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Abstract. In this work, we describe how to deploy a cryptographic se-
cure computation protocol for routine use in industry. Based on our
experience, we identify major preliminaries and enabling factors which
we found to be critical to the successful deployment of such technology
as a practical, and uniquely positioned method for solving the task at
hand.
The specific technical problem that we tackled is that of computing Pri-
vate Intersection-Sum. In this setting two parties hold datasets contain-
ing user identifiers, and one of the parties additionally has an integer
value associated with each of its user identifiers. The parties want to
learn (1) the number of users they have in common and (2) the sum
of the integer values associated with these users, without revealing any
more information about their private inputs. Private Intersection-Sum is
not an arbitrary question, but rather arose naturally and was concretely
defined based on a given central business need: computing aggregate
conversion rate (or effectiveness) of advertising campaigns. This problem
has both great practical value and important privacy considerations, and
represents a type of analysis that occurs surprisingly commonly.
Among the factors that enabled our deployment, in this work we con-
sider in more depth the technical issue of protocol choice and its perfor-
mance implications. Specifically, we present a study involving three novel
protocols for computing Private Intersection-Sum, which leverage three
different basic protocol techniques including Random Oblivious Trans-
fer, encrypted Bloom filters, and Diffie–Hellman style (Pohlig–Hellman
specifically) double masking. We compare the three protocols under dif-
ferent instantiations of an additive homomorphic encryption, which is
used as a building block in each protocol. We implement our construc-
tions and compare their actual communication and computation over-
heads. Finally, we analyze the advantages of the DDH-based protocol
which make it the solution of choice for our deployment setting.

Keywords: secure computation · private intersection-sum · secure ag-
gregate ad conversion
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1 Introduction

Secure computation protocols, where parties combine their inputs to generate
output while keeping privacy of the inputs, were invented soon after public-
key cryptography was conceived (the “Mental Poker” 1979 protocol by Shamir,
Rivest, and Adleman [49] was perhaps the first such protocol). In this work,
we report on a current industrial application, which led us to deploy secure
computing technology to serve a concrete, routine, and central business area.

Modern cryptography can be essentially viewed as composed of three gen-
erations of technology: (1) Symmetric Cryptography, started in 1973 with the
design of DES, motivated by the need of the expanding banking industry need
for inter-branch secure communication; (2) Public Key cryptography from 1976-
77, where the development of the Internet made large scale authenticated secure
communication (i.e. authenticated key exchange) essential and prevalent; and (3)
Secure computation protocols, which have enjoyed a very rich 40 year history of
development of many basic and fundamental notions, protocols, techniques, and
experiments, yet with much less actual deployments and use.

We argue that current modern computational settings involving companies’
massive data and their need on the one hand to leverage their data for insights,
while on the other hand having legitimate privacy needs, leads itself to po-
tentially implementing secure computing technology. Indeed, the consideration
given to privacy by users and governments around the world is growing rapidly.
Yet, attempting deployment in an existing and operationally successful business
requires care, and as a community, the cryptography and security community
does not have extensive experience in how one adapts theoretical and even ex-
perimental protocols into deployed systems. With actual deployment in mind,
we will identify, based on our project’s experience, the major properties and en-
abling factors which facilitate this potential and make the use of the technology
and its actual deployment possible, acceptable to business, and even uniquely
qualified for the critical task at hand.

Concretely, the specific family of sharing problems we deal with gives rise to
what we call “the Intersection-Sum problem”: two parties (companies) hold
datasets containing user identifiers based on users active on their sides. The first
party has a list of users associated with first activity, activity like, for example,
viewing advertisements on the Internet, and the second side has a list of users
who transacted on a second activity such as: transacted at the advertised entity.
The second party additionally has an integer value associated with each user
identifier (representing, say, that user’s spending). A party wants to learn the
number of users they have in common, and the sum of the associated integer
values, but essentially “nothing more.” These outputs are, in fact, crucial to
assessing the effectiveness of the first activity: First, we learn how many users
the first activity drives towards the second activity, and secondly, we learn how
much the first activity increases the average spending of the users who are driven
to the second activity. The need for such effectiveness measures over correlated
activities are common in business, but privacy is an obvious countervailing con-
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cern: businesses would prefer to keep additional data (besides upper bounds on
the sizes of their lists) from being revealed.

1.1 Contributions

The contributions of our work are twofold: First, we found criteria for a business
problem to be suitable and acceptable to using secure computation for solving
it, while facing various business (and other real world) constraints. Secondly, we
actually developed and deployed a large scale solution leveraging secure compu-
tation techniques. From both steps there are issues to learn and we touch upon
them. Our major contributions here are technical and consist of the development
of three novel protocols for secure computation of Private Intersection-Sum, a
study that was needed in order to justify the choice of a highly probable suc-
cessful path to deployment.

While initially this functionality looks very close to the Private Set Intersec-
tion (PSI) functionality, which securely computes the intersection of two input
sets, it turns out that achieving the additional aggregation while hiding the
intersection comes with efficiency costs. At the same time the PSI capability
is an implicit required building block in the secure protocols for the extended
functionality. Thus, our protocols present approaches that extend techniques for
private set intersection in a way that allows to hide the actual intersection and
only compute an aggregated functionality over corresponding attributes. These
protocols are based on three different underlying techniques, which we chose
in order to explore the whole available space of existing PSI solutions, and to
determine which one of these approaches extends most efficiently to the private
intersection-sum functionality.

There have been many works on the problem of PSI in recent years. We
chose two approaches among these solutions and developed private intersection-
sum constructions leveraging their techniques. The first one is based on Random
Oblivious Transfer, and builds on techniques developed by [43] and [34]. This
approach leverages oblivious PRF techniques (OPRF), which we extended in
a two step oblivious evaluation that allows secret permutation of the evaluated
inputs. This enables us to hide the identity of the elements in the intersection. In
order to facilitate the aggregation functionality we leverage additive homomor-
phic encryption. The second protocol is based on Encrypted Bloom Filters and
is inspired by several recent PSI solutions [16, 19, 20]. We construct an oblivious
protocol for evaluating membership in an encrypted Bloom filter under additive
homomorphic encryption. We also use additive homomorphic encryption for the
aggregation functionality. In addition to the two protocols based on recent PSI
techniques, we present a third protocol, which we call the DDH-style protocol. It
is based on the classic set-intersection protocol of [50, 37], which uses the Pohlig–
Hellman cipher (based on the hardness of Decisional Diffie–Hellman (DDH)) –
this functionality can be also viewed as an oblivious PRF with shared key [31].
Similarly to the first construction the aggregation property is achieved through
the use of additively homomorphic encryption.
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In the three Private Intersection-Sum protocols that we summarize above the
output recipient is the party who has input set of pairs of identifiers and values.
We also describe “reverse” variants of the protocols, which change the output
recipient to be the party that has input set consisting only of identifiers. All
our constructions implement secure computation functionalities with security
against semi-honest adversaries (in the next section we refer to the business
constraints which allowed us to safely consider this model, and the advantage
this path offers).

All our protocols use additively homomorphic encryption as a building block.
We currently have three main ways to instantiate this encryption primitive: Pail-
lier [42], Exponential (additive) ElGamal [21], or lattice-based constructions [27,
9, 8, 23]. We analyze the efficiency of our protocols under these different instanti-
ations and compare the trade-offs that they offer. We prove the correctness and
security of each of the protocols. We implement and benchmark each of these
protocols, and compare their performance in both computation and communi-
cation. The DDH-style protocol achieves best communication efficiency among
the three protocols, requiring 9.28MB of communication on input sets of 100,000
elements. Surprisingly, it also achieves best computation efficiency in the imple-
mentation variants that we measured – the execution of the DDH-style protocol
for Private Intersection-Sum using RLWE homomorphic encryption for the as-
sociated values takes 395.78 seconds on sets of size 100,000 with at most 32-bit
associated values. Although the underlying PSI solutions for the first two pro-
tocols (based on ROT and Bloom Filters) have been optimized for computation
efficiency, we found that the dominant cost in the Private Intersection-Sum set-
ting is the operations related to the homomorphic encryption required to guar-
antee the extended intersection hiding and aggregation properties. To exemplify
this we analyze our protocol under ideal efficiency settings for the homomorphic
encryption, which do give computational advantage to ROT and BF protocols.

Based on our efficiency evaluation the DDH-style protocol was the clear
choice for practical deployment under the constraints that we have identified.
The other two protocols have potential to be good alternative for settings where
computation is the bottleneck, by developing further optimizations of homomor-
phic encryption such as packing, or instantiating the aggregation functionality
with more communication-expensive MPC techniques. They also outperform
the communication costs of existing constructions that consider generic private
computation on the set intersection leveraging garbled circuits and other similar
techniques [11, 22, 44] (though with significantly higher computation than those
works).

Other immediate advantages of the choice have been that the computation
of the protocol is parallelize-able and one can exploit multi-core and cloud com-
puting efficiently. We also comment that we will argue in the next section that
flexibility of the protocol is a business advantage since it may easily be reused
with small tweaks to solve other emerging tasks: the protocol of choice can be
easily modifies to reveal the set intersection if needed, and other modifications
are also easy to extract by small program modifications.
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1.2 Roadmap

In Section 2 we discuss our experience of bringing Private-Intersection-Sum from
theory into practice in the context of business environment. In Section 3 we
describe our approach and how it compares to existing works. In Section 5 we
present our three protocols which use several cryptographic primitives defined
in Section 4 and claim their correctness and security. In Section 6 we discuss
the tradeoffs of using different encryption schemes to instantiate our protocols.
In Section 7 we discuss some simple tweaks that can be made to each of our
protocols to modify them for slightly different settings. In Section 8 we present
measurements from our protocol implementations. In Section 9, we revisit our
protocols from the lens of the deployment requirements discussed in Section 2.

In Appendices A, B and C we give the full security proofs for our protocols.
Appendix D discusses “reverse” variants of our protocol. In Appendix E, we
present additional measurements.

2 Deploying Secure Computation: A View from a
Practical Perspective

Secure computation was long considered largely a theoretical tool, too ineffi-
cient for practice, but research has yielded numerous implementations achieving
orders of magnitude efficiency improvements. A growing number of real-world
applications of multiparty computation protocols have been reported in the last
decade. One of the first was the widely-cited Danish Sugar Beet Auction [7]. Oth-
ers include a financial application in Estonia [6], and a secure survey of faculty
salaries at universities in Massachusetts [36]. More recently, Lindell et al. [3, 26]
deploy secure computation for cryptographic operations running between ma-
chines owned by a single organization. Even more recently, startup companies
aiming at performing machine learning on secure data have been established as
well. However, routine use by organizations of secure computing between multi-
ple entities or businesses remains rare.

Our goal in the deployment efforts were a few: we wanted to learn what
problems and issues will be acceptable to the business to the point that they
can risk relying on secure computing, we wanted to prove that a successful fully
operational deployment is possible. The goal of this work is to discuss some of
the issues, and cover a technical part of what led us to a successful deployment.

In this section, we overview our take-aways from this process in terms of
the nature of the problems which make compelling candidates for the adoption
of cryptographic solutions as well as the characteristics of the cryptographic
solutions that are easiest to deploy. We add the caveat that our experience
is reflective of a period of time when cryptographic solutions based on secure
computation techniques are relatively novel in practice. This adds some unique
factors which may no longer be relevant when MPC becomes a mainstream
security approach.
Properties of a business problem: We start with a discussion about what
makes a problem a good candidate for cryptographic secure computing based
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solution, with references to the application we first employ the technology, when
appropriate:

Strong business benefit: Given that cryptographic solutions add significant com-
plexity and performance costs, a clear business benefit is a prerequisite to ex-
ploring such solutions. In this case the potential benefit outweighed the cost in
development effort, as well as computation and communication costs, for exe-
cuting a private solution.

Strong privacy need: For our application, the data needed to compute the ana-
lytics is split across different parties, each of which have a strong desire to keep
their data private. This is a powerful motivation to find solutions with strong
privacy properties.

Alternatives pose undesirable risks: The parties may have constraints related
to the underlying data that make alternatives, like using a trusted third party
or developing isolated execution environments, less palatable or not acceptable.
When no other solution is acceptable, a relatively expensive cryptographic solu-
tion becomes more attractive, since it provides the desired end-to-end privacy.
Performance Issues: The underlying problem must be amenable to efficient so-

lutions. The volume of data and the planned frequency of execution translate
into performance requirements. For example, if a report is required every day,
its production cannot take two days.

Not Real-Time: An application whose output is not needed in real-time (like ana-
lytics, learning, etc.) can much more easily tolerate the overhead costs associated
with a cryptographic solution.

How to choose among possible solutions: Next we turn to the properties
which guided our construction for the private set intersection-sum problem. We
note that our context is secure computation across multiple businesses (over
WAN). The characteristics for secure computing within a single business, or
between a server and a mobile application both owned by the same company
may be different. With this caveat, we made our solution decision based on the
following characteristics:

Communication Efficiency: Somewhat surprisingly, for the offline ‘batch com-
puting’ scenarios we consider, communication costs are far more important than
computation. This is especially the case for a secure protocol involving multiple
businesses, where servers cannot be co-located (Wide area network solutions).
Networks are inherently shared, and it is much less expensive to add CPUs to
a shared network than to expand network capacity. A rule of thumb we en-
countered is that doubling the communication cost of a solution is equivalent to
increasing the computational cost by a factor of 20×−40×.

