Sho97, BBG05, Boy08]. But in such a model, we can simplify the construction,
and prove its security. Then, we will show how such a scheme can be used for privacy-preserving
constructions.

Keygen(κ): Given a security parameter κ, let param = (G1,G2,GT , p, g, g, e) ← G(κ), where
g and g are random generators of G1 and G2 respectively. One randomly chooses ski =
si

$← Zp, for i = 1, . . . , n, which defines the signing key sk = (ski)i, and the verification key
vk = (param, (gi)i) for gi = gsi ;

Sign(sk,M = (Mi)i): Given a signing key sk = (si)i and a vector-message M = (Mi)i ∈ Gn
1 ,

one sets σ =
∏n
i=1M

si
i ∈ G1;

Verif(vk,M = (Mi)i, σ): Given a verification key vk = (param, (gi)i), a vector-message M =
(Mi)i, and a signature σ, one checks whether the equality e(σ, g) =

∏n
i=1 e(Mi, gi) holds or

not.

As above, this signature scheme is linearly-homomorphic, but it provides a few interesting
properties, that will be exploited later:

Property 7 (Message Homomorphism). Given several vector-messages with their signatures, this
is possible to generate the signature of any linear combination of the vector-messages: given two
vectors M = (Mi)i and M = (M ′i)i, with their signatures σ and σ′, then σ′′ = σασ′β is a valid
signature of M ′′ = MαM ′β, where the operations are component-wise.

In addition, some relations hold on the keys:

Property 8 (Key Homomorphism). It is important to precise the basis g used in the verification
process: if e(σ, g) =

∏n
i=1 e(Mi, gi) holds, then e(σ, gα) =

∏n
i=1 e(Mi, g

α
i ) holds too. Then, if a

message-signature is valid for a verification key vk, with respect to a basis g, then it is also valid
for the verification key vk′ = vkα, with respect to the basis g′ = gα, for any α.

Furthermore as
∏n
i=1 e(Mi, g

α
i · g′i

β) =
∏n
i=1 e(Mi, gi)α · e(Mi, g

′
i)β, Sign(α · sk + β · sk′,M) =

Sign(sk,M)α · Sign(sk′,M)β.

3.3 Unforgeability

First, we consider adversaries in the generic bilinear group model [BBG05], and show that for
any new valid pair (M , σ), one necessarily knows how M is linearly related to the already
known signed vector-messages.

Theorem 9. In the generic bilinear group model, given n valid pairs (M j = (Mj,i)i, σj)j under
a verification key vk, for any adversary that produces a new valid pair (M = (Mi)i, σ) under
the same verification key vk, there exits (αj)j such that M =

∏
j M

αj
j and σ =

∏
j σ

αj
j .
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Proof. The adversary is given (M j = (Mj,i)i, σj)j which contains group elements in G1, as well
as the verification key vk = (gk)k in G2. For any combination query, the simulator will consider
the input elements as independent variables Xj,i, Vj , and Sk to formally represent the discrete
logarithms of Mj,i and σi in basis g, and gk in basis g. As usual, any new element can be seen
as a multivariate polynomial in these variables, of degree maximal 2 (when there is a mix be-
tween G1 and G2 group elements). If two elements correspond to the same polynomial, they are
definitely equal, and the simulator will provide the same representation. If two elements corre-
spond to different polynomials, the simulator will provide random independent representations.
The view of the adversary remains unchanged unless the actual instantiations would make the
representations equal: they would be equal with probability at most 2/p, when the variables
are set to random values. After N combination queries, we have at most N2/2 pairs of different
polynomials that might lead to a collision for a random setting with probability less than N2/p.
Excluding such collisions, we can thus consider the polynomial representations only, denoted ∼.
Then, for the output (M = (Mk)k, σ), one knows αk,j,i, βk,j , γi,j , δj , such that:

Mk ∼
∑
j,i

αk,j,iXj,i +
∑
j

βk,jVj σ ∼
∑
j,i

γj,iXj,i +
∑
j

δjVj .

As ((Mj,i)i, σj)j and ((Mk)k, σ), are valid input and output pairs, we have the following relations
between polynomials:

Vj =
∑
i

Xj,iSi

∑
j,i

γj,iXj,i +
∑
j

δjVj =
∑
k

∑
j,i

αk,j,iXj,i +
∑
j

βk,jVj

Sk

=
∑
k,j,i

αk,j,iXj,iSk +
∑
k,j

βk,jVjSk

Hence, the two polynomials are equal:∑
j,i

γj,iXj,i +
∑
j,i

(δj − αi,j,i)Xj,iSi =
∑
k 6=i,j,i

αk,j,iXj,iSk +
∑
k,j

βk,jVjSk

which leads, for all i, j, to γj,i = 0 and δj = αi,j,i, and for k 6= i, αk,j,i = 0 and βk,j = 0. Hence,
Mk ∼

∑
j δjXj,k and σ ∼

∑
j δjVj , which means that we have (δj)j such that Mk =

∏
jM

δj
j,k

and σ =
∏
j σ

δj
j . ut

3.4 Notations and Constraints

As one can derive signatures of linear combinations of the inputs, from signed inputs, one
can talk about signing sub-vector spaces. Note that linear computations are seen in the ex-
ponents. Since we will mainly work on sub-vector spaces of dimension 2, we will denote σ =
Sign(sk, (M ,M ′)), with the verification check Verif(vk, σ, (M ,M ′)) = 1, a signature that al-
lows to derive a valid σ′ for any linear combinations of M and M ′. In general, this can be the
concatenation of σ1 = Sign(sk,M) and σ2 = Sign(sk,M ′), but some joint random coins may be
needed, and some common elements can be merged, for efficiency reasons, as it will be shown
in the second instantiation below.

We will also be interested in signing affine spaces: given a signature on M and N , one
wants to limit signatures on M ×Nα and 1×Nβ. This is possible by expanding the messages
with one more component: for M = (g,M) and N = (1,N), linear combinations are of the
form (gα,MαNβ). By imposing the first component to be g, one limits to α = 1, and thus to
(g,MNβ) = M ×N

β, while by imposing the first component to be 1, one limits to α = 0, and
thus to (1,Nβ) = N

β.
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3.5 Non-Miscibility

Once we know only linear combinations are possible among signed vector-messages, one may
require stronger restrictions such as avoiding combinations between families of vectors. In our
case, while ciphertexts will be signed under different voter’s keys, all the voter’s keys will be
signed under the same authority’s key. Then, it will not be possible to combine the ciphertexts of
the different voters (signed under different keys). However, the voter’s keys might be combined,
which could lead to a new illegitimate voter.

We thus need some notion of non-miscibility, which prevents combinations between some
vectors. In [LPJY13], they named one-time linearly-homomorphic the previous scheme, where
all the signed-vectors can be combined, and full-fledged linearly-homomorphic a scheme, where
one specifies with labels the families of vectors that can be combined together. Again, since we
target efficiency, with security analysis in the generic bilinear group model, we can use more
efficient approaches.

Non-Miscibility of Vectors. First, when one wants to avoid any miscibility, and just allow to
convert a signature of M into a signature of Mα, while they are all of the same format, one can
use expanded vectors (as in Section 3.4), by concatenating a vector that satisfies this restriction:
from multiple distinct Square Diffie-Hellman tuples (gi, gwii , g

w2
i

i ), a linear combination that is
also a Square Diffie-Hellman tuple cannot use more than one input tuple. We prove it in two
different cases: with random and independent bases gi, but possibly public wi’s, or with a
common basis gi = g, but secret wi’s. More precisely, we can state the following theorems,
which proofs can be found in the Appendix A.

We stress that in the first theorem, the wi’s are random and public (assumed distinct), but
the bases gi’s are truly randomly and independently generated.

Theorem 10. Given n valid Square Diffie-Hellman tuples (gi, ai = gwii , bi = awii ), with wi, for
random gi

$← G and wi
$← Zp, outputting (αi)i=1,...,n such that (G =

∏
gαii , A =

∏
aαii , B =∏

bαii ) is a valid Square Diffie-Hellman, with at least two non-zero coefficients αi, is computa-
tionally hard under the DL assumption.

In the second scenario, the basis is common (for all i, gi = g), but the wi’s are secret, still
random and thus assumed distinct.

Theorem 11. Given n valid Square Diffie-Hellman tuples (g, ai = gwi , bi = awii ) for any g ∈ G
and random wi

$← Zp, outputting (αi)i=1,...,n such that (G =
∏
gαi , A =

∏
aαii , B =

∏
bαii ) is a

valid Square Diffie-Hellman, with at least two non-zero coefficients αi, is computationally hard
under the SDL assumption.

Efficient Non-Miscible Linearly-Homomorphic Signature. Another approach is the use
of the scheme proposed in [FHS19]. We can describe it as follows, in the similar vein as our
previous construction:

Keygen∗(κ): Given a security parameter κ, let param = (G1,G2,GT , p, g, g, e) ← G(κ), where
g and g are random generators of G1 and G2 respectively. One randomly chooses ski =
si

$← Zp, for i = 1, . . . , n, which defines the signing key sk = (ski)i, and the verification key
vk = (param, (gi)i) for gi = gsi ;

Sign∗(sk,M = (Mi)i, λ): Given a signing key sk = (si)i and a vector-message M = (Mi)i ∈ Gn
1 ,

together with some label λ to which the signer associates a private random scalar Rλ $← Zp,
one sets (σ = (

∏n
i=1M

si
i )Rλ , τ1 = g1/Rλ , τ2 = g1/Rλ);

Verif∗(vk, (σ, τ1, τ2),M = (Mi)i): Given a verification key vk = (param, (gi)i), a vector-message
M = (Mi)i, and a signature (σ, τ1, τ2), one checks if the equalities e(σ, τ2) =

∏n
i=1 e(Mi, gi)

and e(τ1, g) = e(g, τ2) hold or not.
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When the random values are all privately and randomly chosen, independently for each signa-
ture, unforgeability has been proven in [FHS19]. The intuition is the following: first, under the
Knowledge of Exponent Assumption [Dam92, HT98, Gro10], that holds in the generic group
model, from a new pair (τ1, τ2) (on the input of either (g, g) or another pair), one can extract
the common exponent in the two components, from the input pair to the output pair, but no
mixing is possible. Then, one can see σ as the signature with the secret key (Rλsi)i, with respect
to τ2 = g1/Rλ , instead of g in the previous construction.

However, if one knows two signatures (σ, τ1, τ2) and (σ′, τ1, τ2) on M and M ′ respectively,
both with the same Rλ (and thus the same (τ1, τ2)), then (σασ′β, τα+β

1 , τα+β
2 ) is a valid signature

of MαM ′β, still with the same Rλ: this is thus a linearly-homomorphic signature scheme, where
one can control the families of messages that can be combined.

In addition, one can easily randomize Rλ: from a signature (σ, τ1, τ2) on M for Rλ,
(σR, τ1/R

1 , τ
1/R
2 ) is a new signature on M for R · Rλ, and so a totally unrelated random value.

This signature does not allow any further combination.
As already explained above, we will essentially work on sub-vector spaces of dimension 2:

we will thus denote σ = (σ1, σ2, τ1, τ2) = Sign∗(sk, (M ,M ′)) ∈ G3
1 × G2, where (σ1, τ1, τ2) =

Sign∗(sk,M , λ) and (σ2, τ1, τ2) = Sign∗(sk,M ′, λ), for a common random label λ, and thus a
common random Rλ, which leads to the same τ1 and τ2.

Note that in the following, the use of this signature scheme will switch G1 and G2, as the
messages to be signed will be the verification keys of the previous signature scheme, and thus
in G2. Then the verification keys of this scheme will be in G1. We focus on this instantiation in
the body of the paper, while the construction with the Square Diffie-Hellman tuples is studied
in the Appendices.

4 Mix-Networks

A major tool for anonymity is mix-nets, a network of mix-servers [Cha81], that allows to shuffle
ciphertexts so that all the input ciphertexts are in the output, but cannot be linked together.
Then, one can safely decrypt the output ciphertexts without leaking any information about the
sender. This has many applications such as anonymous routing and electronic voting. Whereas
it is easy for a server to apply a random permutation on ciphertexts and randomize them, it is
not that easy to provide a proof of correctness that is publicly verifiable, and compact. With
our Linearly-Homomorphic Signatures, it is possible to provide such a proof in an efficient and
scalable way.