Well-understood tools and assumptions: Companies tend to be highly risk-averse
when it comes to deploying novel cryptography, so it is very helpful to have pro-
tocols that use well-understood underlying assumptions and widely distributed
implementations.In this respect our chosen solution is based on the classical
hardness assumption of discrete logarithm (applied in the ECC setting) and a
factoring related assumption. We note that in fundamental research, technical
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novelties are always appreciated, yet in deployment, conservative, time-tested as-
sumptions help mitigate the risk and are easier to accept. Yet, proving security
and correctness of protocols, (as in fundamental research) is, in fact, a great tool
in clarifying the situation to the designers themselves, and making explanations
easier, convincing decision makers of the guarantees that are offered.

Simplicity: It is difficult to overstate the importance of simplicity in a practical
deployment, especially one involving multiple businesses. A simple protocol is
easier to explain to the multiple stakeholders involved, and greatly eases the
decision to use a new technology. It is also easier to implement without errors,
test, audit for correctness, and modify. It is also often easier to optimize by
parallelizing or performing in a distributed manner. Simplicity further helps long-
term maintenance, since, as time passes, a constantly increasing group of people
needs to understand the details of how a solution works. Conversely, the more
complex a solution gets, the more barriers appear in each context mentioned
above. In theoretical work, simplicity and clarity is often just an aesthetic goal,
but in implementation and deployment, simplicity has real and underappreciated
practical advantage.

Flexibility: Flexibility is the fact that we need high suitability for the primary
goal, yet at the same time, the solution needs to be easy to modify and reuse for
related problems. Any successful deployment may drive demand for solutions to
sub-problems or related problems. This implies a modular design (that can be
easily adapted and will eventually lead to an API that can be applied to a class
of problems) is always desirable.

Adversarial Behavior. Another important axis in considerations is the class of
misbehavior the secure computation should protect against. Existing crypto-
graphic protocols provide different levels of security guarantees, where the two
extremes are the honest-but-curious (or semi-honest) and the malicious adver-
sary models. Protocols that provide security against “honest-but-curious” adver-
saries, assume that the participants will follow the protocol steps honestly, but
may try to learn as much as possible from the protocol messages. Honest-but-
curious security means that such participants should learn nothing more than
the protocol prescribes. On the other hand, malicious adversaries are allowed to
deviate arbitrary from the protocol, and malicious security for a construction
guarantees that even such adversaries cannot learn more about the private in-
puts. There also exist adversarial models that achieve intermediate guarantees.
While protection against stronger adversaries is naturally more appealing, it does
come with substantial efficiency cost (especially communication), which in the
setting of our application was not acceptable when not essential. A semi-honest
construction (modeled in [52], on the other hand, does provide meaningful guar-
antees in scenarios where the parties are large institutions and have additional
non-cryptographic incentives to follow the protocol. We targeted such settings
(at least, to start with) due to their performance and simplicity advantages (yet
we look for solutions that with some added functionality can be extended when
possible to counter more malicious parties). Note that the nature of the adver-
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sary in real life is actually determined by risk management considerations
which determine the nature of the interaction and the level of trust among the
transacting parties (and in the range of possible partners there are enough that
can be considered honest-but-curious due to the business/ legal context and
arrangements).

In summary, identifying a good application for practical deployment of secure
computation techniques involves solving technical, business, organizational, and
human challenges which are often intertwined in the context of real applications.
Thus, a viable solution cannot target just one subset of these areas of concern,
but needs to address all of them.

The bulk of this paper does not cover all these subareas, rather it concen-
trates in some length on technically justifying the choice of a solution among
possible available solutions. We demonstrate how the choice was based mainly
on performance and simplicity, and also some other criteria like flexibility.

3 Related Work and Our Approach

3.1 Private Set Intersection: an Overview

Private set intersection is a specialized problem for secure two-party computation
that has been studied extensively in a long sequence of works [30, 15, 35, 48, 45,
43, 19, 47, 34, 25, 12, 20, 16, 29]. Several works limit the parties to learning only
the cardinality of the intersection [25, 1, 33, 51, 14, 40, 30].

The most prevalent technique among recent specialized protocols for set in-
tersection, which also underlies the most efficient PSI construction currently [34],
is based on the concept of oblivious pseudorandom functions (OPRF) [24]. The
high level idea in this approach is to replace the items in the two input sets
with corresponding PRF evaluations where one party has the OPRF key and
can obtain locally its pseudorandom evaluations, and the oblivious evaluation
property of the PRF is used to enable the other party to obtain its PRF values.
Now any of the two parties can use the pseudorandom representations of the
input sets to compute the intersection and it will also have the mapping of the
intersection PRF values to the original input set values. Different papers have
proposed different approaches for instantiation of the OPRF where currently
the most efficient approach has been using random oblivious transfer (ROT),
which is a modification of the oblivious transfer OT extension protocol [45], as
an OPRF that allows a single oblivious evaluation. Additionally the set intersec-
tion protocol is reduced to many smaller set intersection protocols in which one
of the parties always has a single element input set, these can be implemented
using the limited functionality of the ROT-based OPRF. This is achieved by
leveraging Cuckoo hashing [17] at one of the parties, which distributes its items
in bins of size at most one, and simple hashing at the other party using all
Cuckoo hash functions for each input element. At this point the parties run a
mini-PSI protocol for the items sent to each bin in the parties’ inputs.

Another approach for computing set intersection, which was introduced in
the work of Dong et al. [19], and was later strengthened by Rindal et al. [47]
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in the context of malicious set intersection leverages the notion of Bloom filters
(BF) [5]. The two parties agree on the hash functions parameters for a Bloom
filter. The first party computes a garbled Bloom filter which contains random
values in its locations with the constraint that if an element is present in the set
the values in the Bloom filter corresponding to its hash locations are additive
shares of the element. The second party constructs a regular Bloom filter with
binary values for its input set. Then, the two parties run oblivious transfer
protocols where the second party retrieves the elements from the garbled BF
of the first party only for locations where the value in its own BF is one. The
second party can now check which of its input elements is in the intersection
represented by the partial garbled BF that it has obtained through the OTs.

An approach for PSI computation based on the Decisional Diffie–Hellman
(DDH) computational assumption, which comes from some older works [30, 15,
31, 35, 48], has the following idea. The two parties hash their values in a group
where DDH holds. Each party has a secret exponentiation key. The parties use
their keys to exponentiate their hashed input elements and exchange the results.
They further exponentiate the elements in each of the received sets and send back
the results. Now each party can compute the intersection locally. Technically this
approach can be considered as an instantiation of the OPRF approach where
the OPRF key is shared [31], but since the construction has different properties
we discuss it independently. This technique has not been considered in more
recent PSI works, which focus on computational efficiency, however, it brings
desirable advantages for our setting where the limiting factor is communication
complexity.

The PSI problem has also been solved using directly general two party com-
putation techniques. Works using garbled circuit techniques allow computing the
cardinality of the intersection, as well as more general functions of associated
values of items in the intersection associated values. Huang et al.’s work [29]
leverage the Sort-Compare-Shuffle approach which uses a O(n log n)- depth cir-
cuit to perform set intersection. The Phasing technique of Pinkas et al. [43]
hashes items to bins and uses garbled circuits to perform intersection bin-wise.
More recently, several partly concurrent works [11, 22, 44] combine modern PSI
tools such as phasing and sort-shuffle-compare garbled-circuits to create novel
protocols that allow parties to output shares of the items in the intersection.
This allows arbitrary two-party computations over associated values of items
in the intersection, including learning sums of associated values. These works
offer very competitive computational efficiency, at the cost of increased commu-
nication due to the use of techniques (including garbled circuits) that require
bit-wise encryption and secure comparison of inputs. However, these works have
the powerful advantage that they allow computing arbitrary functions over the
intersection.

There are also works that target specialized settings to gain additional effi-
ciency. In the setting of unbalanced input sets, Chen et al. [10] leverage fully-
homomorphic encryption to create PSI protocols which offer improved commu-
nication efficiency, while at the same time allowing retrieval of associated data
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for items in the intersection. [32] explore offline precomputation to maximize
online efficiency for PSI.

3.2 Transforming PSI into Private Intersection Sum: Tag, Shuffle
and Aggregate

As we discussed in the introduction the problem of private intersection-sum can
be viewed as an extension of the functionality of private set intersection, and
moreover the PSI functionality is an implicit component of our functionality.
Thus a natural starting point for our constructions are existing PSI protocols.
Our high level recipe for going from PSI to Private Intersection Sum is as follows:

1. Each of our protocols takes an existing PSI approach, and incorporates a
shuffle step. This idea, first seen in [30], has the effect of turning the PSI
protocol into a Private Intersection-Cardinality protocol: shuffling lets the
participants count how many items are in the intersection, but not learn
which specific item was in common.

2. Together with the identifiers, we insert homomorphic encryptions of associ-
ated values as “tags”. These tags accompany the identifiers through the PSI
protocol and the shuffle step. When one party is eventually computing the
shuffled-intersection, that party can also homomorphically add together all
“tags” to compute an encrypted intersection-sum of the associated values,
which can subsequently be decrypted.

This recipe, which we refer to as ”Tag, Shuffle, Aggregate”, is conceptually
straightforward and immediately appealing. However, it turns out the detailed
application to each protocol can differ significantly, and a naive application of
the recipe can lead to significant impact to protocol communication and com-
putation costs. As an example, all of our protocols make use of an underlying
additively homomorphic encryption scheme in various ways. It turns out the spe-
cific choice of additively homomorphic encryption chosen has a huge impact on
efficiency, especially the availability of features like slotting. These tradeoffs are
discussed in more detail in Section 6. Indeed, we view the careful optimizations
and comparison of different approaches as a key contribution of our work.

A positive feature of the tag-shuffle-aggregate approach is that each protocol
we obtain naturally degrades into a protocol for computing intersection-size, by
simply skipping the ”tag” and ”aggregate” steps.

Given this recipe, our approach was to identify the most promising main
techniques underlying existing PSI approaches and modify them to the setting of
private intersection-sum, comparing the resulting protocols in terms of efficiency.

The Random-OT set intersection technique is the basis of our first private
intersection-sum protocol described in Section 5.1, which extends it using homo-
morphic encryption and shuffling to hide the exact intersection while aggregating
over it.

Our second construction for private intersection-sum presented in Section 5.2
is inspired by the techniques using encrypted Bloom Filters.
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Our final solution, which is perhaps the most natural application of the recipe
above, is our private intersection-sum solution based on DDH-style PSI. We
extend the [30] protocol with homomorphic encryption for aggregation purposes,
which we present in Section 5.3. This solution, though perhaps the technically
simplest, turns out to be the protocol most appealing for deployment.

Revealing the Intersection Size: An important side effect of applying the recipe
above is that all our protocols additionally reveal the size of the intersection, in
addition to the intersection sum. In the business applications we consider, this
is actually a desirable feature: parties actually want to learn how many items
were in common. However, it is possible that in other settings, revealing the
intersection size is undesirable leakage. In those settings, this additional leakage
would be a drawback of our recipe and our protocols.

3.3 Why not Garbled Circuits?

Garbled circuits [52] and other generic secure multiparty computation protocols
hold a lot of promise in computing a generic function over data held by two
parties. There have even been a sequence of works applying tailored protocols
based on Garbled Circuits and similar technologies to the problem of computing
arbitrary functions privately over an intersection [29, 11, 22, 44]. These works
offer very competitive computational efficiency, and have the additional advan-
tage that they allow computing arbitrary functions over the intersection, without
revealing the intersection size, which is a required side-effect of our recipe. A nat-
ural question therefeore arises: Why not use garbled-circuit protocols directly for
computing the intersection size and intersection sum?

The reason why we do not deeply explore garbled-circuit style solutions in
this work is due to our focus on communication complexity. Garbled-circuit-
style protocols incur significantly increased communication cost due to the use
of techniques that require bit-wise encryption and secure comparison of inputs.
In particular, the communication cost of these protocols depends on the product
of the set sizes, the security parameter, and also the bit length of each input.
Ciampi et al [11] provide an excellent analysis of communication costs of garbled
circuit protocols, which we partially reproduce in Appendix F. By comparison,
the protocols in this paper have communication cost dependent only on the
product of set sizes and the security parameter (see Table 1 which analyzes
communication costs for our protocols).

This additional dependence on the bit length of each input leads, for example,
to a 60× increase in communication cost for inputs that are 60 bits long. This
is a significant increase in communication, and turns out to be infeasible for our
specific application.

Because communication cost turns out to be crucially important to our busi-
ness application, and the high communication cost of garbled-circuit-style ap-
proach is already clear from theoretical analysis, we do not explicitly implement
and compare garbled circuit style approaches to our protocols in this work. How-
ever we note that in settings where communication is not a bottleneck, garbled-
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circuit style solutions are likely to offer much improved computation costs and
enable richer functionality compared to the protocols we present.

The comparison to garbled circuits gives another lens through which to view
our recipe for transforming PSI into Private Intersection Sum: Our recipe allows
computing over the intersection without using communication-inefficient bitwise
encryption, but comes at the cost of needing to reveal the intersection size.

4 Preliminaries, Cryptographic Primitives and Hardness
Assumptions

4.1 Notation

Z represents the integers, and Z+ represents the nonnnegative integers. The
notation [k] for k > 0 to donate the set {1, 2, ..., k}. The notation [a, b] for
a < b represents the set of integers, {a, a + 1, ..., b}, while [a, b) represents the
set {a, a+ 1, ..., b− 1}.

Let Π be a randomized interactive protocol between two parties P1 and P2,
with P1 holding input X and P2 holding input Y . For security parameter λ, we
use the notation REALi,λΠ (X,Y ) to represent the random variable corresponding
to the view of Pi in the protocol for i ∈ {1, 2}. The view of a party is the input
of that party, its randomness, and all messages received by that party during
the execution of Π, including aborts by the other party. The random variable
varies over the randomness of P1 and P2.

4.2 Decisional Diffie–Hellman

Definition 1 (Decisional Diffie–Hellman assumption (DDH)) [18] Let G(λ)
be a group family parameterized by security parameter λ. For every probabilistic
adversary M that runs in time polynomial in λ, we define the advantage of M
to be:

|Pr[M(λ, g, ga, gb, gab) = 1]− Pr[M(λ, g, ga, gb, c) = 1]| − 1

2

Where the probability is over a random choice G from G(λ), random generator
g of G, random a, b, c ∈ [1, |G|] and the randomness of M . We say that the
Decisional Diffie–Hellman assumption holds for G if for every such M , there
exists a negligible function ε such that the advantage of M is bounded by ε(λ).

In other words, the distributions (g, ga, gb, gab) and (g, ga, gb, gc) are compu-
tationally indistinguishable. Through this paper we will write group operations
using multiplicative notion.

4.3 Random Oracle Model

Definition 2 (Random Oracle) [4] A random oracle RO is a map from {0, 1}∗
to {0, 1}∞ chosen by selecting each bit of RO(x) uniformly and independently,
for every x. {0, 1}∞ means an output of infinite length, which can be truncated
to any fixed appropriate size depending on the setting.
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We say a protocol is secure when modeling a hash function H as a Random
Oracle if we can prove security when each invocation of H in the protocol is
replaced by a call to a Random Oracle RO on the same input.

4.4 Additively Homomorphic Encryption Scheme

Definition 3 (Additively Homomorphic Encryption) An additively homo-
morphic encryption scheme consists of the following probabilistic polynomial-
time algorithms:

AGen: Given a security parameter λ, AGen(λ) returns outputs a public-private
key pair (pk , sk), and specifies a message space M.

AEnc: Given the public key pk and a plaintext message m ∈M, one can compute
a ciphertext AEnc(pk ,m), an encryption of m under pk.

ADec: Given the secret key sk and a ciphertext AEnc(pk ,m), one can run ADec
to recover the plaintext m.

ASum: Given the public key pk and a set of ciphertexts {AEnc(pk ,mi)} encrypt-
ing messages {mi}, one can homomorphically compute a ciphertext encrypt-
ing the sum of the underlying messages1:

AEnc(pk ,
∑
i

mi) = ASum({AEnc(pk ,mi)}i)

We rely on the standard notion of CPA security of encryption, meaning,
informally, that without knowledge of the private key sk , encryptions of different
messages are computationally indistinguishable.

In addition, we will make use of the property that one can randomized ci-
phertext using a randomized procedure denoted as REFRESH function:

REFRESH(ASum( {AEnc( pk , mi)})) and REFRESH(AEnc(pk ,
∑
imi))

have statistically close distributions, even against an adversary that holds the
secret key sk . In popular schemes such as Paillier [42] and Exponential ElGa-
mal [21], this REFRESH can be achieved by always adding an additional fresh
encryption of 0 in the ciphertexts to be summed by ASum, whereas in lattice
based systems randomizing of error location by shuffling is performed as well.

We note also that homomorphic multiplication by a plaintext scalar can be
trivially achieved by repeated homomorphic addition. All homomorphic encryp-
tion schemes we consider also support homomorphic multiplication by a plaintext
scalar.

4.5 Oblivious Pseudorandom Function (OPRF)

Definition 4 (Oblivious Pseudorandom Function) [39, 24] A two-party pro-
tocol P is said to be an Oblivious Pseudorandom Function (or OPRF) if there
exists some Pseudorandom Function family fk, such that P securely computes
the following functionality.

1 If the sum is large, it can wrap around in the message space M. In this work, we
only consider messages and sums that are too small to wrap around.
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Inputs: Party 1 holds an evaluation point x; Party 2 holds holds a key k.
Outputs: Party 1 outputs fk(x); Party 2 outputs nothing

In other words, an OPRF protocol allows a party to receive the output of a
PRF fk on an input x, using a key k held by the other party, while hiding the
input x from the other party. Furthermore, the evaluation of the PRF fk on all
other inputs remains pseudorandom.

4.6 Random Oblivious Transfer (ROT)

Definition 5 (Random Oblivious Transfer) [34] A two-party protocol P is
said to be an Random Oblivious Transfer Protocol (or ROT) if it securely com-
putes the following functionality

Inputs: Party 1 holds m evaluation point x1, ..., xm; Party 2 has no input.
Outputs: Party 2 outputs m lookup tables Li; Party 1 outputs Li[xi].

In the implementation of [34], the lookup tables Li can be efficiently described
using a PRF family fk, where each lookup table Licorresponds to a different key
ki. (Technically, the PRF family is a “relaxed” PRF family with related keys.
We refer the reader to [34] for details, and omit them here since the distinction
does not have a significant impact on our protocol or proofs).

In this view, ROT can be viewed as multiple OPRF protocols executed si-
multaneously, where the keys for the underlying PRF are dynamically generated
during the ROT execution.

4.7 Bloom Filter

Definition 6 (Bloom Filter) [5] A Bloom Filter is a probabilistic data struc-
ture that supports insertion and membership checking. A Bloom filter is pa-
rameterized by a size N and a sequence of k randomly chosen hash functions
h1, ..., hk : {0, 1}∗ → [N ]. An empty Bloom filter BF consists of N bits, each
set to 0. inserting an item x into a Bloom Filter is implemented by setting the
hi(x)-th bit of the Bloom Filter to 1 for all i. Checking if an item x is in a Bloom
Filter is achieved by checking that the hi(x)-th bit of the Bloom Filter is 1 for
all i.

Bloom filters can possibly give false-positives on the membership test. The
probability that an element x yields a false positive membership check is depen-
dent on N, k and the number of items inserted into the Bloom Filter. [38] is a
good reference on setting the Bloom Filter parameters.

4.8 Cuckoo Hash

Definition 7 (Cuckoo Hash Table) [41] A Cuckoo Hash Table is a data struc-
ture supporting insertion and membership tests. It is parameterized by a number
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of bins N , a stash size s, and by k randomly chosen hash functions. An empty
Cuckoo Hash Table has N empty bins. When inserting an item x into the table,
if any of the bins {hi(x)}ki=1 is empty, then x is placed in one of those bins.
Otherwise, a bin in {hi(x)}ki=1 is randomly chosen, and the item in that bin
is replaced with x. The evicted item is then recursively inserted. If this process
does not terminate after a fixed set of iterations, then the final evicted element
is placed in a special bin called the stash. If the stash already contains s items,
the insertion algorithm fails.

To check if an item x is in the Cuckoo Hash Table, one checks each of the
bins in {hi(x)}ki=1 for the item.

[17] show through extensive experiments that when inserting n items into a
cuckoo hash for n ≥ 512, N = 1.5n bins, k = 3 hashes, and s = 0 stash size is
sufficient to get a 2−40 probability of cuckoo hash failure.

5 Protocols for Private Set Intersection-Sum

In this section we present our cryptographic protocols for secure private set
intersection-sum which use as a starting point the PSI protocols described in
the previous section.

We first describe our two constructions leveraging recent ROT and BF tech-
niques for set intersection. Following that we describe our DDH-based protocol,
which is the protocol that we choose for deployment based on its communication
efficiency, simplicity and underlying classical hardness assumption as we discuss
in more detail in Section 2.

We note that the protocols presented in the next three sections assume that
the party who has input pairs of identifiers and values, is the output receiver.
In Appendix D we consider the setting where the party with only identifiers as
input is the output receiver.

5.1 Random-OT-based Protocol

In this section, we describe a protocol for intersection-sum based on Random
Oblivious Transfer, which is used in existing PSI solutions [45, 43, 19, 47]. We
believe this is the first construction of the Private Intersection-Sum functionality
from Random OT. Note that our construction can be naturally modified to a
protocol for privately computing PSI-cardinality.

We use the following primitives defined in Section 4:

– Random OT with the following functionality: P1 has no input and obtains
a look-up table L that can be evaluated on some known domain. P2 has
input index IND and receives L[IND]. Additionally, any polynomial subset of
entries of L (including or excluding L[IND]) appears pseudorandom to P2.

– An additively homomorphic encryption scheme (AGen, AEnc, ADec).
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We present our protocol ΠROT in Fig. 1. At a high level, the protocol ΠROT is
similar to the Batched-OPRF based PSI of [34]. However, since we additionally
want the intersection to be hidden, we introduce another step where we shuf-
fle and re-mask the outputs of the batched-OPRFs. This shuffling is executed
by the OPRF receiver encrypting the batched-OPRF outputs, and sending the
encryptions to the OPRF sender. The sender then homomorphically adds a ran-
dom value ri to each ciphertext, and shuffles the ciphertexts among each other
before sending them back. This implicitly changes the OPRF output Li(xi)
to Li(xi) + ri, which is also pseudorandom, and can be viewed as a “new”
OPRF. When the receiver decrypts, it therefore learns the “new” OPRFs eval-
uated on each of its inputs, but in shuffled order. Once we have this type of
shuffled OPRF, it is natural to build a protocol for both intersection-sum and
intersection-cardinality.

We note that [22] and [11] have some high-level similarities with our protocol,
in that they adapt [34]-style bucketing with additional techniques to hide which
specific items were in the intersection. While we hide the intersection by shuffling
the buckets amongst each other, [22] and [11] achieve it by performing a tailored
MPC-subprotocol for each bucket.

Correctness of the protocol follows immediately from inspection, assuming
cuckoo hashing fails with negligible probability and that the Random OT outputs
collide with negligible probability.

The security of our protocol follows from the security of the encryption
scheme and the security properties of the Random-OT protocol. We state the
theorems here and present the formal security proof of the protocol from Figure 1
in Appendix A.

Theorem 1 (Honest But Curious Security against P1 in the DDH-
based Protocol ΠDDH). There exists a PPT simulator SIM1 such that for all
security parameters λ and inputs {vi}m1

i=1, {(wj , tj)}m2
j=1,

REAL1,λ
ΠDDH

({vi}m1
i=1, {(wj , tj)}

m2
j=1)

≈
SIM1(1λ, {vi}m1

i=1,m2, |J |)

Where m2 is the size of Party 2’s input, J = {j : wj ∈ {vi}m1
i=1} is the intersec-

tion set, and |J | is its cardinality.

Theorem 2 (Honest But Curious Security against Party 2 in the ROT-
based Protocol ΠROT). There exists a PPT simulator SIM2 such that for all
security parameters λ and inputs {vi}m1

i=1, {(wj , tj)}m2
j=1,

REAL2,λ
ΠROT

({vi}m1
i=1, {(wj , tj)}

m2
j=1)

≈
SIM2(1λ, {(wj , tj)}m2

j=1,m1, SJ)

Where m1 is the size of Party 1’s input, J = {j : vj ∈ {vi}m1
i=1} is the

intersection set, and SJ =
∑
j∈J tj is the intersection-sum.
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Randomized-OT based Private Intersection-Sum protocol

– Inputs:
• P1 : Set V = {vi}m1

i=1

• P2: Set of pairs W = {(wi, ti)}m2
i=1

– Setup:
• P1 generates an additively homomorphic encryption key-pair (pk1, sk1), and

sends pk1 to P2.
• P2 generates an additively homomorphic encryption key-pair (pk2, sk2), and

sends pk2 to P1.
– Protocol Steps:

1. P1 and P2 choose Cuckoo hash table size n and stash size s, and choose k hash
functions: h1, ..., hk mapping inputs to bins []1, ..., n].

2. P1 hashes its items using Cuckoo hashing with h1, ..., hk into n bins and a
stash of size s, where each bin contains at most one item. P1 fills in all empty
bins and the empty positions in the stash with a dummy item. We refer to
P1’s items (including both dummy and real values) as v1, ..., vn+s, where the
items vn+1, ..., vn+s are the items in the stash. P1 aborts if the protocol fails.

3. For each 1 ≤ i ≤ n+s the parties run a random OT where P2 obtains a lookup
table Li and P1 obtains Li[vi].

4. P1 encrypts and sends to P2

{cti = AEnc(pk1, Li[vi])}n+s
i=1

5. P2 chooses random values {ri}n+s
i=1 , and, for each i ∈ [1, n+ s], computes:

ct′i = cti + AEnc(pk1, ri)

P2 sends P1 the set of ct′i in shuffled order.
6. For each (wj , tj) ∈W , P2 computes:

Wj ={Lhi(wj)[wj ] + rhi(wj)}
k
i=1

∪ {Li[wj ] + ri : i ∈ {n+ 1, ..., n+ s}}
cttj =AEnc(pk2, tj)

If any Wj has size < k+ s, P2 pads Wj with dummy random elements until it
has size k+ s. P2 sends P1 the set {(Wj , ct

t
j)}m2

j=1, with the order of the tuples
randomly permuted, in order to hide which elements of each Wj correspond
to which hash function or stash index.

7. P1 decrypts all values ct′i. Let V ∗ be the set of decrypted values. P1 computes

CT =
∑

j : |Wj∩V ∗|>0

cttj

P1 rerandomizes and sends CT to P2.
8. P2 decrypts CT to recover d.

– Output: P2 outputs d, equal to
∑

i:wi∈V ti, the intersection-sum.

Fig. 1: ΠROT : Randomized-OT based Private Intersection-Sum protocol.
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Formal proofs appear in Appendix A.

5.2 Bloom-Filter-based Protocol

In this section, we describe a Private Intersection-Sum protocol based on the use
of encrypted Bloom Filters, extending PSI approaches [16, 20, 19].

We use the following primitives defined in Section 4: a Bloom filter BF, an
additively homomorphic encryption scheme (AGen, AEnc, ADec). We refer the
reader to Section 4 and specifically 6 for definitions and notation for Bloom
Filters.