4.1 Introduction

In the context of electronic voting, each vote is encrypted under the system public key EK into
Ci and authenticated by its sender under its public key vki into a ballot Bi. The ballot-box
collects all of them: BBox = {Bi}. The mix-server can randomize the ballots (and namely the
ciphertexts Ci into C ′i) and permute them into the new ballot-box BBox′ = {B′i}. The goal
of the proof is to show the existence of a permutation Π such that for every i, ballot B′i is
a randomization of ballot BΠ(i). Then, the output ballot-box can be mixed again by another
mix-server, hence the notion of mix-network. While the soundness of the proof of mixing should
guarantee the existence of the permutation Π, the zero-knowledge property is also required to
guarantee that no information leaks about Π.

4.2 General Description

The high-level description is presented in Figure 1, with
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Parameters

For a security parameter κ, let Gparam = (G1,G2,GT , p, g, g, e) ← G(κ) be the global parameters, where g
and g are random generators of G1 and G2 respectively;

Keys

– System keys: (SK,VK)← Keygen∗(κ) is a pair of signing-verification keys of messages in G5
2 (a linearly-

homomorphic signature scheme, with non-miscibility guarantees) and DK = d
$← Zp, EK = h = gd the

ElGamal encryption key;
– Round key: vkr = (1, gr, 1, 1) ∈ G4

2 and vkr = (1, vkr) ∈ G5
2 the expanded key, to be signed under SK,

with respect to g;
– Sender keys: ski = (ui, vi, xi, yi) ∈ Z4

p the signing key, vki = (fi = gui
r , li = gvi

r , gi = gxi
r , hi = gyi

r ) ∈ G4
2

the associated verification key, to sign messages in G4
1 (our linearly-homomorphic signature scheme) and

vki = (gr, vki) ∈ G5
2 the expanded verification key to be signed under SK, and the signature of the pairs

(vki, vkr): Σi = Sign∗(SK, (vki, vkr)) so that, with respect to g,

Verif∗(VK, (vki, vkr), Σi) = 1 (1)

Ciphertexts

– Global ciphertext: C0 = Encrypt(EK, 1) = (g, h) ∈ G2
1 and, for ` $← G1, the expanded ciphertext

C0 = (1, `, C0) ∈ G4
1;

– For each ballot: Ci = Encrypt(EK,Mi) ∈ G2
1 and, for `i $← G1, the expanded ciphertext Ci = (g, `i, Ci) ∈

G4
1, and then the signature of pairs (Ci, C0) under ski: σi = Sign(ski, (Ci, C0)) so that, with respect to

gr,

Verif(vki, (Ci, C0), σi) = 1 (2)

Mixing

– New round key and ciphertext with α $← Zp: g′r = gαr

vk′r = vkαr vk′r = vkαr = (1, 1, g′r, 1, 1)

– For each ballot, new verification key and ciphertext with γi, δi $← Zp:

vk′i = (vki · vkrδi )α vk′i = (vki · vkr
δi )α C′i = Ci · Cγi

0 C
′
i = Ci · C

γi
0

– New signatures Σ′i on (vk′i, vk′r) under VK with respect to g, and σ′i on (C′i, C0) under vk′i with respect to
g′r, thanks to the homomorphic properties of the signature schemes (and possibly the randomizability)
and (Σi, σi);

– Zero-knowledge proof π′ of Diffie-Hellman tuple for (gr, g′r,
∏

fi,
∏

f′i);

Then all the new tuples are outputted in random order together with the proof Π.

Verification

The verifier will check the proof π′, the number of input tuples is the same as the number of output tuples,
the f′i are all distinct, and the equations (1) and (2), are satisfied on individual output tuples.

Figure 1. Shuffling of ElGamal Ciphertexts
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– any linearly-homomorphic signature scheme (Keygen∗, Sign∗,Verif∗) that additionally guar-
antees non-miscibility, that will be used to sign pairs of expanded keys in G2;

– and our linearly-homomorphic signature scheme (Keygen, Sign,Verif), that will be used to
sign pairs of expanded ElGamal ciphertexts in G1.

For the latter scheme, we will exploit both the message homomorphism (Property 7) and the
key homomorphism (Property 8). But let us first give the intuition without expanded vectors,
then expansions will be justified by the constraints we will have to impose.

Each sender gets a pair (ski, vki) ← Keygen(κ) to sign vectors in G4
1. To vote, the sender

first encrypts his vote Mi under an ElGamal encryption scheme, with encryption key EK and
signs it to obtain the signed-encrypted ballot (Ci, σi) under vki with respect to gr. But some
guarantees are needed.

In order to be sure that a ballot is legitimate, all the verification keys must be certified by
the system that signs vki under SK, where (SK,VK)← Keygen∗(κ), into Σi. Then, anyone can
verify the certified keys (vki, Σi)i are valid under the system verification key VK.

For an input ballot box (vki, Σi, Ci, σi)i, we want to output a new ballot-box (vk′i, Σ′i, C ′i, σ′i)i
so that there exists a permutation Π such that, for each input ballot (vki, Σi, Ci, σi), there is
an output ballot (vk′j , Σ′j , C ′j , σ′j) with j = Π(i), where C ′j a randomization of Ci, the signature
σ′j is a valid signature on C ′j under vk′j , with respect to g′r, and vk′j is appropriately signed in
Σ′j .

The soundness of the proof will crucially rely on the unforgeability properties of the signature
schemes. About the privacy, since it is encrypted, the vote is protected, but this is not enough as
it will be decrypted in the end. One also needs to guarantee unlinkability between the input and
output ballots. As they contain the ciphertexts Ci and C ′j , as well as the verification keys vki and
vk′j , they must be transformed in an unlinkable way. To fix that, C ′j must be a randomization
of Ci, but also vk′j must be a randomization of vki. Then, the signatures must be adapted, in
an unrelated way.

4.3 Randomization

In order to randomize the keys and the ciphertexts, we will exploit the homomorphic signatures
on vector spaces, but on expanded versions (denoted with a bar above the elements, as already
done previously). The additional components in the expanded keys and ciphertexts will allow
to impose constraints on the linear combinations. We then sign the expanded vectors.

Ciphertexts. In order to be able to randomize the ciphertext Ci, the system provides a
trivial encryption of 1 (in C0). With that and thanks to the homomorphic property of the
encryption, C ′i = Ci · Cγi0 is a randomization of Ci, for a random user-based scalar γi. If
σi = Sign(ski, (Ci, C0)) with respect to gr, σi allows to generate a signature of (C ′i, C0) un-
der ski, still with respect to gr.

But it would be possible to sign C ′i = Cνii ·C
γi
0 . Hence, we expand and sign Ci = (g, `i, Ci) and

C0 = (1, `, C0): the first component of C ′i must still be g (see below for the second components).
This enforces the correct generation of the randomizations under the unforgeability of our
signature scheme, as already explained in Section 3.4: the signature of (Ci, C0) corresponds to a
signature σi,1 of Ci and a second signature σi,2 of C0 both under the secret key ski, with respect
to gr. In other words, Verif(vki, Ci, σi,1) = 1 and Verif(vki, C0, σi,2) = 1, with respect to gr.
Then, from Property 7, Verif(vki, Ci ·C

γi
0 , σi,1 ·σ

γi
i,2) = 1 with respect to gr, hence σ′i,1 = σi,1 ·σγii,2

is a valid signature under ski with respect to gr. Since we sign vectors Ci and C0 in G4
1,

vki = (fi, li, gi, hi) ∈ G4
2.

Keys. However, we already explained we also need to randomize vki. The first intuition would
be to replace vk′i = vkαi , with a global random power α. Under the DDH assumption, the output
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keys are unlinkable to the input keys. However, with g′r = gαr : Verif(vk′i, Ci, σi,1) = 1 still holds
with respect to g′r, from Property 8. Thus, we add a round key vkr = (1, gr, 1, 1) ∈ G2 to be
able to randomize vki by multiplying it by vkrδi . Thereby, vk′i becomes (vki ·vkrδi)α, for a global
random scalar α, but a random user-based scalar δi, and we can still get the signature of vk′i
under SK. To limit to this transformation for vk′i, under the unforgeability of the signature
(Keygen∗,Sign∗,Verif∗), we also artificially create vkr = (1, vkr) and vki = (gr, vki), as the latter
must become (gαr , vkαi vkµir ), for some βi, by enforcing the first component to be the new round
parameter g′r = gαr : µi = αδi.

Impact on Signatures. Then, from Property 8, as both Verif(vki, C
′
i, σi,1 · σ

γi
i,2) = 1 and

Verif(vki, C0, σi,2) = 1, with respect to gr, we also have Verif(vki ·vkδir , C
′
i, σi,1 ·σ

γi
i,2 ·`′i

δi) = 1 and
Verif(vki · vkδir , C0, σi,2 · `′i

δi) = 1, with respect to gr. Eventually, Verif(vk′i, C
′
i, σi,1 ·σ

γi
i,2 · `′i

δi) = 1
and Verif(vk′i, C0, σi,2 · `′i

δi) = 1 with respect to g′r, hence σ′i,1 = σi,1 ·σγii,2 · `′i
δi and σ′i,2 = σi,2 · `′i

δi

The role of vkr = (1, gr, 1, 1) is to prevent the above signature invariant by breaking the
linearity and introducing randomness in the second element of the key. Here comes the expla-
nation of `i and ` in respectively Ci and C0. The goal of the next section will be to formally
prove this intuition.

4.4 Diffie-Hellman Proof

From the above randomizations, we will be able to prove unlinkability (a.k.a. zero-knowledge)
property, and from the unforgeability properties of the signature schemes, we know that all the
vk′i correspond to legitimate signers, as they need to be valid under VK into Σ′i. Each new key
comes

– either from a vki in the initial ballot-box, and unless the voter colludes, it signs a random-
ization of the initial ciphertext;

– or from a new legitimate vki, that was not in the initial ballot-box. The corresponding
legitimate voter must collude to provide a new ballot.

Let us denote P =
∏

fi = g

∑
ui

r , on all the input ballots. Let us denote P′ =
∏

f′i = g′r

∑
ui , on

all the output ballots. If the input and output ballot-boxes contain the same ballots (with the
same secret ui), then P′ = Pα. Otherwise, if one checks the numbers of ballots are the same, an
honest ballot from the input ballot-box must be removed: one can break the discrete logarithm
(as we will formally prove) if one additionally checks P′ = Pα. Hence, by adding a proof of
Diffie-Hellman tuple for (gr, g′r,P,P′), together with the same number of ballots, one has the
guarantee the same voters are represented in the two ballot-boxes, and thus their ciphertexts
have been randomized.

We could use a Schnorr-like non-interactive zero-knowledge proof of Diffie-Hellman tuple, but
we will instead use a Groth-Sahai proof, as such proofs can be combined together into a unique
one after multiple mixing steps: let v1,1, v1,2, v2,1, v2,2 ∈ G1, such that (v1,1, v1,2, v2,1, g × v2,2) is
not a Diffie-Hellman tuple. With a commitment of α: Com = (c = vα2,1v

µ
1,1, d = vα2,2v

µ
1,2g

α), for a
random µ $← Zp, one can set Θ = gµr and Ψ = Pµ, which satisfy

e(c, gr) = e(v2,1, g
′
r) · e(v1,1, Θ) e(d, gr) = e(v2,2 · g, g′r) · e(v1,2, Θ)

e(c,P) = e(v2,1,P
′) · e(v1,1, Ψ) e(d,P) = e(v2,2 · g,P′) · e(v1,2, Ψ)

This proof is zero-knowledge, under the DDH assumption in G1: by switching (v1,1, v1,2, v2,1, g×
v2,2) into a Diffie-Hellman tuple, one can simulate the proof.