We present the protocol in Figure 2. At a high level, one party inserts its input
database into a Bloom Filter, and encrypts each bit of the Bloom Filter using
an additively homomorphic encryption scheme under its key pk1. That party
then sends the encrypted Bloom Filter to the other party, who homomorphically
computes membership of its elements in the Bloom Filter. If an item is in the
Bloom Filter, that party will homomorphically compute an encryption of zero,
and if it is not in the Bloom Filter, the party will compute an encryption of
a uniformly random value. It sends these “membership” ciphertexts to the first
party in shuffled order, who can then decrypt to learn how many items were in the
intersection. The second party also sends homomorphically encrypted associated
values with the membership ciphertexts under its own key pk2, allowing the first
party to compute the intersection-sum. The first party can additively mask the
final intersection sum and then unmask the value decrypted by the second party.

The correctness of the above protocol can be seen directly, except in the case
when:

– There are collisions in the Bloom Filter, and
– In step 4b, rj · (

∑
j bINDj

− k) = 0 but
∑
j bINDj

6= k.

The probability of Bloom Filter collisions can be made negligible by appropriate
choice of Bloom Filter size and number of hash function. The probability that
rj · (

∑
j bINDj

−k) = 0 but
∑
j bINDj

6= k can be made negligible by making the

message space of the encryption scheme exponentially large.
The security of this protocol follows from the security properties of the ad-

ditive homomorphic encryption scheme, as well as the negligible probability of
collisions in a Bloom-Filter. We discuss security in Appendix B.

5.3 DDH-based Protocol

In this section we present our DDH-based intersection-sum protocol which ex-
tends the corresponding PSI protocol. It uses the following primitives defined in
Section 4: a group G in which the DDH assumption holds, an additively homo-
morphic encryption scheme (AGen, AEnc, ADec) and a hash function H modeled
as a random oracle for the security proofs. We present our construction in Fig-
ure 3.
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Encrypted-Bloom-Filter-based Intersection-Sum Protocol

– Inputs:
• P1 : Set V = {vi}m1

i=1.
• P2: Set of pairs W = {(wi, ti)}m2

i=1.
– Setup:
• P1 generates an additively homomorphic encryption key-pair (pk1, sk1), and

sends pk1 to P2.
• P2 generates an additively homomorphic encryption key-pair (pk2, sk2), and

sends pk2 to P1.
– Protocol Steps:

1. P1 and P2 choose a size N for a Bloom filter, and k hash functions: h1, ..., hk

mapping identifiers to [1, ..., N ].
2. P1 computes a Bloom filter for its items, which we refer to as BF1.
3. P1 sends to P2 its Bloom filter entries encrypted under key pk1:

{ct1i = AEnc(pk1,BF1[i])}i.

4. For each of its elements wi, P2 computes the following:
(a) INDj = hj(wi) for 1 ≤ j ≤ k;
(b) Define ct2i , which encrypts 0 for a match or a random value for non-match,

as follows:

ct2i = rj .(
∑
j

ct1INDj
− AEnc(pk1, k))

= AEnc(pk1, rj(
∑
j

bINDj
− k))

where rj is random.
5. P2 sends to P1 the following values in a permuted order:

{ct2i , ctti = AEnc(pk2, ti)}i.

6. P1 decrypts all values ct2i and computes

CT =
∑

j:ADec(sk1,ct2j )=0

cttj

P1 rerandomizes CT and sends it to P2.
7. P2 decrypts CT to recover d.

– Output: P2 outputs d =
∑

i:wi∈V ti.

Fig. 2: ΠBF: Encrypted-Bloom-Filter-based Private Intersection-Sum protocol.
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At a high-level, the two parties interact to hash and then exponentiate each
entry in their datasets, using a multiplicatively shared secret exponent. During
this interaction the values that are hashed and exponentiated are also shuffled.
Thus, at the end, the output receiver is comparing pseudorandom representa-
tion of the input sets to compute the intersection without being able to relate
it to the original input values. Our construction can be viewed as computing
obliviously a ROM PRF H(x)k [31] where the key is multiplicatively shared, or
evaluating deterministic Pohlig–Hellman cipher [28] with shared key. The group
G in which we apply the Pohlig–Hellman cipher can be any group in which the
DDH assumption holds, and that allows hashing to a random generator. We
assume for simplicity in Figure 3 that G has prime order.

Our protocol extends ideas from the work of of Meadows [37] on private
matching and Huberman [30] on intersection cardinality to also support intersection-
sum. To achieve this, the party holding associated values sends along additive-
homomorphic encryptions of the values under AEnc, and the other party homo-
morphically computes the sum of values in the shuffled-intersection. The sum is
sent back to the first party, who then decrypts to recover the intersection-sum.

Correctness of the protocol follows immediately from inspection.

We state the theorems proving security below, and present a formal security
analysis of the construction in Figure 3 in Appendix C.

Theorem 3 (Honest But Curious Security against P1 in the DDH-
based Protocol ΠDDH). There exists a PPT simulator SIM1 such that for all
security parameters λ and inputs {vi}m1

i=1, {(wj , tj)}m2
j=1,

REAL1,λ
ΠDDH

({vi}m1
i=1, {(wj , tj)}

m2
j=1)

≈
SIM1(1λ, {vi}m1

i=1,m2, |J |)

Where m2 is the size of P2’s input, J = {j : wj ∈ {vi}m1
i=1} is the intersection

set, and |J | is its cardinality.

Theorem 4 (Honest But Curious Security against P2 in the DDH-
based Protocol ΠDDH). There exists a PPT simulator SIM2 such that for all
security parameters λ and inputs {vi}m1

i=1, {(wj , tj)}m2
j=1,

REAL2,λ
ΠDDH

({vi}m1
i=1, {(wj , tj)}

m2
j=1)

≈
SIM2(1λ, {(wj , tj)}m2

j=1,m1, SJ)

Where m1 is the size of P1’s input, J = {j : wj ∈ ({vi}m1
i=1} is the intersection

set, and SJ =
∑
j∈J tj is the intersection-sum.

The proofs appear in Appendix C.
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DDH-based Private Intersection-Sum Protocol

– Inputs:
• Both parties: A group G of prime order, and an identifier space U . A hash

function H : U → G, modeled as a random oracle, that maps identifiers to
random elements of G.

• P1 : Set V = {vi}m1
i=1, where vi ∈ U .

• P2: Set of pairs W = {(wi, ti)}m2
i=1, with wi ∈ U , ti ∈ Z+.

– Setup:
• Each Pi chooses a random private exponent ki in the group G.
• P2 generates a fresh key-pair (pk , sk)← AGen(λ) for the additive homomorphic

encryption scheme and sends the public key pk with P1.
– Round 1 (P1):

1. For each element vi in its set, P1 applies the hash function and then exponen-
tiates it using its key k1, thus computing H(vi)

k1 .
2. P1 sends {H(vi)

k1}m1
i=1 to Party 2 in shuffled order.

– Round 2 (P2):
1. For each element H(vi)

k1 received from P1 in the previous step, P2 exponen-
tiates it using its key k2, computing H(vi)

k1k2 .
2. P2 sends Z = {H(vi)

k1k2}m1
i=1 to P1 in shuffled order.

3. For each item (wj , tj) in its input set, P2 applies the hash function to the first
element of the pair and exponentiates it using key k2. It encrypts the second
element of the pair using the key pk for the additive homomorphic encryption
key. It thus computes the pair. H(wj)

k2 and AEnc (tj).
4. P2 sends the set {(H(wj)

k2 ,AEnc(tj))}m2
j=1 to P1 in shuffled order.

– Round 3 (P1):
1. For each item (H(wj)

k2 ,AEnc(tj)) received from P2 in Round 2 Step 4,
P1 exponentiates the first member of the pair using k1, thus computing
(H(wj)

k1k2 ,AEnc(tj)).
2. P1 computes the intersection set J :

J = {j : H(wj)
k1k2 ∈ Z}

where Z is the set received from P1 in Round 1.
3. For all items in the intersection, P1 homomorphically adds the associated ci-

phertexts, and computes a ciphertext encrypting the intersection-sum SJ :

AEnc(pk , SJ) = ASum ({AEnc(tj)}j∈J)

= AEnc

(∑
j∈J

tj

)

4. P1 sends this ciphertext to Party 2.
– Output (P2): P2 decrypts the additive homomorphic ciphertext received in Round

3 using the secret key sk to recover the intersection-sum SJ .

Fig. 3: ΠDDH: DDH-based Private Intersection-Sum protocol.
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6 Instantiating the Homomorphic Encryption scheme

Each of the thee Private Intersection-Sum protocols that we presented, requires
an additive-homomorphic encryption scheme in order to encrypt the associated
values and homomorphically sum them. The Random-OT-based protocol and
the Bloom-filter-based protocol additionally rely on an additive homomorphic
encryption scheme in order to encrypt and intersect the identifiers themselves.
The choice of homomorphic encryption scheme has a strong impact on both
the communication and computation costs of each protocol. In this section, we
discuss three possible additive homomorphic encryption schemes that we can
use, namely Paillier encryption [42], Exponential ElGamal encryption [21], and
schemes based on Ring-LWE [27, 9, 8, 23]. We discuss the various characteris-
tics of each of these schemes, together with several optimizations that could be
applied to each of them. These differences are summarized in Table 4.

Encryption Scheme Unslotted-
Expansion

Efficient
Decryption

Slotting Slot-Shuffle

Paillier/Damgard-Jurik encryption High X X X
Exponential ElGamal encryption Medium X X X

Ring-LWE encryption High X X X
(Expensive)

Fig. 4: Comparison of the properties of various additively-homomorphic encryp-
tion schemes. Unslotted-Expansion is a qualitatiative comparison of the size of
the ciphertext to the plaintext. Efficient Decryption denotes whether the scheme
has computationally efficient decryption. Slotting denotes whether the scheme
is compatible with encrypting multiple values into different “slots” of a single
ciphertext. Slot-Shuffle denotes whether the scheme is compatible with homo-
morphically shuffling slots within a ciphertext and between ciphertexts.

6.1 Paillier Encryption

Paillier encryption [42] is one of the most well-known additively homomorphic
encryption schemes, with security based on the Decisional Composite Residiu-
osity Assumption.

Paillier encryption requires relatively expensive modular exponentiation (“public-
key”) operations in order to encrypt and decrypt. Paillier ciphertexts also have
relatively large plaintext and ciphertext spaces, which leads to a large communi-
cation expansion when the values being encrypted are small. For example, using
typical security parameters, a Paillier ciphertext will have ciphertext size 4096
bits, with plaintext space 2048 bits. However, if the associated values to be en-
crypted and summed are in the range of 20 bits, then using Paillier results in
approximately 200× ciphertext expansion compared to the plaintext.
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However, the Paillier scheme’s large plaintext space is amenable to slotting.
That is, one can divide up a 2048 bit plaintext space into multiple slots of, say,
k bits each, with the first slot being the lowest order k bits of the plaintext
space, the next slot being the next highest k bits, and so on. Each slot is then
individually additively homomorphic: homomorphically adding two ciphertexts
also homomorphically adds each slot in the ciphertexts. Finally, slots can be
homomorphically rotated by homomorphically multiplying ciphertexts by the
scalar 2k.

Slotting helps make Paillier encryption much more efficient for encrypting
associated values as follows: the party holding the associated values can encrypt
a different associated value tj into each slot. Once the other party determines
which slots must be added together, it can rotate those values into a single
privileged slot (namely the highest slot), and homomorphically add the rotated
ciphertexts to compute the encrypted sum. The adding party can then mask the
other slots with random values to hide any residual sums in those slots, and send
the final ciphertext back to the first party to decrypt.

We note that the slots need to be large enough to accomodate the associated
values, with some extra bits to allow summing without overflowing into the next
slot, and some further additional bits to allow random masking. Additionally,
only half the plaintext space can be used for slots, since otherwise there is no
way to rotate the lowest slot into the highest slot’s position without overflowing
the ciphertext space. Slotting can also be combined with Damgard-Jurik opti-
mizations [13], which allows increasing the plaintext space of the Paillier scheme
with a proportionally smaller increase in the ciphertext size.

As an example, consider associated values of 20 bits each, with 1024 values in
the intersection-sum (requiring 10 bits), and with 40 additional bits per slot for
random masking. This leads to k = 20+10+40 = 70 bits per slot. Consider also
using Damgard-Jurik optimizations with s = 4, which means each ciphertext has
4 ·2048 = 8192 bits of plaintext space, and the ciphertext itself has size 5 ·2048 =
10240 bits. Each ciphertext can accomodate at most d8192/(70 · 2)e = 59 slots
with slack for masking and rotation. Therefore, the expansion of each ciphertext
over the size of the associated values it can accomodate is (10240/(20 · 59)),
which corresponds to a 8.67× expansion, a clear improvement over the 200×
originally considered.

A downside of slotting is that it is impossible to shuffle the slots both within
a ciphertext and between different slotted ciphertexts. This makes the slotting
optimization a poor fit for the “reverse” variant of the DDH-protocol (Appendix
D) where encrypted associated values must be permuted, and similarly a poor
fit for the Li[vi] values in the Randomized-OT based protocol (Section 5.1).

6.2 Exponential ElGamal

Exponential ElGamal encryption [21] also requires public-key operations for en-
cryption, but has relatively smaller ciphertexts than Paillier encryption. A typi-
cal choice of parameters for ElGamal over elliptic curves will result in ciphertexts
of length 512 bits, which for a 20 bit plaintext value would have an expansion
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of 25×. A major downside of Exponential ElGamal is that decryption is ex-
pensive, involving solving DDH in the plaintext space. This limits the sizes of
plaintexts that can be decrypted to about 60 bits, and also blocks optimizations
like slotting.