In addition, as explained on Figure 2, in a new mixing step, one can just update the proof:
this way, we obtain a constant-size overhead, whatever the number of rounds.
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From round k to round k + 1 (with the use of Groth-Sahai proofs)

1. one computes BBox(k+1) from BBox(k) with the Mixing of a shuffle with α;
2. from the Diffie-Hellman proof π(k) for (g(0)

r , g
(k)
r ,P(0),P(k) =

∏
f
(k)
i ),

Com(k) = (c = v
αk
2,1v

µk
1,1, d = v

αk
2,2v

µk
1,2g

αk ) Θ(k) = (g(k)
r )µk Ψ (k) = (P(k))µk

one computes the proof π(k+1) for (g(0)
r , g

(k+1)
r ,P(0),P(k+1)), for µ $← Zp:

Com(k+1) = (cα · vµ1,1, d
α · vµ1,2)

Θ(k+1) = (Θ(k))α · (g(k)
r )µ Ψ (k+1) = (Ψ (k))α · (P(k+1))µ

3. one destroys BBox(k).

Last round N

For a mix-net of N rounds, one just have to keep: BBox(0),BBox(N) and the global proof (Com(N), Θ(N), Ψ (N)).

Figure 2. Efficient Mix-Net with Multiple Rounds

4.5 Efficiency
On Figure 3, one can see the full construction of the ballots and their mixing using our probabilist
signature (the other instantiation is proposed on Figure 5 in the Appentix B): one can note
that a ballot Bi = (Ci, `i, σi, vki, Σi) ∈ G5

1 × G7
2 × G1, globally contains 6 elements from G1

and 7 elements from G2. This is a bit more than the optimal ballot that would just contain
the ciphertext (2 elements from G1), the signature, and the certified key (which all together
should essentially correspond to 5 group elements in size), but not that much. In addition, there
are the common elements C0 and vkr, that are defined by (`, g, h) ∈ G3

1 and gr ∈ G2, and
VK = (gj)j ∈ G5

1, where EK = h ∈ G1.
Hence, the ballot-box contains: 7 elements from G1, for the system parameters, and for each

round, 1 element from G2, plus n times 6 elements from G1 and 7 elements from G2.
After one mixing, one outputs new round parameter (1 element from G2) and n times 6

elements from G1 and 7 elements from G2, plus the Diffie-Hellman proof: 2 elements from G1
and 2 elements from G2. Even after multiple mixing steps, the amount of data will not grow.

For a mixing, the prover only needs to make 7 exponentiations in G1 and 9 exponentiations
in G2 per ciphertext plus an overhead of 1 exponentiation in G2, for the round parameter.

After one mixing or more, the verifier only needs to make n times 9 pairings to verify σi,
10 pairings to verify Σi plus, just once, 12 pairings to verify the global proof of Diffie-Hellman.
One may note that the verification time does not increase with the number of mixes which is
the most important property of this mix-net: 12 + 19n pairing evaluations for the verification,
whatever the number of rounds.

5 Security Analysis

Let us now formally prove the security properties, which should be, as described on Figure 4:
– soundness: the output ballot-box contains a permutation of randomizations of the input

ballot-box (for honest voters)
– privacy: one cannot link an input ciphertext to an output ciphertext.

In this part, we focus on proving these security notions with our efficient non-miscible linearly-
homorphic signature (see Section 3.5). Actually, the soundness does not depend on the specific
signature used for Σi, but just on non-miscibility. But, the unlinkability will be proven just for
this specific signature (see the Appendix B for the scheme and proof of unlinkability with just a
linarly-homormorphic signature for Σi and Square Diffie-Hellman Tuples for the non-miscibility
property).
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Parameters

For a security parameter κ, let (G1,G2,GT , p, g, g, e)← G(κ), where g and g are random generators of G1 and
G2 respectively, and (v1,1, v1,2, v2,1, v2,2) a Diffie-Hellman tuple, then the global parameters are Gparam =
(G1,G2,GT , p, g, g, e, v1,1, v1,2, v2,1, v2,2);
Let the system keys be SK = (S1, S2, S3, S4, S5) $← Z5

p the signing key, VK = (gj = gSj )j the associated
verification key, DK = d

$← Zp the private key and EK = h = gd the corresponding encryption key. It also
chooses ` $← G1.
The round parameter is initialized as gr ← g.

Initialization (r = 0)

– Keys: ski = (ui, vi, xi, yi) $← Z4
p, vki = (fi = gui

r , li = gvi
r , gi = gxi

r , hi = gyi
r );

Σi =
(
Σi,1 = (gS1

r fS2
i lS3

i gS4
i hS5

i )1/Ri , Σi,2 = g
S3/Ri
r , Ti,1 = gRi , Ti,2 = gRi

)
, for Ri $← Zp, from the system

authority. One can randomize the signature with R′i
$← Zp: Σi =

(
Σ

1/R′
i

i,1 , Σ
1/R′

i
i,2 , T

R′
i

i,1 , T
R′

i
i,2
)

– Ballot Bi: Ci = (ai = gri , bi = hriMi), for ri $← Zp, C0 = (g, h), expanded into Ci = (g, `i, ai, bi) and
C0 = (1, `, g, h), for `i $← G1, signed into σi = (σi,1 = gui`vi

i a
xi
i b

yi
i , σi,2 = `vigxihyi ).

Bi = (Ci, `i, σi, vki, Σi) and the round parameter gr defines vkr = (1, 1, gr, 1, 1).

Mixing

From an input ballot-box containing gr, C0, and (Ci, `i, σi, vki, Σi)i for all the voters with the global proof
(Com = (c, d), Θ, Ψ), construct the output ballot-box g′r, (C′i, `′i, σ′i, vk′i, Σ′i)i where α

$← Zp: g′r = gαr , and for
each ballot i, γi, δi, µi $← Zp:

a′i = ai · gγi b′i = bi · hγi `′i = `i · `γi

σ′i,1 = σi,1 · σγi
i,2 · `

′
i
δi σ′i,2 = σi,2 · `′r

δi

f′i = fαi l′i = (li · gδi
r )α g′i = gαi h′i = hαi

Σ′i,1 = (Σi,1 ·Σi,2δi )α/µi Σ′i,2 = Σ
α/µi
i,2 T ′i,1 = Tµi

i,1 T ′i,2 = Tµi
i,2

Output all the tuples (C′i, `′i, σ′i, vk′i, Σ′i)i in random order with g′r and the global proof π′ of (gr, g′r,
∏

fi,
∏

f′j)
is a Diffie-Hellman tuple (as detailed in the figure 2).

Verification

The verifier will check this proof π′, the number of input tuples is the same as the number of output tuples,
the f′i are all distinct, and the signatures σ′i and Σ′i are valid on individual output tuples.

Figure 3. Detailed Shuffling of ElGamal Ciphertexts
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5.1 Soundness: Proof of Permutation

First, we prove the soundness of the mixing: given an input ballot-box BBox = {Bi, i ∈ I},
where ballot Bi encrypts vote vi, and an output ballot-box BBox′ = {B′j , j ∈ J }, where ballot
B′j encrypts vote v′j , there exists a bijection Π from I into J such that vi = v′Π(i), for all i ∈ I.
At least, we can prove that, for all the ballots of the honest voters, I ′ ⊆ I, there is a bijection
Π from I into J such that vi = v′Π(i) for all i ∈ I

′. This means that a dishonest server, with the
help of dishonest (but legitimate) voters, could replace some votes (of these dishonest voters)
by some other votes (from dishonest voters), but votes of honest voters cannot be altered, which
is the most important, as there is no reason to provide any guarantee to dishonest users.

To achieve this security notion, we need the voters to prove the knowledge of their signing
keys ski (or at least ui) to get their verification key vki signed into Σi. Let us assume this is
performed using a zero-knowledge proof of knowledge that admits a straightline extractor.

Soundness (for Honest Voters)

Given an input ballot-box BBox = {Bi, i ∈ I}, where ballot Bi encrypts vote Vi, and an output ballot-box
BBox′ = {B′j , j ∈ J }, generated by an adversary A, where ballot B′j encrypts vote V ′j , if all the verification
checks pass, there should exist a bijection Π from I into J such that Vi = V ′Π(i), for all honest i in I, with
overwhelming probability.

Privacy

Given an input ballot-box BBox = {Bi, i ∈ I} and a mixed output ballot-box BBox′ = {B′j , j ∈ J }, for a
random bijection Π from I into J such that Bi is randomized in B′Π(i) for all i ∈ I, for any pair of honestly
generated ballots Bi0 and Bi1 , if one provides (i0, i1, j0, j1), where jb = Π(i0) and j1−b = Π(i1), for a random
bit b, any adversary A should have a negligible advantage in guessing b.

Figure 4. Mixing Security Properties

Non-Miscibility of the Verification Keys. The first step is the guarantee that every output
verification key vk′j corresponds to a legitimate verification key vki, that has been initially signed
by the authority. From the legitimate (expanded) verification keys (vki = (gr, fi, li, gi, hi))i and
vkr = (1, 1, gr, 1, 1), signed under VK into (Σi)i, with a signature scheme (Keygen∗, Sign∗,Verif∗)
that is linearly-homomorphic and guarantees non-miscibility, any mix-server must output a new
(expanded) verification key vk′j with a new signature Σ′j . The non-miscibility of the signature
scheme (Keygen∗,Sign∗,Verif∗) proves the following proposition:

Proposition 12 (Legitimate Output). Under the non-miscibility and the unforgeability of
the signature scheme (Keygen∗,Sign∗,Verif∗), for any output ballot with (expanded) verification
key vk′j there exists a related legitimate verification key vki such that vk′j = vkαi × vkzir , for some
scalar zi, and α such that g′r = gαr .

We recall that Σi =
(
Σi,1 = (gS1

r fS2
i lS3

i gS4
i hS5

i )1/Ri , Σi,2 = g
S3/Ri
r , Ti,1 = gRi , Ti,2 = gRi

)
, for

Ri
$← Zp, is the combined signature of vki = (gr, fi, li, gi, hi) and vkr = (1, 1, gr, 1, 1). We use

this signature with a fixed system verification key VK. Thus, the only operations are among
vki and vkr: vk′i = (vki × vkδir )α and vk′r = vkαr . This just impacts Σ′i,1 = (Σi,1 · Σδi

i,2)α and
Σ′i,2 = Σα

i,2. We eventually randomize Ri with µi: Σ′i becomes a signature of the combined
vk′i = (g′r, f′i, l′i, g′i, h′i) and vk′r = (1, 1, g′r, 1, 1).

However it does not exclude the server to insert a ballot with a legitimate verification key
vki, which was not in the initial ballot-box. Nevertheless note that no voter can have two ballots,
because of the collision checks on the output f′j ’s, if there was no collision on the input fi’s, as
the same α is enforced for all the randomizations.
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Permutation of the Verification Keys. Hence, the second step consists in proving that any
honest input verification key corresponds to an output verification key. Note that the mix-server
will add the proof that (gr, g′r,

∏
i fi,

∏
j f
′
j) is a Diffie-Hellman tuple where the products are on

the ballots in the initial ballot-box for the fi’s and in the output ballot-box for the f′j ’s:
∑
i ui

are the same on the input ballots and the output ballots.
As there are no duplicates (check of collisions on the fi and f′j) and the numbers of input

ballots and output ballots are the same, a malicious mix-server must replace an input ballot by
a new one: if N is the set of new ballots and D the set of deleted ballots,

∏
D fi =

∏
N fj .

Let us be given a tuple (g, f = gu, g, f = gu), as input of a TDL challenge in G1 and G2:
the simulator will guess the honest user i∗ that will be deleted, and implicitly sets ui∗ = u,
with fi∗ , which allows it to use f = gui∗ in the signature of Ci∗ on the first component g, while
all the other scalars are chosen by the simulator (vi∗ , xi∗ , yi∗), as well as the authority signing
keys, and, for all the other users, the secret keys ski = (ui, vi, xi, yi) can be extracted at the
certification time (using the straightline extractor from the zero-knowledge proof of knowledge).
Note that the zero-knowledge simulator is used for i∗.

If some honest user is deleted in the output ballot-box, with probability greater than 1/n,
this is i∗: but as proven above,

∑
D ui =

∑
N uj , and so ui∗ =

∑
N uj−

∑
D\{i∗} ui, which breaks

the twin discrete logarithm assumption. This proves the following proposition:

Proposition 13 (Permutation of Keys). Given a set of legitimate verification keys vki’s
with signing keys known to the honest users only, from any input ballot-box (with verification
keys vki, for i ∈ I) and transformed ballot-box (with verification key vk′j, for j ∈ J ) such that
all the fi’s are distinct, all the f′j’s are distinct, |I| = |J |, and (gr, g′r,

∏
i fi,

∏
j f
′
j) is a Diffie-

Hellman tuple, then there exists α and a bijection Π from I into J such that for any honest i,
vk′Π(i) = (vki × vkδir )α for some scalar δi, under the unforgeability of the signature schemes and
the TDL assumption.

We stress that for this property to hold, the signing keys (at least the ui’s) of the honest players
must be random and unknown to the malicious mix-server. We will thus assume the signing
keys are generated by the users themselves and the verification keys signed by the authority
(after a proof of knowledge of the signing keys).

Permutation of Plaintexts. Eventually, the last step consists in proving that output ci-
phertexts correspond to randomizations of permuted input ciphertexts. We have just proven
that this is true for the verification keys: there exists a bijection Π from I into J such that
vk′Π(i) = (vki× vkδir )α for some scalar δi, for all the honest voters i among the input voters in I.

From the signature verification on the output tuples, C ′Π(i) is signed under vk′Π(i) in σ′Π(i),1,
for every i: e(σ′Π(i),1, g

′
r) = e(g, fαi ) · e(`′Π(i), l

α
i g

αδi
r ) · e(a′Π(i), g

α
i ) · e(b′Π(i), h

α
i ), and since the same

α appears in g′r = gαr , then for every i, we have

e(σ′Π(i), gr) = e(g, fi) · e(`′Π(i), lig
δi
r ) · e(a′Π(i), gi) · e(b

′
Π(i), hi)

= e(g, fi) · e(`′Π(i), li) · e(a
′
Π(i), gi) · e(b

′
Π(i), hi) · e(`

′δi
Π(i), gr)

and so σ′Π(i)/`
′δi
Π(i) is a signature of C ′Π(i) = (g, `′Π(i), a

′
Π(i), b

′
Π(i)) under vki: under the unforge-

ability assumption of the signature scheme, C ′Π(i) is necessarily a linear combination of the
already signed vectors under vki, which are Ci and C0, with some coefficients u, v: a′Π(i) = aui g

v
r ,

b′Π(i) = bui h
v
r , and g = gu1v. Hence, u = 1, which means that C ′Π(i) is a randomization of Ci.

Proposition 14 (Permutation of Ciphertexts). Given a set of legitimate verification keys
vki’s with signing keys known to the users only, from any input ballot-box (with verification keys
vki, for i ∈ I) and transformed ballot-box (with verification key vk′j, for j ∈ J ) such that all the
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fi’s are distinct, all the f′j’s are distinct, |I| = |J |, and (gr, g′r,
∏
i fi,

∏
j f
′
j) is a Diffie-Hellman

tuple, then there exists a bijection Π from I into J such that for any honest voter i, C ′Π(i) is
a randomization of Ci. This statement holds under the unforgeability of the signature schemes
and the TDL assumption.

We stress that this proposition only guarantees permutation of ciphertexts for honest voters.
There is indeed no formal guarantee for compromised voters who would have revealed their
signing keys, as the mix-server could

– replace the ciphertexts of some compromised voters, and sign them with their revealed
signing keys;

– or find two sets D and N such that
∑
D ui =

∑
N uj , and then delete the votes from the

users in D and insert new votes for the users in N , using the revealed signing keys to sign
the ciphertexts;

– or even ask the voters to generate related signing keys, to make easy to find such sets D
and N such that

∑
D ui =

∑
N uj .

As a consequence, our result that guarantees a permutation on the honest ballots is optimal. We
cannot guarantee anything for the compromised voters: to limit compromise, the voters should
destroy their signing keys after use. An alternative would be to generate the signing keys in a
distributed way, between the voters and the authority, so that nobody knows the signing keys.
But then a distributed signing process would be required. This is detailed in Section 6.3.

5.2 Privacy: Unlinkability

After proving the soundness, we have to prove the anonymity (a.k.a. unlinkability), which can
also be seen as zero-knowledge property with respect to outsider verifiers. To this aim, we will
show that from a ballot-box, if the simulator randomizes the ballots Bi0 and Bi1 into B′jb and
B′j1−b , no adversary can guess b.

We stress that in the following proof, we assume (at least) two input ballots to have been
generated by honest (non-compromised) voters. More precisely, at least two signing keys should
not be known to the adversary, nor the random coins used by the mix-server. We start from
the initial real game that generates the view of the adversary, for the input ballots and the
randomized ballots, and conclude with a game where the randomized ballots are all generated
randomly, independently of the input ballots: b is thus perfectly hidden.

Game G0: One first generates a group structure (G1,G2,GT , p, g, g, e)← G(κ), and a Diffie-
Hellman tuple (v1,1, v1,2, v2,1, v2,2) in G1. One then sets the global parameters, Gparam =
(G1,G2,GT , p, g, g, e, v1,1, v1,2, v2,1, v2,2). One generates SK and VK for the authority signa-
ture, and randomly chooses d $← Zp to generate the server public key EK = h = gd, and the
noise parameter ` $← G1. One also sets vkr = (1, gr = gA, 1, 1) and C0 = EncryptEK(1) =
(g, h). One can expand them to vkr = (1, vkr) and C0 = (1, `, C0). Actually, A = 1 in the
initial step, when the user encrypts his message Mi, but since the shuffling may happens
after several other shuffling iterations, we have the successive exponentiations to multiple
α (in A) for vkr.
For each honest user i, one randomly chooses ui, vi, xi, yi, ri, ρi $← Zp to generate vki = (fi =
guir , li = gvir , gi = gxir , hi = gyir ), vki = (gr, vki), and the signature Σi of (vki, vkr) under SK
with respect to g, as well as Ci = EncryptEK(Mi) = (ai = gri , bi = hriMi), Ci = (g, `i =
`ρi , Ci), and the signature σi of (Ci, C0) under ski with respect to gr. Indeed, knowing
the signing keys allows to honestly generate the signatures Σi and σi. Bi = (Ci, σi, vki, Σi)
constitutes a ballot of an honest user. For the corrupted users, the simulator directly receives
Bi = (Ci, σi, vki, Σi). The input ballot-box is then BBox = {Bi}i∪{(vkr, Cr)} including the
ballots of all the honest and corrupted users and the round parameters.
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By randomly choosing global α $← Zp and individual γi, δi, µi $← Zp for all the users, the
simulator also generates, as the mix-server would do, g′r = gαr , to update

vk′i = (f′i = fαi , l
′
i = (li · gδir )α, g′i = gαi , h

′
i = hαi ) vk′i = (g′r, vk′i) = (vki · vkδir )α

vk′r = (1, g′r, 1, 1) vk′r = (1, vk′r) = vkαr

C ′i = (a′i = ai · gγir , b′i = bi · hγir ) C
′
i = (1, `′i = `i · `γir , C ′i) = Ci · C0

γi

σ′i,1 = σi,1 · σγii,2 · `
′
i
δi σ′i,2 = σi,2 · `′r

δi

Σ′i,1 = (Σi,1 ·Σi,2δi)α/µi Σ′i,2 = Σ
α/µi
i,2 T ′i,1 = Tµii,1 T ′i,2 = Tµii,2

Eventually, the simulator chooses a random permutation Π on {1, . . . , n}, and sets the
output ballots B′i = (C ′Π(i), σ

′
Π(i), vk′Π(i), Σ

′
Π(i)). It outputs BBox = {Bi}i ∪ {(vkr, C0)} and

BBox′ = {B′i}∪{(vk′r, C0)}, together with a zero-knowledge proof π′ of Diffie-Hellman tuple
for (gr, g′r,

∏
fi,
∏

f′j).
Game G1: Everything is the same, except the proof π′ of Diffie-Hellman tuple for (gr, g′r,

∏
fi,∏

f′j), that is generated using the simulator that does not need to know α (from the zero-
knowledge property).

Game G2: For all the honest users, we replace Ci by an encryption of 1: Ci = EncryptEK(1) =
(ai = gri , bi = hri) and replace the random value `i = `ρi by `i = `ri . Hence, we set
Ci = (g, `i = `ri , ai = gri , bi = hri) for ri $← Zp.

Lemma 15. Under the DDH assumption in G1, this game is computationally indistinguish-
able from the previous one.

Game G3: For all the honest users, we still choose at random the signing keys ski = (ui, vi, xi,
yi) but we also choose at random sk′i = (u′i, v′i, x′i, y′i) in order to have random verification
keys vk′i.

Lemma 16. Under the DDH assumption in G2 and Unlinkability Assumption (see Defini-
tion 6) this game is computationally indistinguishable from the previous one.

Since in the final game, the verification keys vk′i are truly random, and independent from vki,
and C ′i contains random independent elements:

Proposition 17 (Unlinkability of the Mixing). Given any input ballot-box and transformed
ballot-box (following the protocol from Figure 3), for any pair of honestly generated input ballots
(B0,B1) and pair of output ballots (B′0,B′1), such that B′b is a randomization of B0, and B′1−b
is a randomization of B1, for a random bit b $← {0, 1}, no adversary can get a non-negligible
advantage in guessing b.

We stress that for this property to hold, the adversary should not know the two secret keys
associated to the input ballots. That means the indistinguishability is for outsider adversaries
only (none of the two target voters who generated B0 and B1), that do not either know the
random coins of the mix-server.

One also has to make sure that Σ′i and Σi have no invariant that can be detected: if they are
deterministic (as our basic linearly-homomorphic scheme with Square Diffie-Hellman tuples),
there is no problem, if they are probabilistic, they must be randomizable (as our scheme that
guarantees non-miscibility).

We can show again that our security against outsider adversaries is optimal, as the owner
of B0 knows u0, and can check whether f′0 = g′r

u0 or not. But all the other users have no way to
guess b.
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Proof (Lemma 15). The proof works with a sequence of hybrid games:

Game G0: Since the decryption key d is never used, we are just given g and EK = h and
by an hybrid game for each honest user i, we can replace Ci by an encryption of 1:
Ci = EncryptEK(1) = (ai = gri , bi = hri). Under the DDH in G1 assumption this game
is indistinguishable from the previous one.

Game G1: We now know again d, and since ` is random, by an hybrid game for each honest
user i, we can replace the random value `i = `ρi by a Diffie-Hellman value with (g, ai =
gri , `), and thus `i = `ri , for a random unknown ri, and complete: Ci = EncryptEK(1) =
(ai = gri , bi = adi ) and then Ci = (g, `i = `ri , Ci). Under the DDH in G1 assumption this
game is indistinguishable from the previous one. ut

Proof (Lemma 16). Before entering into the sequence of games for this lemma, in order to ran-
domize honest ballots, let us explain how we will generate the randomized ballots for corrupted
users: as we assumed the signatures Σi provided by the authority with the view of the proof
of knowledge of ski, our simulator has access to ski = (ui, vi, xi, zi) for all the corrupted users.
The mixing step consists in updating the ciphertexts, the keys and the signatures, and we show
how to do it without knowing α, but just (g, h, `) and the round parameter gr, as well as the
individual random coins γi and δi: first, C

′
i = Ci ·C

γi
0 , and vk′i = (vki · vkrδi)α, but with respect

to g′r = gr, hence sk′i = (ui, vi + δi, xi, yi), which makes easy the computation of vk′i from g′r, as
well as the signature σ′i of any message, using sk′i. Eventually, Σ′i can also be generated using
the authority signing key SK, that we know, and a random R′i.

In the sequence of games below, we will thus only show how to generate round parameter
and honest input/output ballots, as the ballots for corrupted users will be simulated as above.
We now run an hybrid game, for 1 ≤ i ≤ n′, where n′ is the number of honest users. For all
the honest users, the simulator randomly chooses the signing keys skj : for all j ≥ i, one chooses
γi, δi

$← Zp, and does the simulation of B′j as above, for the corrupted users, in order to generate
sk′j , C

′
j and vk′j , as well as σ′j ; for all j < i, one just chooses γi $← Zp in order to generate C ′j ,

but sk′j
$← G4

1 to generate vk′j and σ′j . Note that SK is known to generate Σ′j .
Of course, when i = 1, this first game is exactly the original game, where all the honest

randomizations are performed correctly.