However, if the values to be encrypted are small, on the order of 20 bits,
and the number of them we expect to add together is also small, e.g. around
216 elements, then after summing the plaintext size will be 36 bits, which is
small enough to decrypt. This makes exponential ElGamal a good alternative to
(unslotted) Paillier for encrypting associated values.

This approach trades communication for computation, as the decryption re-
quires inverting a discrete logarithm; however, a trade-off between memory and
CPU time can be made, if the range is small enough to permit a lookup table.
For a 36 bit exponent the lookup table would be relatively large but well within
the storage capacity of typical server-class machines.

Exponential ElGamal is definitely an improvement over Paillier in the Bloom
Filter-based protocol (Section 5.2), where we use additive homomorphic encryp-
tion to encrypt each bit of the Bloom filter, and only need to test if decrypted
values are zero or nonzero. For that protocol, we get smaller ciphertexts with
no loss of computational efficiency, since testing if a ciphertext decrypts to 0 is
very cheap in the exponential ElGamal scheme.

6.3 Ring-LWE-Based Cryptosystems

Another option is to use an encryption scheme based on the hardness of lattice
problems. The most efficient schemes of this type are based on the hardness of
Ring-Learning-With-Errors [9, 8, 27, 23].2 Ring-LWE-based encryption schemes
are also usually quite computationally efficient compared to schemes like Pail-
lier and Exponential ElGamal, since they do not involve expensive modular-
exponentiation operations to encrypt and decrypt, and their polynomial opera-
tions can be sped up using number-theoretic transforms (NTT).

Like Pailler encryption, RLWE-based schemes have ciphertexts with large
plaintext spaces, but the plaintext space can be naturally decomposed into mul-
tiple ‘slots’, where each slot is individually additively homomorphic. In these
schemes, plaintexts are high-degree polynomials, and each coeffecient of the
polynomial can be viewed as an additively-homomorphic slot. Furthermore, slots
can be homomorphically rotated by multiplying ciphertexts with the plaintext
monomials corresponding to single powers of x. Therefore, the party holding
the associated values can put one associated value into each slot of a plaintext,
and encrypt and send the ciphertexts to the other party, who can homomorphi-
cally rotate the ciphertexts so that values to be added all end up in a specially
designated slot (for example, the slot corresponding to the constant term of
the polynomial), then homomorphically add the rotated ciphertexts, and finally,
mask the other slots with random values.

2 These schemes are actually “fully”-homomorphic, but here we consider only their
additive homomorphism
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However, one subtlety with RLWE-based encryption schemes is that the er-
ror in the resulting ciphertexts (needed for security) may reveal the sequence of
operations used to create them. This leakage is even more pronounced to the
party holding the decryption key, and may, in the worst case, reveal the individ-
ual items in the intersection to the party performing decryption. Unlike Paillier
and Exponential ElGamal, it is not sufficient to simply add a fresh encryption
of zero to the sum, since the error in a fresh encryption would be too small
to mask the accumulated error from the homomorphic operations. Rather, the
ciphertexts produced after homomorphic operations must be rerandomized with
a large amount of error (proportional to the security parameter), in order to
statistically hide which ciphertexts were used to produce it. This induces some
additional communication overhead.

As a concrete example, consider if we had 20 bit values, and we expected
210 of them to be added together, meaning the sum is bounded by 30 bits.
Assume also that each polynomial coefficient has 3 bits of error added to it for
RLWE-security. When 210 values are added together, the error could grow to 13
bits. If we wanted 2−40 statistical hiding of the added error, we would need 40
additional bits per coefficient. This would lead to polynomial coefficients of size
30 + 13 + 40 = 83 bits, to hold each 20 bit associated value, an expansion of
4.15×.

Another advantageous property of RLWE schemes is that the slots can be
unpacked, shuffled and repacked homomorphically, thereby allowing slots to be
arbitrarily shuffled. ([2] give one example of how to do so.) This could make
RLWE-based schemes potentially a good fit for the “reverse” variants of the
protocols, where slots must be shuffled, and also for the Random-OT variant of
the protocol, where encrypted Li[vi] values must be masked and shuffled. How-
ever, the homomorphic unpack-and-repack operations add significant additional
error to the ciphertexts, meaning the parameters have to be sufficiently increased
to accommodate the error. The unpack-and-repack operation also has a signifi-
cant additional computational cost. From our estimates, there are some choices
of parameters for which one can get a marginal (less than 10%) decrease in total
communication in the Random-OT protocol by using homomorphic unpacking,
but at significant computational cost. We concluded that in the Random-OT
variant, it is more effective to encrypt each Li[vi] value in a separate ciphertext.

7 Flexibility via tweaking

The recipe we apply of ‘tag’ a user with its associated integer, ‘shuffle’ and then
‘aggregate’ on matched shuffled elements in the intersection provides various ex-
tensions that allow us to tweak the solution to solve other related problems with
minimal software updates to the protocol. This is an advantage when considering
emerging changes and uses. Here are a few examples:

1. It is easy to ignore the tags and perform only set intersection size.
2. If we skip the shuffle phase, we get actual set intersection rather than com-

puting its size only.
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3. If we want to hide the size of the inputs, but we know a global upper
bound on the sizes, we can always pad the solutions with ‘dummy elements.’
Namely, each user randomly chooses user identifiers (outside the domain of
user names) and also adds a tag with value zero. This uniform bound is run
always and will not affect that results since these random dummies are not
going to intersect with extremely overwhelming probability.

4. If we want to hide the size of the intersection, we can do it by squaring the
size of the sets artificially: The two parties can decide on a common seed,
derive O(n2) common dummy elements (which are tagged with zero integer
values); each side randomly selects half of these elements, and the size of
their intersection is still O(n2). The resulting intersection over the original
and the common dummy elements statistically hide the intersection size.

5. If we want to compute other statistics we can add tags, we can tag with
different homomorphic encryption scheme that allows the computations over
the tags. One simple example is tagging also with the square of the value,
and computing the sum and the sum of squares which allows up to compute
the first two moments of the tag values.

8 Measurements

In this section, we present the measurements of the communication and compu-
tation costs of our implementations of the three protocols for private intersection-
sum presented in Sections 5.1,5.2 and 5.3 with different homomorphic encryption
schemes.

Exponentiations Homomorphic Ops.
(including Enc and

Dec)

Misc.

DDH-based
Protocol

4M 2M + 1 –

Random-OT-based
Protocol

– 5.9M + 1 ROT(1.3M) +
Cuckoo(M)

Bloom-filter-based
Protocol

– M(104 +
2.44 log2(M)) + 1

2BF(M)

Table 1: Computational operations in each Private Intersection-Sum protocol.
Numbers presented are totals across both parties, each having M inputs. “Ex-
ponentiations” refers to the number of group exponentiations (sometimes called
“public-key” operations). Homomorphic Ops. corresponds to the number of ho-
momorphic encryptions, decryptions and additions performed. We assume each
homomorphic operation has the same cost. Misc. includes other costs. ROT(x)
refers to the computation cost of x Random OTs. Cuckoo(x) is the cost of cuckoo-
hashing x items. BF(x) is the cost of inserting x items into a bloom Filter.
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Group Elts. HE Ciphertexts Misc.

DDH-based
Protocol

3M M + 1 –

Random-OT-based
Protocol

– 3.6M + 1 ROT(1.3M) +
96MBytes

Bloom-filter-based
Protocol

- M(61 +
1.44 log2(M)) + 1

-

Table 2: Communication in each Private Intersection-Sum protocol. Numbers
presented are totals across both parties, each having M inputs. Group Elements
refers to the number of EC curve elements transferred. HE Ciphertexts corre-
sponds to the number of homomorphic encryptions transferred, not taking into
account optimizations like slotting. In miscellaneous costs, ROT(x) refers to the
communication cost of x Random OTs.

In Tables 1 and 2, we present the computation and communication costs
of each protocol, in terms of counts of different types of operations and differ-
ent types of elements transferred. Based on these numbers we expect that the
DDH protocol will have best communication while the most efficient protocol
in terms of computation will depend on the relative costs of exponentiation and
homomorphic operations, which we investigate through our experiments.

All computational cost measurements are in terms of total wall-clock runtime
for both parties, running on a single-thread of a desktop workstation with an
Intel Xeon CPU E5-1650 v3 (3.50 GHz) and 32 GB of RAM. Computational
cost excludes the time spent transferring files between parties over the network.

DDH Protocol + Paillier Random-OT + Paillier Bloom Filter + Paillier

Input Size Time(s) Comm.[MB] Time(s) Comm.[MB] Time(s) Comm.[MB]

1000 5.27 0.45 11.31 1.64 19.64 8.55
2000 10.46 0.90 21.82 3.20 39.34 17.43
3000 15.65 1.35 32.31 4.76 59.74 26.42
4000 20.82 1.79 43.28 6.32 80.96 35.50
5000 25.96 2.24 53.83 7.89 100.62 44.63

10000 51.94 4.49 107.91 15.75 205.16 90.85
20000 104.49 8.90 216.57 31.51 417.49 184.89
30000 157.65 13.45 325.42 47.36 628.96 280.14
40000 208.84 17.93 434.27 63.22 843.16 376.16
50000 259.50 22.43 543.68 79.09 1,057.17 472.78

100000 519.35 44.84 1,115.10 158.74 2,159.75 961.54

Table 3: Comparison of Private Intersection-Sum protocol and variants, when
using Paillier encryption to encrypt the associated values.
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DDH Protocol + RLWE Random-OT + RLWE Bloom Filter + RLWE

Input Size Time(s) Comm.[MB] Time(s) Comm.[MB] Time(s) Comm.[MB]

1000 3.89 0.14 9.89 1.33 18.24 8.25
2000 7.88 0.22 19.61 2.52 36.60 16.76
3000 11.88 0.33 29.66 3.74 56.22 25.41
4000 15.78 0.41 39.33 4.94 74.28 34.11
5000 19.72 0.51 48.72 6.16 93.29 42.90

10000 39.33 0.97 97.67 12.22 191.34 87.33
20000 77.91 1.89 196.86 24.55 383.75 177.82
30000 117.36 2.82 294.95 36.73 582.56 269.51
40000 157.28 3.75 399.50 49.02 782.62 361.98
50000 195.68 4.68 492.17 61.34 987.30 455.04

100000 395.78 9.28 989.88 123.21 1988.47 925.98

Table 4: Comparison of Private Intersection-Sum protocol and variants, when
using slotted Ring-LWE-encryption to encrypt the associated values.

8.1 Choice of Parameters and Encryption Schemes

For all schemes and database sizes, we assume the input domain is the set of 128-
bit strings, with associated values being at most 32 bits long. We additionally
assume that the sum of associated values is bounded by 32 bits. All computation
costs are presented assuming that each entry in each party’s input is in the set
intersection (which, in all protocols, maximizes computation).

We now describe the choice of encryption schemes and parameters for each
of the protocols.

DDH-based protocol We use an elliptic curve with 224 bit group elements as the
group G. For the random oracle, we use SHA-256 applied to the input, and re-
applied until the resulting output lies on the elliptic curve. In order to simulate
a new random oracle for each execution, we choose a random seed and prepend
it to each input before hashing.

Bloom Filter-based protocol We use Exponential ElGamal in order to encrypt
the bits of the Bloom Filter. We implement Exponential ElGamal over an elliptic
curve with 224 bit group elements. As noted in Section 6 Exponential ElGamal
is a good fit for encrypting the Bloom Filter because it has relatively small
ciphertexts compared to Paillier or Ring-LWE. The only cost is decryption,
which requires computing a discrete logarithm, however in the Bloom-Filter
based protocol, we only need to check if the decrypted value is 0, which can be
done very efficiently. We also dynamically choose the number of hash functions
and the Bloom Filter size based on the number of items held by each party, based
on a 2−40 probability of incorrect Bloom Filter collision over all items. That is,
we set the parameters so that the intersection is guaranteed to be correct, except
with probability 2−40.
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(a) Comparison of Computation Costs for
Intersection Sum.

a

(b) Comparison of Communication Costs
for Intersection Sum.

Fig. 5: Compares computation and communication costs for the different variants
of intersection-sum, on different input sizes. All protocols use slotted Ring-LWE
based encryption to encrypt associated values. Wall-clock running times are the
totals across both parties, excluding network transfer time. Communication costs
are also totals for both parties.

Random-OT based protocol We use Paillier encryption to encrypt the Li[vi] val-
ues. We implement Paillier encryption with 768 bit primes, so that each cipher-
text is 3072 bits, with 1536 bits of plaintext space. For the Random Oblivious
Transfer variant, we choose the following parameters:

Cuckoo Hash. We use the heuristics provided in Appendix B of Demmler et
al. [17] for the Cuckoo hash parameters. For the input sizes that we consider,
these heuristics require k = 3 hash functions, no stash, with a Cuckoo hash table
that can hold n elements with ≤ 1.5n bins.

Random-OT. We use the Batched Random OT protocol of Kolesnikov et
al. [34], with 128 base public-key OTs and pseudorandom code output length
448 bits. For the actual pseudorandom code, we use a PRG based on SHA-256,
sped up by native instructions. We also use SHA-256 as the hash function for
the [34] protocol.

Finally, to encrypt the associated values, we present measurements for each
of our three protocols using two different additive homomorphic encryption
schemes.

“Unslotted” Paillier encryption with 768 bit primes, where, as mentioned ear-
lier, each ciphertext is 3072 bits, with 1536 bits of plaintext space. The use
of unsloted encryption means each associated value is encrypted in a separate
ciphertext.