Game G0: In this game, we still choose a random d $← Zp for h = gd, but also a random
e $← Zp for ` = ge. Then we can simulate

Ci = (g, `i = `ri , ai = gri , bi = hri) C
′
i = (g, `′i = `r

′
i , a′i = gr

′
i , b′i = hr

′
i)

for known random scalars ri, r′i
$← Zp, where r′i is actually ri + γi. The signatures (σi, σ′i)

and (Σi, Σ′i) are still simulated using the signing keys. The former satisfy:

e(σi,1, gr) = e(g, fi) · e(`i, li) · e(ai, gi) · e(bi, hi) = e(g, fi(gihdi lei )ri)
e(σi,2, gr) = e(`r, li) · e(gr, gi) · e(hr, hi) = e(gr, gihdi lei )

e(σ′i,1, g′r) = e(g, f′i) · e(`′i, l′i) · e(a′i, g′i) · e(b′i, h′i) = e(g, f′i(g′ih′i
d
l′i
e)r′i)

e(σ′i,2, g′r) = e(`′r, l′i) · e(g′r, g′i) · e(h′r, h′i) = e(g′r, g′ih′i
d
l′i
e)

If we formally denote σi,1 = gsi , σi,2 = gtir , σ′i,1 = gs
′
i , σ′i,2 = g′r

t′i , then

gsir = fi(gihdi lei )ri gtir = gih
d
i l
e
i si = ui + tiri

and from

gr
αs′i = g′r

s′i = f′i(g′ih′i
d
l′i
e)r′i = fαi (gαi hαi d(ligδir )αe)r′i

gr
αt′i = g′r

t′i = g′ih
′
i
d
l′i
e = gi

αhi
αd(ligδir )αe
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we also have

gr
s′i = fi(gihdi lei )r

′
ig
eδir

′
i

r gr
t′i = (gihidlei )gδier s′i = ui + t′ir

′
i

As consequence, σi,1 = gui · (gri)ti = gui · atii and σ′i,1 = gui · (gr′i)t′i = gui · a′i
t′i .

Game G1: Let us randomly choose scalars ui, ri, r′i, ti, t′i and α, then, from (g, gr), we can set
g′r ← gαr , ai ← gri , σi,1 ← atii g

ui , fi ← guir , as well as a′i ← gr
′
i , σ′i,1 ← a′i

t′igui , f′i ← g′r
ui .

Then, one additionally chooses xi, yi $← Zp and sets

gi ← gxir hi ← gyir g′i ← g′r
xi h′i ← g′r

yi

li ← (gtir /(gihdi ))1/e l′i ← (g′r
t′i/(g′ih′i

d))1/e

Ci ← (g, aei , ai, adi ) C
′
i ← (g, a′i

e
, a′i, a

′
i
d)

By construction

gtir = gih
d
i l
e
i g′r

t′i = g′ih
′
i
d
l′i
e

σi,1 = atii g
ui = gtiri × gui σ′i,1 = a′i

t′igui = gt
′
ir
′
i × gui

With σi,2 ← gti and σ′i,2 ← gt
′
i , σi and σ′i are valid signatures of (Ci, C0) with respect

to gr and (C ′i, C0) with respect to g′r, respectively. Eventually, the verification keys vki =
(fi, li, gi, hi) and vk′i = (f′i, l′i, g′i, h′i) are correctly related for the secret keys (ui, vi, xi, yi).
From li = (gtir /(gihdi ))1/e = g

(ti−xi−dyi)/e
r : we have vi = (ti − xi − dyi)/e. From l′i =

(g′r
t′i/(g′ih′i

d))1/e = g′r
(t′i−xi−dyi)/e: we have v′i = (t′i − xi − dyi)/e = (t′i − ti)/e + vi, which

means that δi = (t′i − ti)/e.
Using the signing key SK, we can complete and sign vki (with random Ri) and vk′i (with
random R′i, which implicitly defines µi). As explained above, this perfectly simulates the
view of the adversary in the previous game.

Game G2: Let us be given Cred(ui, g; gr, ri, ti) and Cred(ui, g; g′r, r′i, t′i), for random ui
$← Zp,

which provide all the required inputs from the first part of the simulation in the previous
game (before choosing vi, wi). They all follow the distribution Dg,gr(ui, ui). We can thus
continue the simulation as above, in a perfectly indistinguishable way.
More precisely, with the above notations, we use as input two tuples((

g
gr

)
,

(
g
gr

)ti
,

(
g
gti

)ri
×
(

1
gui

)
, guir

)

and ((
g
g′r

)
,

(
g
g′r

)t′i
,

(
g

gt
′
i

)r′i
×
(

1
gui

)
, g′r

ui

)

which are Cred(ui, g; gr, ri, ti) and Cred(ui, g; g′r, r′i, t′i).
Game G3: Let us be given two credentials of ui and u′i, Cred(ui, g; gr, ri, ti) and Cred(u′i, g;

g′r, r
′
i, t
′
i), for random ui, u

′
i

$← Zp. Inputs follow the distribution Dg,gr(ui, u′i). And we do as
above. Under the Unlinkability Assumption (see Definition 6) the view is computationally
indistinguishable.

Game G4: We receive a Multi Diffie-Hellman tuple (gr, gi, hi, g′r, g′i, h′i)
$← D6

mdh(gr). So we
know all the scalars, except xi, yi and α, which are implicitly defined by the input challenge.
Then, by choosing ti, t′i

$← Zp, we can define li, l′i as in the previous game, and the ciphertexts
and signatures are generated honestly with random scalars ri, r′i

$← Zp.
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Game G5: We now receive (gr, gi, hi, g′r, g′i, h′i)
$← D6

$(gr). We do the simulation as above. The
view of the adversary is indistinguishable under the DDH assumption in G2.
In this game, vk′i = (fi = g′r

u′i , li = g′r
v′i , gi = g′r

x′i , hi = g′r
y′i), with x′i, y′i

$← Zp because of
the random tuple, v′i = vi + (t′i − ti)/e, for random t′i and ti, it is thus also random, and u′i
is chosen at random.

Game G6: We can now choose at random the signing keys ski = (ui, vi, xi, yi) and sk′i =
(u′i, v′i, x′i, y′i) in order to sign the ciphertexts. ut

In this last game, the i-th honest voter is simulated with input/output ciphertexts that are
random encryptions of 1, and input/output signing keys (and thus verification keys vki and vk′i)
independently random. This is similar to game G0 for i + 1. Hence, iterating from i = 1 to
i = n′, in the end, all the honest input/output ballots are independently random.

6 Application to Electronic Voting

The use of mix-net for electronic voting implies some particularities that we will discuss in this
section: one can optimize the storage of the mix-net in this scenario and one may want to add
one more property for the security called receipt-freeness.

6.1 Efficiency in case of Electronic Voting

Suppose the ballots are sent successively to a mix-server. The mix-server can compute the
round parameters and then, on the fly, perform individual verifications and randomization of
each ballot, as well as the product of the fi’s adaptively. Eventually, when at the closing time,
one just has to do/adapt the global proof of Diffie-Hellman tuple, and then output the ballots
in a permuted order.

After the multiple mixing steps, one can remove σi,2 and Σi,2 in the final ballot-box, as no
more mixing will be required. But there is no need to keep the input ballot-box either, excepted
the certified verification keys, as the fi’s are used in the Diffie-Hellman tuple proof. Anyway, in
electronic voting, the verification keys are usually sealed with the voting list. In our construction
we can additionally seal the product P of the fi’s.

We thus recap the elements to keep: system parameters (6×G1), input ballot-box parameters
(1×G2), input votes (n× (1×G1 + 6 ×G2)), output ballot-box parameters (1×G2), output
votes (n× (5×G1 +6×G2)), and the Diffie-Hellman proof (2×G1 +2×G2). The global storage
is thus limited to 8 + 6n elements from G1 and 4 + 12n elements from G2, for all the certified
input keys and signed output ciphertexts.

We recall that the verification time is just linear in the number of ballots and does not
depend on the number of mixing steps.

6.2 Security Guarantees

As explained, soundness and privacy are guaranteed for all the honest users: honest users are
sure that their votes are randomized in the output ballot-box, and their input-output ballots
are unlinkable. This is of course the most important requirements.

However, since the ui’s are used to guarantee that no ballots are deleted or inserted, this is
important those values to be unknown to the mix-server. In case of collusion of some legitimate
voters with the mix-server, it is possible to replace the votes of those dishonest voters. In
addition, knowing their ui’s the voters can trace their ballots which allows to break the receipt-
freeness. In the next section, we explain how to generate the signing keys in a distributed way,
so that nobody knows them. This then addresses both above issues: permutation of all the input
ciphertexts (for honest and corrupted voters) is guaranteed and receipt-freeness is provided.



22

In the Appendix B, we propose a second construction that uses the Square Diffie-Hellman
tuples (gr,Ai = gwir ,Bi = Awii ) to provide non-miscibility. Then, one can use

∏
A′j = (

∏
Ai)α

instead of
∏

f′j and (
∏

fi)α, in the Diffie-Hellman tuple, to guarantee the permutation of the
verification keys. With this modification, the signing keys can be known to the voters, only the
wi’s have to be unknown to them, nor to the mix-server. In the Appendix B.5, we explain how
to generate them.

6.3 Receipt-Freeness

In electronic voting, receipt-freeness is a hard to achieve security property: the voter should
not be able to convince someone of the content of his vote. Since we already said that the
initial ballot does not need to be published (removed from the final output), but just the
signed vki for each voter, the voter cannot exploit his encryption random coins. But he can use
ski = (ui, vi, xi, yi) to prove which randomized ballot corresponds to his vote: indeed, excepted
v′i that gets unknown to him, u′i = ui, x′i = xi, and y′i = yi in the randomized ballots. After
decryption, this will prove his vote. The voter should not know (ui, vi, xi, yi). This can be easily
done by the voter choosing (ui,1, vi,1, xi,1, yi,1) $← Z4

p to compute and prove his knowledge of the
exponents,

fi,1 = g
ui,1
r , li,1 = g

vi,1
r , gi,1 = g

xi,1
r , hi,1 = g

yi,1
r

while the signer (authority) chooses ui,2, vi,2, xi,2, yi,2 $← Z4
p to compute

fi,2 = g
ui,2
r , li,2 = g

vi,2
r , gi,2 = g

xi,2
r , hi,2 = g

yi,2
r

The latter can also compute

fi = fi,1 · fi,2, li = li,1 · li,2, gi = gi,1 · gi,2, hi = hi,1 · hi,2

and generate the signature Σi, together with zero-knowledge proofs of knowledge of the scalars
ui,2, vi,2, xi,2, yi,2. Since now the signing key ski is split between the voter and the signer, the
voter needs to interact with the signer to build σi. However, the privacy of the vote is still
guaranteed as it is encrypted under EK.
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A Non-Miscibility with Square Diffie-Hellman Tuples

In Section 3, we proved unforgeability in the generic group model. But actually, as shown in the
proof, the simulator can find the explicit linear combination. Hence, the following computational
assumption holds in the generic bilinear group model:

Definition 18 (Extractability Assumption). The extractability assumption states that
given n valid pairs (M j = (Mj,i)i, σj)j under a verification key vk, for any adversary that
produces a new valid pair (M = (Mi)i, σ) under vk, there exists an extractor that outputs
(αj)j such that M =

∏
j M

αj
j and σ =

∏
j σ

αj
j .

Combined to Theorems 10 and 11, this assumption proves non-miscibility of signed-vectors,
when Square Diffie-Hellman triples are concatenated.

A.1 Proof of Theorem 10

We stress that in this theorem, the xi’s are random and public (assumed distinct), but the
bases gi’s are truly randomly and independently generated. Up to a guess, which is correct with
probability greater than 1/n2, we can assume that α1, α2 6= 0. We are given a discrete logarithm
challenge Z, in basis g. We will embed it in either g1 or g2, by randomly choosing a bit b:

– if b = 0: set X = Z, and randomly choose v $← Zp and set Y = gv

– if b = 1: set Y = Z, and randomly choose u $← Zp and set X = gu

We set g1 ← X(= gu), g2 ← Y (= gv), with either u or v unknown, and randomly choose
βi ∈ Zp, for i = 3, . . . , n to set gi ← gβi . Eventually, we randomly choose xi, for i = 1, . . . , n
and output (gi, ai = gxii , bi = axii ) together with xi, to the adversary which outputs (αi)i=1,...,n
such that (G =

∏
gαii , A =

∏
aαii = Gx, B =

∏
bαii = Ax) for some unknown x. We thus have

the following relations:(
α1u+ α2v +

n∑
i=3

αiβi

)
· x = α1ux1 + α2vx2 +

n∑
i=3

αiβixi(
α1ux1 + α2vx2 +

n∑
i=3

αiβixi

)
· x = α1ux

2
1 + α2vx

2
2 +

n∑
i=3

αiβix
2
i

If we denote T =
∑n
i=3 αiβi, U =

∑n
i=3 αiβixi, and V =

∑n
i=3 αiβix

2
i , that can be computed,

we deduce that:

(α1ux1 + α2vx2 + U)2 = (α1u+ α2v + T )(α1ux
2
1 + α2vx

2
2 + V )

which leads to

α1α2(x2
1 − x2

2)uv + α1(V − 2Ux1 + Tx2
1)u+ α2(V − 2Ux2 + Tx2

2)v + (TV − U2) = 0

We consider two cases:

1. K = α2(x2
1 − x2

2)v + V − 2Ux1 + Tx2
1 = 0 mod p;

2. K = α2(x2
1 − x2

2)v + V − 2Ux1 + Tx2
1 6= 0 mod p;
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which can be determined by checking whether the equality below holds or not:

g−(V−2Ux1+Tx2
1)/(α2(x2

1−x
2
2)) = Y.

One can note that case (1) and case (2) are independent of the bit b.

– If the case (1) happens, but b = 0, one aborts. If b = 1 (which holds with probability 1/2
independently of the case) then we can compute v = −(V −2Ux1+Tx2

1)/(α2(x2
1−x2

2)) mod p
which is the discrete logarithm of Z in the basis g.

– Otherwise, the case (2) appears. If b = 1 one aborts. If b = 0 (which holds with probability
1/2 independently of the case), v is known and we have α1Ku + α2(V − 2Ux2 + Tx2

2)v +
(TV − U2) = 0 mod p, which means that the discrete logarithm of Z in the basis g is
u = −(α2(V − 2Ux2 + Tx2

2)v + (TV − U2))/(α1K) mod p. ut

A.2 Proof of Theorem 11

Lemma 19. Given any fixed value α ∈ Zp and n valid Square Diffie-Hellman tuples (g, ai =
gxi , bi = axii ), for any g ∈ G and random xi ∈ Zp, outputting (αi)i=1,...,n such that α =∑n
i=1 αixi, with at least one non-zero coefficient αi, is computationally hard under the SDL

assumption.

Proof. Up to a guess, which is correct with probability greater than 1/n, we can assume that
α1 6= 0. We are given a square discrete logarithm challenge (g, Z1 = gz, Z2 = gz

2), in basis g. We
set a1 ← Z1, b1 ← Z2, and randomly choose xi $← Zp, for i = 2, . . . , n to set (ai ← gxi , bi ← axii ).
We then output (g, ai, bi), i = 1, . . . , n, to the adversary which outputs (αi)i=1,...,n and α such
that α1z +

∑n
i=2 αixi = α. At this stage, we solve the square discrete logarithm problem by

returning z = (α−
∑n
i=2 αixi)/α1 mod p. ut

We now come back to the proof of the theorem. Again, up to a guess, which is correct with
probability greater than 1/n, we can assume that α1 6= 0. We are given a square discrete
logarithm challenge (g, Z1 = gz, Z2 = gz

2), in basis g. We set a1 ← Z1, a2 ← Z2, and randomly
choose xi $← Zp, for i = 2, . . . , n to set (ai ← gxi , bi = axii ). We then output (g, ai, bi), i =
2, . . . , n, to the adversary that outputs (αi)i=1,...,n such that (G =

∏
gαi , A =

∏
aαii = Gx, B =∏

bαii = Ax) for some unknown x. We thus have the following relations:(
n∑
i=1

αi

)
· x = α1z +

n∑
i=2

αixi

(
n∑
i=1

αi

)
· x2 = α1z

2 +
n∑
i=2

αix
2
i

which leads to (
α1z +

n∑
i=2

αixi

)2

=
(
α1 +

n∑
i=2

αi

)
×
(
α1z

2 +
n∑
i=2

αix
2
i

)
.

If we denote T =
∑n
i=2 αixi, U =

∑n
i=2 αi, and V =

∑n
i=2 αix

2
i , that can be computed from

above scalars, we have (α1z + T )2 = (α1 + U) · (α1z
2 + V ), and thus

Uα1z
2 − 2Tα1z + (α1 + U)V − T 2 = 0 mod p.

Using Lemma 19 on the n − 1 tuples (g, ai, bi), for i = 2, . . . , n, the probability that T =∑n
i=2 αixi = 0 is negligible, unless one can break the SDL Assumption. So we have T 6= 0, with

two cases:

1. If U 6= 0 then, because computing square roots in Zp is easy, one can solve the above
quadratic equation for z that admits solutions, and obtain two solutions for z. By testing
which one satisfies gz = Z1, one can find out the correct z and thus solve the SDL problem.

2. If U = 0, one can compute z = (α1V −T 2)/(2Tα1) mod p and thus solve the SDL problem.
ut
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B Mix-Networks with Squares Diffie-Hellman Tuples

Instead of using the signature scheme from Section 3.5, with the random Rλ to avoid miscibility,
one can concatenate Square Diffie-Hellman tuples (gr,Ai = gwir ,Bi = Awii ) with a proof of
correctness, using Groth-Sahai technique: Comi = (ci = vwi2,1v

µi
1,1, di = vwi2,2v

µi
1,2g

wi) ∈ G2
1, a

commitment of wi, then (Θi = gµir , Ψi = Aµii ) ∈ G2
2 satisfies:

e(ci, gr) = e(v2,1,Ai) · e(v1,1, Θi) e(di, gr) = e(v2,2g,Ai) · e(v1,2, Θi)
e(ci,Ai) = e(v2,1,Bi) · e(v1,1, Ψi) e(di,Ai) = e(v2,2g,Bi) · e(v1,2, Ψi)

In this case, one can use
∏

A′j = (
∏

Ai)α instead of
∏

f′j and (
∏

fi)α, in the Diffie-Hellman
tuple, to guarantee the permutation of the verification keys. Indeed, the voter does not need to
know wi to sign his vote, as explained later.

This leads to the protocol presented on Figure 5. We first give an intuition of the construc-
tion, then provide a new proof for permutation of the verification keys.

Parameters
For a security parameter κ, let (G1,G2,GT , p, g, g, e)← G(κ), where g and g are random generators of G1 and
G2 respectively, and (v1,1, v1,2, v2,1, v2,2) a Diffie-Hellman tuple, then the global parameters are Gparam =
(G1,G2,GT , p, g, g, e, v1,1, v1,2, v2,1, v2,2);
Let the system keys be SK = (S1, S2, S3, S4, S5, S6, S7) $← Z7

p the signing key, VK = (gi = gSi )i the associated
verification key, EK = h = gd the encryption key associated to the decryption key DK = d

$← Zp, and ` = ge,
for e $← Zp;
The round parameters are initialized as Rparam = (gr = g, sr = s = gS3 ).
Initialization (r = 0)

– Keys: ski = (ui, vi, xi, yi;wi) $← Z5
p and vki = (gr; fi = gui

r , li = gvi
r , gi = gxi

r , hi = gyi
r ;Ai = gwi

r ,Bi =
Awi
i ), with a system signature Σi = gS1

r · fS2
i lS3

i gS4
i hS5

i ·A
S6
i BS7

i and a proof πi = (Comi,Proofi) of Square
Diffie-Hellman for the tuple (gr,Ai,Bi): Comi = (ci = vwi

2,1v
µi
1,1, di = vwi

2,2v
µi
1,2g

wi ) ∈ G2
1, a commitment of

wi and Proofi = (Θi = gµi
r , Ψi = Aµi

i ) ∈ G2
2;

– Ciphertexts: Ci = (g, `i = `ri , ai = gri , bi = hriMi), C0 = (1, `, g, h), with two signatures σi =
gui`vi

i a
xi
i b

yi
i of Ci and τi = `vigxihyi of C0.

In addition to the parameters (Gparam,VK,Rparam), the authenticated ciphertext consists of 7 elements from
G1 and 9 elements from G2:

(ai, bi, `i, σi, τi) ∈ G5
1, (fi, gi, hi, li;Ai,Bi) ∈ G6

2, Σi ∈ G2, (ci, di, Θi, Ψi) ∈ G2
1 ×G2

2.

Mixing

The mix-server chooses random scalars α $← Zp, and publishes new round parameters Rparam′ = (g′r =
gαr , s

′
r = sαr ): for each ballot, it chooses γi, δi, zi $← Zp, and sets

vk′i = (g′r; f′i = fαi , l
′
i = lαi g

′
r
δi , g′i = gαi , h

′
i = hαi ;A′i = Aαi ,B

′
i = Bα

i )

C′i = (g, `′i = `i · `γi , a′i = ai · gγi , b′i = bi · hγi )

Σ′i = Σα
i · s′r

δi σ′i = σi · τγi
i · `

′
i
δi τ ′i = τi · `′r

δi

c′i = ci · vzi
1,1 d′i = di · vzi

1,2 Θ′i = (Θi · gzi
r )α Ψ ′i = (Ψi · Azi

i )α

Output all the output ballots in random order with the round parameters and the global proof π′ of Diffie-
Hellman tuple for (gr, g′r,

∏
i
Ai,
∏
i
A′i).

Verification
The verifier will check this proof π, the number of input tuples is the same as the number of output tuples,
the Ai are all distinct and different of 1, and σi, Σi, πi are valid on individual output tuples.

Figure 5. Shuffling of ElGamal Ciphertexts
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B.1 Intuition

This construction will take advantage of the signature σi of Ci under the verification key vki, also
signed in Σi under the system verification key VK, thanks to the linear homomorphism. For the
intuition of soundness, we assume δi = 0 (see Figure 5) to have a perfect linear randomization
(such linearity can lead to linkability, hence the alteration δi which will allow the zero-knowledge
property, that will be formally proven later). The mix-server will indeed be able to generate
a randomization C ′i of Ci, and a signature σ′i under the key vki. Then, one will note that σ′i
is still a valid signature of C ′i, but under vk′i = vkαi (we stress that for this intuition, δi = 0)
and new parameters, which is also signed by Σ′i = Σα

i , under the same system verification key
VK, thanks to the linear homomorphism. Several properties will be required, with the evolving
round parameters Rparam = (gr, sr) initially set to (g, s), where s is a signature of g under
g3 as e(g, s) = e(g3, g). Note that this signature s will just be useful when δi 6= 0, to break
linearity properties that could be used by an adversary. We expect the operations performed
by the mix-server guarantee:

1. only randomizations of some Ci can be signed under a new verification key vk′i. To this aim,
the sender will sign the ciphertext (g, `ri , gri , hriMi) of Mi and the ciphertext (1, `, g, h) of
1, with its signing key ski (associated to the verification key vki). These are ElGamal ci-
phertexts, with a first component that impose the randomization of the ciphertext and the
second component that excludes linear attacks (when δi 6= 0). Indeed, since only linear com-
binations are possible, one can just sign some pair C ′i = (gti , `′i = `tiri+γi , a′i = gtiri+γi , b′i =
htiri+γiM ti

i ), which is a randomization of Ctii . If we impose the first component to remain
g, then ti = 1, and C ′i is a randomization of Ci. If one denotes σ′i the signature of this
randomization under vki, one notes this is also a signature of C ′i under vk′i = vkαii (when
δi 6= 0, thanks to s, one can alter vk′i and adapt σ′i), for a new public parameter g′r = gαir .
If g′r is required to be common for all the ciphertexts, then αi = α is a constant. We can
also consider the encryption Cr of 1, and the signature τi:

e(σ′i, g′r) = e(g, fαi ) · e(`′i, lαi ) · e(a′i, gαi ) · e(b′i, hαi )
e(τi, g′r) = e(`, lαi ) · e(g, gαi ) · e(h, hαi )