“Slotted” Ring-LWE encryption – each associated value is encrypted into a
different slot. We use RLWE with an 80 bit ciphertext modulus and a 32 bit
plaintext modulus, with 2048 coefficients per ciphertext, and 3 bits of error per
coefficient. We mask the error in the sum ciphertext with 47 bits of randomness,
which leads to at least 2−30 statistical-hiding of the error (even with our largest
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input size of 100,000 entries). Each ciphertext is 20 KB and can hold up to 2048
values of 32 bits each.

8.2 Discussion of Measurements

We present our measurements in Tables 3, 4 and 5.
In Table 3, we show the costs for the 3 different variants of the protocols,

using unslotted Paillier as the homomorphic encryption scheme for the associ-
ated values. As expected from our count estimates the DDH protocol has most
succinct communication, whereas the ROT-protocol requires three times more
communication and the BF-based protocol has 20 times more communication.
The DDH protocol also turns out to be the most computationally efficient proto-
col, two and four times faster than the ROT and the BF protocols respectively. In
Table 4, we show the costs when slotted Ring-LWE is used for the associated val-
ues, which leads to savings in both computation and communication, which are
most significant for the DDH-based protocol. In this setting the DDH protocol
continues to dominate the other two in both communication and computation ef-
ficiency. In Figure 5, we present the comparison graphs of the computation and
communication costs of the three intersection-sum protocols using Ring-LWE
based encryption for the associated values.

Using an “Ideal” Homomorphic Encryption Scheme We note that, as
can be seen in both tables above, both the Random-OT-based and the Bloom
Filter-based protocols have communication cost and computation costs far larger
than the DDH-based one. In both of these protocols, computation and commu-
nication costs are dominated by the overhead of the additive homomorphic en-
cryption scheme, especially in encrypting Li[vi] in the ROT variant, and the bits
of the Bloom Filter in the BF variant. The effect of the homomorphic encryp-
tion schemes is particularly clear in Tables 1 and 2, which show large numbers of
additive-homomorphic encryptionsTherefore, a natural question is the following:

”Would optimizing the homomorphic encryption schemes lead to protocols
that are more efficient than ΠDDH, the Intersection-Sum Protocol based on DDH?”

To attempt to answer this question, we compare the three protocols assum-
ing we have an ”idealized” additive homomorphic encryption scheme, for which
encryption, decryption and homomorphic addition have no computation cost,
and the size of a ciphertext is equal to the size of the plaintext value being
encrypted. The resulting costs are presented in Table 5 and Fig 7 in Appendix
E.1, where we present the communication and computation costs of all three
intersection-sum protocols, ignoring the computation costs and communication
overheads due to the use of additive homomorphic encryption.

With such an “ideal” encryption scheme, we see that the Random-OT and
Bloom Filter variants have huge computational advantages over the DDH-based
Intersection-Sum Protocol (60x - 1000x faster). However, even with this ideal-
ized encryption scheme, both variants have a larger communication cost than
the DDH-based protocol, with the Random OT-based protocol requiring 4x more
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communication, and the Bloom Filter variant requiring 10x more communica-
tion. We believe this shows a clear advantage for the DDH-based Intersection-
Sum protocol in terms of communication.

This evaluation shows that more efficient homomorphic encryption or replace-
ment protocols for it may give advantage to the ROT and BF constructions in
terms of efficiency.

Further optimizations We believe further optimizing the homomorphic encryp-
tion scheme is an interesting question for future work. We present some efforts to-
wards this direction in Appendix E.2. More specifically, we consider using RLWE
to encrypt both the Li[vi] values and the associated values in the Random-OT
based protocol.

9 Choosing a Protocol to Deploy

From our overall analysis, we found that the DDH-style protocol ΠDDH was
the one best suited to deployment. In the previous two sections we analyzed
the flexibility and performance advantages of ΠDDH over the other protocols we
considered. We now reflect on the other related factors and desired goals we
developed throughout the project and initially (stated in Section 2).

A key factor to being able to deploy ΠDDH in practice was its simplicity.
The fact that the protocol is a simple combination of blinded sum and blinded
set intersection, contributed to the stakeholders being convinced of its value and
simplicity of deployment. For security experts and risk analysts, the security was
relatively straightforward to see, and was based on well-established assumptions
used extensively elsewhere (DDH over curves as in TLS, and Paillier security
which is related to factoring as is RSA which is in turn, is used in TLS). These
factors raised confidence in the solution and eases its acceptance.

Simplicity and flexibility also made the protocol easier to implement cor-
rectly, and also to parallelize. Simplicity was a key factor in our deployment,
and we anticipate this to commonly be the case for future deployments of secure
computation between multiple businesses.

10 Conclusion

We have successfully developed and deployed a secure computation protocol in
an industry setting as a solution for business interactions between different com-
panies. The problem that our work has tackled is privacy preserving attribution
of aggregate ad conversions. Throughout this process we encountered multiple
challenges at both technical and business incentive level, based on which we have
distilled some principles on what are good candidate problems and solution ap-
proaches for adoption in practice.

We developed three cryptographic solutions for the problem of Private Set
Intersection-Sum, which underlies our application. We evaluated their efficiency
under different instantiations of their building blocks and compared them both
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asymptotically and in terms of actual measurements from our implementations.
Based on this comparison, we selected the solution that best meets our most re-
strictive communication efficiency requirements as candidate for deployment,
namely the DDH-based intersection-sum protocol. This solution has also an
added benefit of simplicity, which becomes another critical component in the
case of adoption of completely new security techniques in real applications.

References

1. Agrawal, R., Evfimievski, A., Srikant, R.: Information sharing across private
databases. In: Proceedings of the 2003 ACM SIGMOD International Conference
on Management of Data. pp. 86–97. SIGMOD ’03, ACM, New York, NY, USA
(2003)

2. Angel, S., Chen, H., Laine, K., Setty, S.: Pir with compressed queries and amortized
query processing. In: 2018 IEEE Symposium on Security and Privacy (SP). pp.
962–979. IEEE (2018)

3. Araki, T., Furukawa, J., Lindell, Y., Nof, A., Ohara, K.: High-throughput semi-
honest secure three-party computation with an honest majority. Cryptology ePrint
Archive, Report 2016/768 (2016), http://eprint.iacr.org/2016/768

4. Bellare, M., Rogaway, P.: Random oracles are practical: A paradigm for designing
efficient protocols. In: Proceedings of the 1st ACM conference on Computer and
communications security. pp. 62–73. ACM (1993)

5. Bloom, B.H.: Space/time trade-offs in hash coding with allowable errors. Commu-
nications of the ACM 13(7), 422–426 (1970)

6. Bogdanov, D., Talviste, R., Willemson, J.: Deploying secure multi-party compu-
tation for financial data analysis. Cryptology ePrint Archive, Report 2011/662
(2011), http://eprint.iacr.org/2011/662

7. Bogetoft, P., Christensen, D.L., Damg̊ard, I., Geisler, M., Jakobsen, T., Krøigaard,
M., Nielsen, J.D., Nielsen, J.B., Nielsen, K., Pagter, J., et al.: Secure multiparty
computation goes live. In: International Conference on Financial Cryptography
and Data Security. pp. 325–343. Springer (2009)

8. Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (leveled) fully homomorphic encryp-
tion without bootstrapping. ACM Transactions on Computation Theory (TOCT)
6(3), 13 (2014)

9. Brakerski, Z., Vaikuntanathan, V.: Efficient fully homomorphic encryption from
(standard) lwe. SIAM Journal on Computing 43(2), 831–871 (2014)

10. Chen, H., Laine, K., Rindal, P.: Fast private set intersection from homomorphic
encryption. In: Proceedings of the 2017 ACM SIGSAC Conference on Computer
and Communications Security. pp. 1243–1255. ACM (2017)

11. Ciampi, M., Orlandi, C.: Combining private set-intersection with secure two-party
computation. IACR ePrint 105, 2018 (2018)

12. Dachman-Soled, D., Malkin, T., Raykova, M., Yung, M.: Efficient robust private set
intersection. In: International Conference on Applied Cryptography and Network
Security. pp. 125–142. Springer (2009)

13. Damg̊ard, I., Jurik, M.: A generalisation, a simplification and some applications
of paillier’s probabilistic public-key system. In: International Workshop on Public
Key Cryptography. pp. 119–136. Springer (2001)

14. De Cristofaro, E., Gasti, P., Tsudik, G.: Fast and private computation of cardinal-
ity of set intersection and union. In: International Conference on Cryptology and
Network Security. pp. 218–231. Springer (2012)



Private Intersection-Sum Protocols and their Business Applications 33

15. De Cristofaro, E., Kim, J., Tsudik, G.: Linear-complexity private set intersection
protocols secure in malicious model. In: International Conference on the Theory
and Application of Cryptology and Information Security. pp. 213–231. Springer
(2010)

16. Debnath, S.K., Dutta, R.: Secure and efficient private set intersection cardinality
using bloom filter. In: International Information Security Conference. pp. 209–226.
Springer (2015)

17. Demmler, D., Rindal, P., Rosulek, M., Trieu, N.: Pir-psi: Scaling private contact
discovery (2018)

18. Diffie, W., Hellman, M.: New directions in cryptography. IEEE transactions on
Information Theory 22(6), 644–654 (1976)

19. Dong, C., Chen, L., Wen, Z.: When private set intersection meets big data: an effi-
cient and scalable protocol. In: Proceedings of the 2013 ACM SIGSAC conference
on Computer & communications security. pp. 789–800. ACM (2013)

20. Egert, R., Fischlin, M., Gens, D., Jacob, S., Senker, M., Tillmanns, J.: Privately
computing set-union and set-intersection cardinality via bloom filters. In: Aus-
tralasian Conference on Information Security and Privacy. pp. 413–430. Springer
(2015)

21. ElGamal, T.: A public key cryptosystem and a signature scheme based on discrete
logarithms. IEEE transactions on information theory 31(4), 469–472 (1985)

22. Falk, B.H., Noble, D., Ostrovsky, R.: Private set intersection with linear commu-
nication from general assumptions (2018)

23. Fan, J., Vercauteren, F.: Somewhat practical fully homomorphic encryption. IACR
Cryptology ePrint Archive 2012, 144 (2012)

24. Freedman, M.J., Ishai, Y., Pinkas, B., Reingold, O.: Keyword search and oblivious
pseudorandom functions. In: Theory of Cryptography Conference. pp. 303–324.
Springer (2005)

25. Freedman, M.J., Nissim, K., Pinkas, B.: Efficient private matching and set intersec-
tion. In: International conference on the theory and applications of cryptographic
techniques. pp. 1–19. Springer (2004)

26. Furukawa, J., Lindell, Y., Nof, A., Weinstein, O.: High-throughput secure three-
party computation for malicious adversaries and an honest majority. Cryptology
ePrint Archive, Report 2016/944 (2016), http://eprint.iacr.org/2016/944

27. Gentry, C., Halevi, S., Smart, N.P.: Fully homomorphic encryption with polylog
overhead. In: Annual International Conference on the Theory and Applications of
Cryptographic Techniques. pp. 465–482. Springer (2012)

28. Hellman, M.E., Pohlig, S.C.: Exponentiation cryptographic apparatus and method
(Jan 3 1984), uS Patent 4,424,414

29. Huang, Y., Evans, D., Katz, J.: Private set intersection: Are garbled circuits better
than custom protocols? In: NDSS (2012)

30. Huberman, B.A., Franklin, M., Hogg, T.: Enhancing privacy and trust in electronic
communities. In: Proceedings of the 1st ACM conference on Electronic commerce.
pp. 78–86. ACM (1999)

31. Jarecki, S., Liu, X.: Fast secure computation of set intersection. In: SCN (2010)
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A Security Analysis for Random OT-Based Protocol

In this section, we prove security for the Random-OT based Private Intersection-
Sum protocol ΠROT presented in Section 5.1 and Figure 1. We prove security in
the honest-but-curious model.

Let REALi,λΠROT
({vi}m1

i=1, {(wj , tj)}
m2
j=1) be a random variable representing the

view of Pi in a real execution of the Random-OT based protocol ΠROT, where
the random variable ranges over the internal randomness of all parties.

We restate the theorem from Section 5.1:

Theorem 1 (Honest But Curious Security against Party 1 in the ROT-
based protocol ΠROT). There exists a PPT simulator SIM1 such that for all
security parameters λ and inputs {vi}m1

i=1, {(wj , tj)}m2
j=1,

REAL1,λ
ΠROT

({vi}m1
i=1, {(wj , tj)}

m2
j=1)

≈
SIM1(1λ, {vi}m1

i=1,m2, |J |)

Where m2 is the size of Party 2’s input, J = {j : wj ∈ {vi}m1
i=1} is the

intersection set, and |J | is its cardinality.

Proof. We describe the simulator algorithm SIM1 in Algorithm 1.

Algorithm 1 The simulator for Party 1 in the ROT-based protocol.

Input:(λ, {vi}m1
i=1,m2, |J |) Output:SimV iew(P1) SIM1(λ, {vi}m1

i=1, |J |)

1: Honest simulate the Setup phase between P1 and P2.
2: Honestly simulate steps 1-4 between P1 and P2, receiving the set {cti =

AEnc(pk1, Li[vi])}n+s
i=1 at the end of Step 4.

3: In Step 5, choose a set A∗ consisting of n+ s random elements ai. Compute ct′i to
fresh encryptions to each ai under P1’s public key pk1, and send these values to
P1.