2. one needs non-miscibility of the verifications keys to guarantee vk′i = vkαii (when δi = 0).
To this aim, we will consider vki = (gr; fi, li, gi, hi; gwir , g

w2
i

r ) for signing quadruples (the
above ciphertexts C0 and Ci) with the four components (fi, li, gi, hi), while the three other
components (gr, gwir , g

w2
i

r ) guarantee non-miscibility, for unknown and random wi
$← Zp,

as shown in Theorem 11. Ci is converted into C ′i signed under the new verification key
vk′i = (gαr ; fαi , lαi , gαi , hαi ; gαwir , g

αw2
i

r ), with a valid signature Σ′i = Σα
i (still when δi = 0),

under VK:

e(g,Σ′i) = e(g1, g
α
r ) · e(g2, f

α
i )e(g3, l

α
i )e(g4, g

α
i )e(g5, h

α
i ) · e(g6,A

α
i )e(g7,B

α
i )

For proving the Square Diffie-Hellman tuples, one needs the validity proof, that is initially
known for vki with πi = (Comi = (ci, di),Proofi = (Θi, Ψi)) to be converted into π′i =
(Com′i = (c′i, d′i),Proof ′i = (Θ′i, Ψ ′i)). With the computations given in Figure 5, one has

e(c′i, gαr ) = e(v2,1,A
α
i ) · e(v1,1, Θ

′
i) e(di, gαr ) = e(v2,2g,A

α
i ) · e(v1,2, Θ

′
i)

e(c′i,Aαi ) = e(v2,1,B
α
i ) · e(v1,1, Ψ

′
i) e(d′i,Aαi ) = e(v2,2g,B

α
i ) · e(v1,2, Ψ

′
i)

In the initial proof Πi, Comi is a Groth-Sahai [GS08] commitment of wi and Proofi is the
proof that both Ai = gwir and Bi = Awii . Then, one just randomize the commitment Comi

into Com′i of the same value wi, which allows the update of Proofi into Proof ′i, as detailed
in figure 5.
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3. a ciphertext Ci can only appear once in an output C ′i. With the above notation, to avoid du-
plication, since we imposed the constant α, one can just check there are no collisions among
the components A′i in the vk′i (assuming there was no collisions among the components Ai
in the vki’s).

4. all the input ciphertexts Ci should appear in an output C ′i. To this aim, one could think this
is enough to count them, and have as many output tuples as input tuples, but the server
could collude with a legitimate sender (who did not contribute yet in the initial set of ballots,
but has all the material) and replace a ballot by a new legitimate ballot for this new user.
To avoid that, one also has to check that

∏
iA
′
i = (

∏
Ai)α, which guarantees the same wi’s

are in both products: indeed, as all individual ballots are signed, they must contain their
original wi. In the example of electronic voting, this exclude the mix-server with voting
right (or colluding with legitimate voters) to replace ballots in the initial ballot-box by new
ballots.

If one denotes (g′r = gαr , s
′
r = sαr , f

′
i = fαi , g

′
i = gαi , h

′
i = hαi ,A

′
i = Aαi ,B

′
i = Bα

i ), the new tuples
(a′i, b′i, `′i, σ′i, τi), (g′r; f′i, l′i, g′i, h′i;A′i,B′i), Σ′i, (c′i, d′i, Θ′i, Ψ ′i) satisfy the initial relations (signatures
and Square Diffie-Hellman proofs), with respect to the new round parameters Rparam′ = (g′r, s′r).
Everything is random, except τi: hence the need to randomize it with δi 6= 0. Then, one can
re-iterate the mixing process.

B.2 Efficiency

As shown in Figure 5, from n ballots, that each consists of 7 group elements from G1 and
9 group elements from G2, the mix-server has to perform 8 exponentiations in G1 and 13
exponentiations in G2 per ballot to randomize them (most of them to the same exponent α),
and the overhead is constant: 2 exponentiation in G2 for Rparam′ and just one zero-knowledge
proof of Diffie-Hellman tuple in G2. One can note that the overall verification just requires
individual checks of ballots, which can be performed on individual ballots in any order and even
on independent machines, except the total numbers of input and output ciphertexts that have
to be the same, the absence of collisions among the A′i, as well as the Diffie-Hellman relation
proof for (gr, g′r,

∏
Ai,

∏
A′i).

In addition, since mixing should be iterated multiple times to guarantee privacy in case of
some malicious mix-servers, one can note that in our mechanism, one just needs to output the
initial ballot-box BBox(0) and the final ballot-box BBox(N) (no need of keeping the intermediate
ones) and the Diffie-Hellman relation proof for (g(0)

r , g
(N)
r ,A(0) =

∏
Ai,A

(N) =
∏

A
(N)
i ), which

can either be of linear size in the number of iterations if one keeps each individual proof for
(gr, g′r,

∏
Ai,

∏
A′i) or just constant size if one uses Groth-Sahai proofs, that can be updated.

Indeed, if we consider the Groth-Sahai proof πk = (Com(k), Θ(k), Ψ (k)) of Diffie-Hellman
for (g(0)

r , g
(k)
r ,A(0),A(k) =

∏
A

(k)
i ) at round k, Com(k) is thus a commitment of αk where αk

satisfies g(k)
r = (g(0)

r )αk : Com(k) = Com(αk, µk). To update the proof for the next round, one can
construct (as explained on Figure 6) a commitment Com(k+1) = Com(αk × α, µkαk + µ), where
α is the global power in the mixing and µ $← Zp is a randomization of the commitment, and
appropriately update Θ(k) and Ψ (k) into Θ(k+1) and Ψ (k+1). By this way, we obtain a constant
overhead, whatever the number of rounds.

Eventually, one even does not need to publish the entire initial ballot-box, but just the
Ai’s of all the voters: they can be put in real-time on a public-board so that each voter can
check that his vote has been added to the ballot-box. After multiple mixings, one just needs to
publish the randomized and permuted ballots, with the global proof of Diffie-Hellman tuple for
(g(0)
r = g, g

(N)
r ,A(0) =

∏
Ai,A

(N) =
∏

A
(N)
i ).

We summarize all these remarks in Figure 6, where BBox(k) denotes the ballot-box after
round k, A(0) =

∏
Ai is the product of all the initial Ai’s and αk =

∏
αj the product of all the
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From round k to round k + 1 (with the use of Groth-Sahai proofs)

1. one computes BBox(k+1) from BBox(k) with the Mixing of a shuffle with α;
2. from the Diffie-Hellman proof for (g(0)

r , g
(k)
r ,A(0),A(k) =

∏
A

(k)
i ),

Com(k) = (c = v
αk
2,1v

µk
1,1, d = v

αk
2,2v

µk
1,2g

αk ) Θ(k) = (g(k)
r )µk Ψ (k) = (A(k))µk

one can compute the proof for (g(0)
r , g

(k+1)
r ,A(0),A(k+1)), for random µ

$← Zp:

Com(k+1) = (cα · vµ1,1, d
α · vµ1,2)

Θ(k+1) = (Θ(k))α · (g(k)
r )µ Ψ (k+1) = (Ψ (k))α · (A(k+1))µ

3. one can destroy BBox(k).

Last round N

One can also forget C(N)
0 with its signatures τ (N)

i in BBox(N). Hence, for a mix-net of N rounds, one just have
to keep: {A(0)

i },BBox(N),Com(N), Θ(N), Ψ (N) which consists of 6n + 3 elements in G1 and 10n + 4 elements
in G2 for n ciphertexts.

Figure 6. Efficient Mix-Net with Multiple Rounds

powers used for mixing since the first round. This mix-net becomes the most-efficient mix-net
with verification complexity independent of the number of mixing rounds, to the best of our
knowledge.

B.3 Security Analysis

The soundness proof can be improved for the second step, using the extractability assumption,
for the permutation of the verification keys. Indeed, note that the mix-server will add the proof
that (gr, g′r,

∏
j Aj ,

∏
iA
′
i) is a Diffie-Hellman tuple where the products are on the ballots in the

initial ballot-box for the Aj ’s and in the output ballot-box for the A′i’s. From the extractability
assumption, an extractor provides this α such that g′r = gαr , then

∏
iA
′
i = (

∏
j Aj)α. As proven

above, for each i (in the output ballot-box), there exists ji among the legitimate keys such that
A′i = Aαji . Hence, we have (

∏
iAji)α =

∏
iA
′
i = (

∏
j Aj)α. As a consequence,

∏
iAji =

∏
j Aj . Let

us now assume that with non-negligible probability, a malicious mix-server manages to insert
an wji that was not in the initial ballot-box.

We will again exploit the fact that nobody knows the wi’s in the vki’s, while they are
guaranteed to be randomly drawn (we will show later how to make it):

– First, we modify the generation of the proofs of Square Diffie-Hellman tuples. To this aim,
we change the global parameters, with a non-Diffie-Hellman tuple (v1,1, v1,2, v2,1, v2,2), so
that (v1,1, v1,2, v2,1, g · v2,2) is a Diffie-Hellman tuple, making the Groth-Sahai commitments
perfectly hiding. Under the DDH assumption in G1, this makes no difference.

– This is equivalent to explicitly set (v1,1, v1,2, v2,1 = vρ1,1, v2,2 = vρ1,2/g) with a random known
scalar ρ, and then, so that (v1,1, v1,2, v2,1, g · v2,2) is a Diffie-Hellman tuple, making the
Groth-Sahai commitments perfectly hiding. We can indeed see the commitment of wi with
randomness µi as (ci, di) = (vµi+ρwi1,1 , vµi+ρwi1,2 ), the commitment of 0 with randomness νi =
µi+ρwi. Hence, Θi = gµir = gνi−ρwir = A−ρi ·gνir and similarly Ψi = Aµir = Aνi−ρwir = B−ρi ·Aνir .

– This new setup allows to simulate the proofs without knowing wi, and even for random
non Square Diffie-Hellman tuples, which are indistinguishable from Square Diffie-Hellman
tuples under the DSDH assumption in G2.

– Eventually, we choose Ai ← gwihyi , and Bi ← gzi for random scalars wi, yi, zi $← Zp, with
an independent group element h $← G2.
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In this last game, a successful modification of the ballots leads to

g
∑

i
wjih

∑
i
yji =

∏
i

gwjihyji =
∏
i

Aji =
∏
j

Aj =
∏
j

gwjhyj = g
∑

j
wjh

∑
j
yj .

The left-hand side sum is on I, the set of the indices in the output ballot-box, and the right-
hand side sum is on J , the set of the indices in the input ballot-box. Again, because of the
collision checks on the A′i’s, there is no repetition in the sets, because of the equal sizes of
the ballot boxes, the two sets have the same cardinalities. Let us denote I ′ = I\(I ∩ J ) and
J ′ = J \(I ∩ J ). In case of misbehavior of the mix-server, one gets I ′ 6= ∅ and J ′ 6= ∅ but

g
∑

i∈I′ wjih
∑

i∈I′ yji = g
∑

j∈J ′ wjh
∑

j∈J ′ yj

Because of the unpredictability of the yi’s in the Ai’s, with overwhelming probability
∑
i∈I′ yji 6=∑

j∈J ′ yj , which provides the discrete logarithm of h is basis g.

B.4 Unlinkability

This construction with Square Diffie-Hellman tuples adds group elements of G2 in vki. They
provide non-miscibility and thus the soundness but by adding elements, unlinkability could be
not verified anymore. This section proves that this is not the case: the unlinkability still remains.
The security proof will follow the proof in Section 5: new games are needed at the beginning
to randomize the Square Diffie-Hellman tuples and the Groth-Sahai proofs in the input ballot-
box, the middle of the proof is exactly the same and finally a last game is needed at the end to
randomize the Square Diffie-Hellman tuple in the output ballot-box.

Again we stress that in the following proof, we assume (at least) two input ballots to have
been generated by honest (non-compromised) voters. More precisely, at least two signing keys
should not be known to the adversary, nor the random coins used by the mix-server. We start
from the initial real game that generates the view of the adversary, for the input ballots and the
randomized ballots, and conclude with a game where the randomized ballots are all generated
randomly, independently of the input ballots: b is thus perfectly hidden.

Game G0: One generates a group structure (G1,G2,GT , p, g, g, e) ← G(κ), and a Diffie-
Hellman tuple (v1,1, v1,2, v2,1, v2,2) in G1. One then sets the global parameters, Gparam =
(G1,G2,GT , p, g, g, e, v1,1, v1,2, v2,1, v2,2). One randomly chooses (Si)i, d, e $← Zp to generate
the server public keys VK = (gi = gSi)i, and EK = h = gd, and ` = ge to set the round
parameters Rparam = (gr = g, sr = gS3

r ).
For each honest user i, one randomly chooses ui, vi, wi, xi, yi, µi, ri $← Zp to generate vki =
(gr; fi = guir , li = gyir , gi = gvir , hi = gxir ;Ai = gwir ,Bi = Awii ), and the signature Σi of
vki under SK, πi = (Comi,Proofi), as well as Ci = (g, `i = `ri , ai = gri , bi = hriMi),
C0 = (1, `, g, h), with σi and τi the signatures of respectively Ci and C0 under ski with
respect to gr. Indeed, knowing the signing keys allows to honestly generate the signatures
Σi, σi, and τi. Bi = (Ci, σi, τi, vki, Σi, πi) constitutes a ballot of an honest user. For the
corrupted ones, the simulator receives directly Bi = (Ci, σi, τi, vki, Σi, πi). The input ballot-
box is then BBox = {Bi}i∪{(vkr, C0)} including the ballots of all the honest and corrupted
users and the round parameters.
By randomly choosing α and γi, δi, zi in Zp, the simulator also generates, as the mix-server
would do, Rparam′ = (g′r = gαr , s

′
r = sαr ) with a proof of knowledge of α such that g′r = gαr ,

and

vk′i = (g′r; f′i = fαi , l
′
i = lαi g

′
r
δi , g′i = gαi , h

′
i = hαi ;A′i = Aαi ,B

′
i = Bα

i )
C ′i = (g, `′i = `i · `γi , a′i = ai · gγi , b′i = bi · hγi)
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Σ′i = Σα
i · s′r

δi σ′i = σi · τγii · `
′
i
δi τ ′i = τi · `′r

δi

c′i = ci · vzi1,1 d′i = di · vzi1,2 Θ′i = (Θi · gzir )α Ψ ′i = (Ψi · Azii )α

Eventually, the simulator chooses a random permutation Π on {1, . . . , n}, and sets the
output ballots B′i = (C ′Π(i), σ

′
Π(i), τ

′
Π(i), vk′Π(i), Σ

′
Π(i), π

′
Π(i)). It outputs BBox = {Bi}i ∪

{(vkr, C0)} and BBox′ = {B′i} ∪ {(vk′r, C0)}, together with a zero-knowledge proof π′ of
Diffie-Hellman tuple for (gr, g′r,

∏
iAi,

∏
iA
′
i).

Game G1: Our first step is to modify the CRS for the proofs of Square Diffie-Hellman
tuples. To this aim, we change the global parameters, with a non-Diffie-Hellman tuple
(v1,1, v1,2, v2,1, v2,2), so that (v1,1, v1,2, v2,1, g · v2,2) is a Diffie-Hellman tuple, making the
Groth-Sahai commitments perfectly hiding. Under the DDH assumption in G1, this makes
no difference.

Game G2: Now, we explicitly set (v1,1, v1,2, v2,1 = vρ1,1, v2,2 = vρ1,2/g) with a random known
scalar ρ, so that (v1,1, v1,2, v2,1, g · v2,2) is a Diffie-Hellman tuple. Thus, the Groth-Sahai
commitments is perfectly hiding. For all the user, we can indeed see the commitment of wi
with randomness µi as (ci, di) = (vµi+ρwi1,1 , vµi+ρwi1,2 ), the commitment of 0 with randomness
νi = µi + ρwi. Hence, Θi = gµir = gνi−ρwir = A−ρi · gνir and similarly Ψi = Aµii = Aνi−ρwii =
B−ρi · A

νi
i .

As for the proof πi in each ballot, we can see the commitment in the proof π′ by a commit-
ment of 0 and simulate Θ,Ψ .

Game G3: Now, the public keys are generated as

vki = (gr; fi = guir , li = gvir , gi = gxir , hi = gyir ;Ai = gwir ,Bi = gw̄ir )

vk′i = (g′r = gαr ; f′i = fαi , l
′
i = lαi g

′
r
δi , g′i = gαi , h

′
i = hαi ;A′i = Aαi ,B

′
i = Bα

i )

from the known scalars ui, vi, xi, yi, wi, w̄i, δi, α. Everything else can be simulated as above.

Lemma 20. Under the DSDH assumption in G2, this game is indistinguishable from the
previous one.

Game G4: Notice that A′i = Aαi = gwiαr = g′r
wi and B′i = Bα

i = gw̄iαr = g′r
w̄i : they can be

simulated without knowing α. And from the modification of the commitments applied with
zi, we can also set Θ′i = A′i

−ρ · g′r
ν′i and Ψ ′i = B′i

−ρ ·A′i
ν′i with ν ′i = νi + zi. Again, we can do

the same in π′ to simulate Θ′, Ψ ′. This game is perfectly indistinguishable from the previous
one.

Game G5: For all the honest users, we replace Ci by an encryption of 1. And, even if we still
choose at random the signing keys ski = (ui, vi, xi, yi;wi, w̄i), we also choose at random
sk′i = (u′i, v′i, x′i, y′i).
This games is computationally indistinguishable from the previous one by the DDH assump-
tion in G1 and G2 and the Unlinkability Assumption (see the two lemmas 15 and 16, in the
proof Section 5.

Game G6: Finally, for all the user, we choose at random w′i, w̄
′
i in order to have random

verification keys vk′i. Under the DDH assumption in G2, this game is computationally in-
distinguishable from the previous one.

In this final game, vk′i is a random key, for a secret key sk′i = (u′i, v′i, x′i, y′i;w′i, w̄′i)
$← Z6

p,
independent from the secret key ski = (ui, vi, xi, yi;wi, w̄i). The ciphertexts C ′i contain random
independent elements:
Proposition 21 (Unlinkability of the Mixing). Given any input ballot-box and transformed
ballot-box (following the protocol from Figure 5), for any pair of honestly generated input ballots
(B0,B1) and pair of output ballots (B′0,B′1), such that B′b is a randomization of B0, and B′1−b
is a randomization of B1, for a random bit b $← {0, 1}, no adversary can get a non-negligible
advantage in guessing b.
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Proof (Lemma 20). The proof works with a sequence of hybrid games:

Game G0: Since we do not need wi anymore for the proofs, the simulator receives a random
Square Diffie-Hellman tuple (gr,Ai,Bi) for all the users, and everything else can be sim-
ulated as above, without wi but with random νi, ν

′
i and using ρ. In particular, the public

keys can be generated as

vki = (gr; fi = guir , li = gvir , gi = gxir , hi = gyir ;Ai,Bi)

vk′i = (g′r = gαr ; f′i = fαi , l
′
i = lαi g

′
r
δi , g′i = gαi , h

′
i = hαi ;A′i = Aαi ,B

′
i = Bα

i )

from the known scalars ui, vi, xi, yi, δi.
Game G1: The simulator now receives random tuples (gr,Ai,Bi) and runs as before. This

game is indistinguishable from the previous one thanks to the Square Diffie-Hellman as-
sumption.

Game G2: We now do the simulation with

vki = (gr; fi = guir , li = gvir , gi = gxir , hi = gyir ;Ai = gwir ,Bi = gw̄ir )

vk′i = (g′r = gαr ; f′i = fαi , l
′
i = lαi g

′
r
δi , g′i = gαi , h

′
i = hαi ;A′i = Aαi ,B

′
i = Bα

i )

for known random scalars ui, vi, xi, yi, wi, w̄i, δi, α $← Zp. This game is perfectly indistin-
guishable from the previous one. ut

B.5 Generation of the Parameters and Keys

As already explained, for the soundness and the zero-knowledge property to hold in the above
mixing protocol, we need wi unknown to anybody (if one wants to consider possible collusion
between the mix-server and some senders). For electronic voting, this means that the voters can
choose (ui, vi, xi, yi) but should jointly generate (Ai,Bi) together with the proof πi such that
nobody knows wi, to build vki and get the signature Σi.

Of course, this could be done with generic two-party computation, between the user and the
signing authority, but we present an efficient generation of the vki and the signature Σi.

– The voter chooses wi,1 $← Zp and computes

(Ai,1 = g
wi,1
r ,Bi,1 = A

wi,1
i,1 )

with a proof πi,1 of Square Diffie-Hellman tuple for (gr,Ai,1,Bi,1):

πi,1 = (Comi,1,Proofi,1) where
Comi,1 = (ci,1 = v

wi,1
2,1 v

µi,1
1,1 , di,1 = v

wi,1
2,2 v

µi,1
1,2 g

wi,1)
Proofi,1 = (Θi,1 = g

µi,1
r , Ψi,1 = A

µi,1
i,1 ).

The voter also chooses ui, vi, xi, yi $← Zp and sends (fi = guir , li = gvir , gi = gxir , hi =
gyir ;Ai,1,Bi,1, πi,1) to the signer.

– On its side, the signer chooses wi,2 $← Zp and computes

Ai,2 = g
wi,2
r Bi,2 = (A2

i,1 · g
wi,2
r )wi,2

with its contribution πi,2 for a proof πi of Square Diffie-Hellman tuple for (gr,Ai = Ai,1 ·
Ai,2,Bi = Bi,1 ·Bi,2):

πi,2 = (Comi,2,Proofi,2) where
Comi,2 = (ci,2 = v

wi,2
2,1 v

µi,2
1,1 , di,2 = v

wi,2
2,2 v

µi,2
1,2 g

wi,2)
Proofi,1 = (Θi,2 = g

µi,2
r , Ψi,2 = Θ

wi,2
i,1 · (Ai,1Ai,2)µi,2)
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Then, the signer publishes

Ai = Ai,1 · Ai,2 = g
wi,1+wi,2
r

Bi = Bi,1 ·Bi,2 = A
wi,1
i,1 · A

2wi,2
i,1 g

w2
i,2

r = g
w2
i,1+2wi,1wi,2+w2

i,2
r = g

(wi,1+wi,2)2
r

together with the proof

ci = ci,1 · ci,2 = v
wi,1+wi,2
2,1 v

µi,1+µi,2
1,1

di = di,1 · di,2 = v
wi,1+wi,2
2,2 v

µi,1+µi,2
1,2 gwi,1+wi,2

Θi = Θi,1 ·Θi,2 = g
µi,1+µi,2
r

Ψi = Ψi,1 · Ψi,2 = A
µi,1
i,1 ·Θ

wi,2
i,1 · (Ai,1Ai,2)µi,2

= A
µi,1
i,1 · A

µi,1
i,2 · (Ai,1Ai,2)µi,2 = A

µi,1+µi,2
i .

The signer also generates the signature Σi = gS1
r fS2

i lS3
i gS4

i hS5
i AS6

i BS7
i , together with an

interactive zero-knowledge proof of knowledge of wi,2 such that Ai,2 = Ai/Ai,1 = g
wi,2
r .

The signature Σi can only be used by the voter who knows ski = (ui, vi, xi, yi) for the verification
key vki = (fi, li, gi, hi;Ai,Bi). But the proof of knowledge of wi,2 guarantees that wi is really
jointly generated. Indeed, in order to prove that the tuple (gr,Ai,Bi) is random, we can do the
simulation of the above protocol with respect to the users and the mix-server, by simulating
the signer:

– first, we replace the setup of the Groth-Sahai commitments to make them perfectly hiding
and to allow simulation of the GS proofs;

– we also use the simulation of the interactive zero-knwoledge proof of knowledge of wi,2 such
that Ai,2 = Ai/Ai,1 = g

wi,2
r ;

– we now receive a random tuple (gr,Ai,Bi), for unknown wi: we can do as before with
Ai,2 = Ai/Ai,1 and Bi,2 = Bi/Bi,1, as the proofs are simulated.