4: In Step 6, choose the set {(Wj , ct
t
j)}m2

i=1 such that each Wj contains exactl k + s
randomly chosen elements, and each cttj is a fresh encryption of 0 under P2’s key
pk2. For exactly |J | indices j, replace a single random element of Wj with an
element of A∗, chosen randomly without replacement (i.e. each element in A∗ is
used at most once). Send the set {(Wj , ct

t
j)}m2

i=1 to P1.
5: Simulate Step 7 for P1 honestly.
6: Output the view of P1 in this interaction.

We argue that

REAL1,λ
ΠROT

({vi}m1
i=1, {(wj , tj)}

m2
j=1) ≈ SIM1(1λ, {vi}m1

i=1,m2, |J |)

using a multi-step hybrid argument, where each neighboring pair of hybrid dis-
tributions is computationally indistinguishable.
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Hyb0 The transcript corresponding to the view of Party 1 in a real execution
of the protocol.

Hyb1 The same as Hyb0, except, in Step 6, P2 replaces the additively-homomorphic
ciphertexts cttj with fresh encryptions of 0 under pk2.

Hyb2 The same as Hyb1, except in Step 6 for all j, P2 replaces the elements in
Wj \ V ∗ with uniformly random values.

Hyb3 The same as Hyb2, except, in Step 5, each ct′i is replaced with an en-
cryption of a uniformly random value ai, and, in Step 6, the corresponding
element of Wj (which is an element of Wj ∩ V ∗) is also replaced with ai.

Hyb4 The view of Party 1 output by SIM1.

We now argue that each successive pair of hybrids in the sequence above is
indistinguishable. Notice first that Hyb0 and Hyb1 are indistinguishable by the
hiding property of the additive-homomorphic encryption scheme. Hyb1 and Hyb2

differ exactly in that the Li[wi] values for wi not in the set held by P1 have been
replaced with uniformly random values. Therefore Hyb1 and Hyb2 can be shown
indistinguishable based on the pseudorandomness of non-retrieved items in the
Random OT protocol. Hyb2 and Hyb3 can be shown to be indistinguishable using
the one-time-pad property of adding the random value ri, together with the spe-
cial property of the homomorphic encryption scheme discussed in Definition 3,
namely that a fresh encryption is indistinguishable from one produced using
homomorphic operations. Finally, Hyb3 and Hyb4 are identically distributed.

Since each pair of neighboring hybrids is indistinguishable, we conclude that

REAL1,λ
ΠROT

({vi}m1
i=1, {(wj , tj)}

m2
j=1) ≈ SIM1(1λ, {vi}m1

i=1,m2, |J |)

We now argue that P2 learns nothing from the protocol except the intersection-
sum. We restate the theorem from Section 5.1:

Theorem 2 (Honest But Curious Security against Party 2 in the ROT-
based Protocol ΠROT). There exists a PPT simulator SIM2 such that for all
security parameters λ and inputs {vi}m1

i=1, {(wj , tj)}m2
j=1,

REAL2,λ
ΠROT

({vi}m1
i=1, {(wj , tj)}

m2
j=1)

≈
SIM2(1λ, {(wj , tj)}m2

j=1,m1, SJ)

Where m1 is the size of Party 1’s input, J = {j : vj ∈ {vi}m1
i=1} is the

intersection set, and SJ =
∑
j∈J tj is the intersection-sum.

Proof. We observe that P2 view in the protocol consists of the following:

1. Whether P1 aborts due to cuckoo-hashing failure (Step 2).
2. The Sender’s view in a Random-OT execution (Step 3).
3. The set {cti}n+si=1 of ciphertexts encrypted under P1’s key pk1 (Step 4).
4. A ciphertext CT encrypting the intersection sum d under P2’s key pk2 (Step

7).
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Observe that for the items 2 and 3 (the sender’s view in a Random-OT pro-
tocol and encryptions under the key of the other party), P1 learns nothing.
Furthermore, for item 4, P2 sees a ciphertext encrypting the homomorphically-
computed sum d, which, by the special property of the homomorphic encryption
scheme discussed in Definition 3, is indisitinguishable from a fresh encryption
of d. Finally, the probability of cuckoo-hash failure can be made negligible by
appropriate choice of parameters.

Therefore, we can simulate the view of P2 as follows:

– The Simulator never aborts in Step 2.
– In Step 3, the Simulator requests arbitrarily chosen values ai in the Random

OT protocol.
– In Step 4, the Simulator sends P2 {cti}n+si=1 to be fresh encryptions of 0.
– In Step 7, the Simulator sends CT to be a fresh encryption of d under pk2.

It is straightforward to show that the view of P2 in the above simulated execution
is indistinguishable from P2’s view in a real execution. We leave the detailed
hybrid proof as an exercise.

B Security Analysis for Bloom-Filter-Based Protocol

We briefly argue security against semi-honest adversaries for the Bloom-Filter-
based Intersection-Sum protocol ΠBF presented in Section 5.2 and Figure 2. The
arguments below assume parameters have been set to have negligible probability
of Bloom-Filter collision.

We first argue that P2 learns nothing more than the intersection-sum d.
Observe that P2’s view consists of

– Ciphertexts encrypted with P1’s encryption key pk1 (Step 3).
– A rerandomized encryption CT of the homomorphically-computed intersection-

sum d (Step 6).

We can thus simulate its view by sending it encryptions of 0 in Step 3, and a fresh
encryption of d in Step 6. The indistinguishability of this simulated view from
its view in a real protocol can be seen based on the hiding of the encryption
scheme, as well as (for Step 3) and the special property of the homomorphic
encryption scheme discussed in Definition 3, namely that a fresh encryption is
indistinguishable from one produced using homomorphic operations (for Step 6).
We conclude that P2 learns only the intersection-sum d from the protocol ΠBF.

For P1, we argue it learns nothing more than the intersection cardinality C.
We sketch a simulator SIM as follows.

– In Step 5, SIM replaces the ct2i values with encryptions of 0 at exactly C
random positions, and encryptions of uniformly chosen random values at all
other positions. SIM further replaces all ctti with encryptions of 0. It sends
all such pairs (ct2i , ctti) to P1.

– For all other steps, SIM simulates the behavior an honest P2.
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One can see that P1’s view in the simulation described above is indistinguish-
able from a (correct) real execution by the hiding property of the encryption
scheme.

We reiterate that, unlike the real execution, SIM has zero correctness error.
Therefore, in order for the real and simulated executions to remain indistin-
guishable, we require that parameters have been selected to ensure that real
executions have negligible correctness error.

C Security Analysis for DDH-Based Protocol

In this section, we will prove security of the DDH-based protocol ΠDDH, presented
in Figure 3, Section 5.3. The proof is in the honest-but-curious model, where we
assume participants follow the steps of the protocol honestly, but try to extract
as much information as possible afterwards from the protocol transcript. This
model still requires some degree of trust between the two parties not to deviate
from the prescribed protocol.

We prove security in the honest-but-curious model; our proof is similar to the
proof given by Agrawal et al. [1]. We show security by giving a simulator that can
indistinguishably simulate the view of each honest party in the protocol given
only that party’s input, the cardinality of the intersection, and the intersection-
sum (but not the input of the other party). Intuitively, this will show that each
party learns nothing more by participating in the protocol than the cardinality
of the intersection and the intersection sum.

In such a protocol execution, the view of a party consists of its internal state
(including its input and randomness) and all messages this party received from
the other party (the messages sent by this party do not need to be part of the
view because they can be determined using the other elements of its view).

Let REALi,λΠDDH
({vi}m1

i=1, {(wj , tj)}
m2
j=1) be a random variable representing the

view of Pi in a real protocol execution, where the random variable ranges over
the internal randomness of all parties, and the randomness in the setup phase
(including that of the Random Oracle).

Our first theorem, which we restate from Section 5.3, shows that P1’s view
in the protocol ΠDDH can be simulated given only that P1’s input and the size
of the intersection (but not the input of P1).

Theorem 3 (Honest But Curious Security against P1 in the DDH-
based Protocol ΠDDH). There exists a PPT simulator SIM1 such that for all
security parameters λ and inputs {vi}m1

i=1, {(wj , tj)}m2
j=1,

REAL1,λ
ΠDDH

({vi}m1
i=1, {(wj , tj)}

m2
j=1)

≈
SIM1(1λ, {vi}m1

i=1,m2, |J |)

Where m2 is the size of P2’s input, J = {j : wj ∈ {vi}m1
i=1} is the intersection

set, and |J | is its cardinality.
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Algorithm 2 The simulator for P1 in the DDH-based Protocol

Input:(λ, {vi}m1
i=1,m2, |J |) Output:SimV iew(P1) SIM1(λ, {vi}m1

i=1, |J |):

1: Generate key k1 ∈ G, and key-pair (pk , sk) for the additively homomorphic encryp-
tion scheme.

2: Honestly generate and send {H(vi)
k1}i∈[m] in shuffled order as P1’s message in

Round 1.
3: Create a dummy set V ∗ = {gi}m1

i=1, where each gi is randomly selected from G.
Send {gk1

i }
m1
i=1 in shuffled order as P2’s message in Step 2 of Round 2.

4: Create a dummy set W ∗ = {hj}m2
j=1 for P2 by setting hj = gj for j ∈ {1, ..., |J |},

and each hj for j ∈ {|J |, ...,m2} is randomly selected from G .
5: Send {(hj ,AEnc(pk , 0))}m2

j=1 in shuffled order as P2’s message in Step 4 of Round
2, where each AEnc(0) is freshly generated.

6: Honestly generate P1’s message in Round 3 using P2’s dummy messages from the
previous step.

7: Output P1’s view in the simulated execution above.

Proof. We describe the simulator algorithm SIM1 in Algorithm 2. Notice that
the main difference between SIM1 and a real protocol execution is in Round
2: instead of sending {H(vi)

k1k2} and {(H(wj)
k2} as in a real execution, SIM1

instead uses random group elements {gi} and {hj} which have an intersection
of the same size, and additively homomorphic encryptions of 0. We argue that

REAL1,λ
ΠDDH

({vi}m1
i=1, {(wj , tj)}

m2
j=1) ≈ SIM1(1λ, {vi}m1

i=1,m2, |J |)

using a multi-step hybrid argument, where each neighboring pair of hybrid dis-
tributions is computationally indistinguishable.

Hyb0 The view of P1 in a real execution of the protocol.
Hyb1,0 The same as Hyb0, except, in Round 2, all additively-homomorphic ci-

phertexts sent by P2 are replaced with fresh encryptions of 0.
Hyb1,i for i ∈ {1, ...,m1 − |J |]}: The same as Hyb1,i−1, except with H(vi∗)k1k2

replaced by gk1i∗ in Party 2’s message in Step 2 of Round 2, where where vi∗ is
the lexicographically smallest as-yet-unreplaced element of {vi}m1

i=1\{wj}
m2
j=1,

and gi∗ is a random element of G.
Hyb2,0 Identical to Hyb1,m−|J|.

Hyb2,j for j ∈ {1, ..., n− |J |]}: The same as Hyb2,j−1, except with H(wj∗)k2

replaced by hj∗ in Party 2’s message in Step 4 of Round 2, where where wj∗ is
the lexicographically smallest as-yet-unreplaced element of {wj}m2

j=1\{vi}
m1
i=1,

and hj∗ is a random element of G.
Hyb3,0 Identical to Hyb2,n−|J|.
Hyb3,k for k ∈ {1, ..., |J |}]: The same as Hyb3,k−1, except

– H(vk∗)k1k2 replaced by gk1k∗ in P2’s message in Step 2 of Round 2 and
– H(wk∗)k2 replaced by gk∗ in Party 2’s message in Step 4 of Round 2

where vk∗ = wk∗ is the lexicographically smallest as-yet-unreplaced element
of {vj}m1

i=1 ∩ {wi}
m2
i=1, and gk∗ is a random element of G.
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Hyb4 The view of P1 output by SIM1.

We now argue that each successive pair of hybrids in the sequence above is
indistinguishable.

We first observe that Hyb0 and Hyb1,0 are indistinguishable by the CPA
security of the additively-homomorphic encryption scheme. We also observe that
the pairs of hybrids (Hyb1,m−|J|, Hyb2,0), (Hyb2,n−|J|, Hyb3,0) and (Hyb3,|J|,
Hyb4) are identical.

It remains to show that hybrids of the form Hyb1,i−1,Hyb1,i, Hyb2,j−1,Hyb2,j

and Hyb3,k−1,Hyb3,k are indistinguishable. We will argue that Hyb1,i−1 and
Hyb1,i are indistinguishable for all i ∈ {1, ...,m − |J |}, based on the hardness.
We note that hybrids of the form Hyb2,j−1,Hyb2,j and Hyb3,k−1,Hyb3,k can be
proven indistinguishable by a very similar argument.

Consider Algorithm 3 below, that takes as input a DDH tuple (g, ga, gb, gc)
and hybrid index i, and simulates Hyb1,i:

We observe that the output distribution produced by Algorithm 3 on input i
and a DDH tuple (g, ga, gb, gc) for uniformly random a, b, c is identical to Hyb1,i.
To see this, we first observe that the Random Oracle has uniformly random
outputs even after reprogramming, since all the reprogrammed values are random
powers of a generator. Next, interpreting the hidden exponent b as P2’s key k2,
all the simulated messages sent by P2 in Round 2 are of the correct form for
Hyb1,i: un-replaced messages in Round 2 Step 2 have the form H(vi)

k1k2 , and

messages sent in Round 2 Step 4 have the form (H(wj)
k2 ,AEnc(0)).

We now replace the DDH tuple given as input to Algorithm 3 to have the form
(g, ga, gb, gab). The only effect is that, instead of gi∗ = gc, we have gi∗ = gab =
H(vi∗)b. From our earlier interpretation of b as k2, this means gk1i∗ = H(vi)

k1k2 .
This change is exactly the difference between Hyb1,i−1 and Hyb1,i. Thus, the

output of Algorithm 3 on inputs i and (g, ga, gb, gab) is identical to Hyb1,i−1.
From the preceding argument, we can infer that if any adversary can distin-

guish between Hyb1,i−1 and Hyb1,i, then it can distinguish between (g, ga, gb, gab)

and (g, ga, gb, gc). Therefore, by the assumed hardness of DDH, Hyb1,i−1 and
Hyb1,i are indistinguishable.

Our second theorem, which we restate from Section 5.3, shows that P2’s
view in the protocol ΠDDH can be simulated given only that P2’s input and the
intersection-sum (but not the input of P1).

Theorem 4 (Honest But Curious Security against P2 in the DDH-
based Protocol ΠDDH). There exists a PPT simulator SIM2 such that for all
security parameters λ and inputs {vi}m1

i=1, {(wj , tj)}m2
j=1,

REAL2,λ
ΠDDH

({vi}m1
i=1, {(wj , tj)}

m2
j=1)

≈
SIM2(1λ, {(wj , tj)}m2

j=1,m1, SJ)

Where m1 is the size of P1’s input, J = {j : wj ∈ ({vi}m1
i=1} is the intersection

set, and SJ =
∑
j∈J tj is the intersection-sum.
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Algorithm 3 Simulator for Hyb1,i

Input:(λ, i, (g, ga, gb, gc), {vi}m1
i=1, {wj}m2

j=1) Output:SimV iew(P1) in Hyb1,i
SIMHyb1,i(λ, i

∗, (g, ga, gb, gc), {vi}m1
i=1, {wj}m2

j=1)
with vi∗ being the new element replaced with a random one in
Hyb1,i
1: for i ∈ {1, ...,m1} do
2: if vi 6= vi∗ then
3: Randomly sample ri ← {1, , ..., |G|}
4: Program H(vi) = gri

5: else if vi = vi∗ then
6: Program H(vi) = ga

7: end if
8: end for
9: for j ∈ {1, ...,m2} do

10: if wj /∈ {vi}m1
i=1 then

11: Randomly sample sj ← {1, ..., |G|}
12: Program H(wj) = gsj

13: end if
14: end for
15: Generate key k1 ∈ G, and key-pair (pk , sk) for the additively homomorphic encryp-

tion scheme.
16: Send {H(vi)

k1}m1
i=1 in shuffled order as Party 1’s message in Round 1.

17: for i ∈ {1, ...,m1} do
18: if vi = vi∗ then
19: gi ← gc

20: else if vi /∈ {wj}m2
j=1, vi < vi∗ then

21: gi ← random element of G
22: else
23: gi ← (gb)si

24: end if
25: end for
26: Send {gk1

i }i∈[m] in shuffled order as P2’s message in Step 2 of Round 2. Send
{((gb)sj ,AEnc(0))}j∈[n] in shuffled order as Party 2’s message in Step 4 of Round
2, where each AEnc(0) is freshly generated.

27: Honestly generate P1’s message in Round 3 using P2’s dummy messages from the
previous step.

28: Output P1’s view in the simulated execution above.
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Proof. We define SIM2 to perform the Setup phase honestly, and honestly per-
forms the operations corresponding to P2. SIM2 simulates the messages sent by
P1 as follows:

– In Round 1, instead of sending {H(vi)
k1}m1

i=1 as P1’s message, SIM2 instead
sends m1 randomly selected elements of G.

– In Round 3, instead of performing the intersection and computing the intersection-
sum, SIM2 instead sends a fresh additively-homomorphic ciphertext encrypt-
ing the value SJ it received as input.

We note that the only difference between the output of SIM2 and the view
of P2 in a real execution is in the Round 1 messages. However, the Round 1
messages output by SIM2 can be shown to be indistinguishable from those in a
real execution by using a simple hybrid argument: Define m! hybrids, where, in
each successive hybrid, SIM2 replaces one additional “real” Round 1 message of
the form H(vi)

k1 with a random element of G. Then, each pair of neighboring
hybrids can be shown to be indistinguishable based on the fact that k1 is secret
and that DDH is hard in G. The details are very similar to the proof of Theorem 3,
and we leave them as an exercise.

D “Reverse” variants

We note that, in each of the protocols described in Section 5, a specific party
receives the intersection-sum as output, namely P2, the party who has the asso-
ciated values as input. Additionally, each of the protocols has the property that
the other party (P1) performs the homomorphic addition of associated values.
Furthermore, in each protocol, P1 also learns the size of the intersection before
performing the homomorphic addition, and this enables us to give P1 the option
to abort the protocol if the intersection-size is too small, without P2 learning
the intersection-sum.

In some cases, we may want the reverse configuration, namely that P1 learns
the intersection-sum, and P2 has the ability to abort before the intersection-
sum is learned if the intersection-size is too small. It turns out that there is
a straightforward modification that can be made to each of our protocols that
allows this alternate configuration, which we call a “reverse” variant. The idea
is as follows

– P2 uses an additive-homomorphic encryption scheme to encrypt each of its
associated values tj using its encryption key pk2, and sends these encrypted
values to P1.

– P1 homomorphically masks each associated value with a random additive
mask ri, and sends the resulting ciphertexts (rerandomized) to P2 in shuffled
order.

– P2 decrypts the ciphertexts to recover the masked associated values. P2 then
adds together the values that were determined to be in the intersection.
(Which values are to be added is determined differently in each protocol,
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depending on the underlying PSI technique used in that protocol, namely
DDH, Random-OT or Encrypted Bloom Filter.) If the intersection-size is
too small, P2 can abort, otherwise P2 sends the masked sum to P1, together
with the set of indices that were in the intersection.

– P1 uses the indices received in the previous step to determine which masks
must be removed from the masked sum. P1 subtracts these masks from the
masked sums, and outputs the recovered value as the intersection-sum.

We present the concrete instantiation of the reverse variant of the DDH-
based protocol in Appendix D, together with a short security sketch drawing on
the security argument for the forward variant. We omit the detailed descriptions
for the reverse variants for the Random-OT and Bloom-filter based protocols,
noting that they can be constructed in a straightforward way using the recipe
described above.

D.1 The “Reverse” DDH-based Protocol

The DDH-based Private Intersection-Sum protocol ΠDDH we presented in Sec-
tion 5.3 can be modified in a straightforward way to allow both parties to learn
the intersection-sum or intersection-size. It is also possible to ensure that one or
the other party performs the actual intersection operation, for example, to allow
that party to abort if the intersection is below some threshold, which might be
imposed for policy reasons. We present one such variant in Figure 6, which we
refer to as the “reverse” protocol. In this protocol, P2 performs the intersec-
tion, and can abort the protocol if the intersection size is too small, without
either party learning the intersection-sum. In addition, both parties learn the
intersection size, but only P1 learns the intersection-sum. To implement this,
we additionally need P1 to blind the additively homomorphic ciphertexts with
random masks, and for these masks to be removed after the masked associated
values have been added. The details can be seen in Figure 6.

D.2 Security Analysis

The security proof for the reverse variant of the DDH-based protocol is similar
to the “forward” DDH-based protocol, but with the roles of the parties reversed,
with Party 2 learning only the intersection size, and Party 1 learning both the
intersection size and the intersection sum. The simulator for Party 1 is almost
identical to the simulator for Party 2 in the original protocol; the one difference
is that the simulator must also provide indices J (known to the simulator during
the course of simulation) in Round 3 to allow Party 1 to compute SJ −

∑
j∈J rj .

For Party 2, the simulator is very similar to the original Party 1 simulator SIM1

in Algorithm 2. We omit details of simulators and the hybrid security argument.



44 Ion, Kreuter, Nergiz, Patel, Saxena, Seth, Raykova, Shanahan, Yung

Reverse Intersection-Sum Protocol

– Inputs:
• Both parties: A group G of prime order, and an identifier space U . A hash

function H : U → G, modeled as a random oracle, that maps identifiers to
random elements of G.

• P1 : Set V = {vi}m1
i=1, where vi ∈ U .

• P2: Set of pairs W = {(wi, ti)}m2
i=1, with wi ∈ U , ti ∈ Z+.

– Setup:
• Each Pi chooses a random private exponent ki in the group G.
• Party2 generates a fresh key-pair (pk , sk) ← AGen(λ) for the additive homo-

morphic encryption scheme and sends the public key pk with Party1.
– Round 1 (P2):

1. For each element (wj , tj) in its set, P2 applies the Random Oracle and then
single-encrypts wj using its key k2, thus computing H(wj)

k2 .
2. P2 sends {(H(wj)

k2 ,AEnc(tj))}m2
j=1 to P1 in shuffled order.

– Round 2 (P1):
1. For each element (H(wj)

k2 ,AEnc(tj)) received from P2 in the previous step,
P1 double-encrypts them using its key k1 and homomorphically computes a
one-time pad encryption of tj under addition in the message space M of the
additively-homomorphic encryption scheme, computing (H(wj)

k1k2 ,AEnc(tj +
rj)).

2. P1 sends {(H(wj)
k1k2 ,AEnc(tj + rj)}m2

j=1 to P2 in shuffled order. The (shuffled
j → rj) map is saved for a future step.

3. For each item vi in its input set, P1 applies the Random Oracle to the first
element of the pair and encrypts it using key k1. It encrypts the second element
of the pair using the key pk for the additively homomorphic encryption scheme.
It thus computes the pair. H(vi)

k1 .
4. P1 sends the set {H(vi)

k1}m1
i=1 to P2 in shuffled order.

– Round 3 (P2):
1. For each item H(vi)

k1 received from P1 in Round 2 Step 4, P1 double-encrypts
the using k2, thus computing H(vi)

k1k2 .
2. P2 computes the intersection set J :

J = {j : H(wj)
k1k2 ∈ {H(vi)

k1k2}m2
i=1}

3. For all items in the intersection, P2 decrypts AEnc(tj +rj) and adds the associ-
ated (one-time pad encrypted) ciphertexts, computing a ciphertext encrypting
the intersection-sum SJ =

∑
j∈J tj + rj

4. P2 sends SJ together with the indexes J corresponding to the additively ho-
momorphic ciphertexts in the intersection, to P1.

– Output (P1): P1 computes SJ −
∑

j∈J rj to recover
∑

j∈J tj .

Fig. 6: Detailed description of the “Reverse” Private Intersection-Sum protocol.
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E Additional Measurements

E.1 Using an idealized homomorphic encryption scheme

In Table 5 and Figure 7, we show communication and computation costs for each
of the 3 protocols we present, assuming an “idealized” homomorphic encryption
scheme that incurs no computational cost and no communication overhead as
compared to sending plaintexts. We see that in these schemes, the Random OT
protocol and Bloom-Filter protocol gain a large computational edge over the
DDH-based protocol. We interpret this as an indication that it may be beneficial
to explore further optimizations to the additive homomorphic encryption scheme.

(a) Comparison of Computation Costs for
Intersection Sum with Idealized Homo-
morphic Encryption.

(b) Comparison of Communication Costs
for Intersection Sum with Idealized Homo-
morphic Encryption.

Fig. 7: Compares computation and communication costs for “idealized” variants
of intersection-sum, assuming and additive homomorphic encryption schemes
which have no computational cost, and ciphertexts that are the same size as the
plaintext. Wall-clock running times are the totals across both parties, excluding
network transfer time. Communication costs are also totals for both parties.

In this section, we present some additional measurements for the Random-OT
based protocol (Section 5.1), Figure 1) using a different combination of additive
homomorphic encryptions.

E.2 Using different additive encryption schemes for the
Random-OT-based Protocol

In particular, we measure the computation and communication when we use
Ring-LWE for encrypting both Li[vi] values, and encrypting the associated val-
ues. We use two different sets of RLWE parameters for the two different use-cases.
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DDH + Idealized HE Random-OT +
Idealized HE

Bloom Filter +
Idealized HE

Input Size Time(s) Comm.[MB] Time(s) Comm.[MB] Time(s) Comm.[MB]

1000 4.01 0.09 0.61 0.41 0.00 0.71
2000 7.83 0.17 0.66 0.73 0.01 1.45
3000 11.81 0.26 0.70 1.04 0.01 2.19
4000 15.80 0.35 0.75 1.36 0.01 2.95
5000 19.69 0.43 0.79 1.68 0.01 3.71

10000 39.29 0.87 1.02 3.27 0.03 7.56
20000 79.38 1.74 1.53 6.47 0.07 15.39
30000 119.70 2.60 1.98 9.68 0.10 23.32
40000 157.71 3.47 2.43 12.90 0.14 31.32
50000 196.61 4.34 2.97 16.12 0.18 39.37

100000 393.84 8.68 5.31 32.28 0.37 80.12

Table 5: Comparison of the protocols for Intersection Sum, assuming the exis-
tence of an ideal additively-homomorphic encryption scheme, with no computa-
tion cost or ciphertext expansion. We assume this scheme is used for encrypting
not just associated values, but also the Li[vi] values in the Random-OT variant,
and the bits of the Bloom filter in the Bloom-filter variant.

For encrypting the associated values, we use the same parameters as discussed
in Section 8, namely slotted RLWE encryption with an 80 bit modulus and 2048
coefficients, with 32 bit plaintext space.

For encrypting Li[vi] values, we use RLWE encryption with a 14-bit modulus,
1024 coefficients, and a plaintext modulus of 2, corresponding to 1 bit per coef-
ficient. We encrypt each Li[vi] value in a different ciphertext. To be encrypted,
each 256 bit Li[vi] value is decomposed into 256 single-bit values that are in-
serted into the first 256 coefficients. The masks are homomorphically added to
the ciphertexts, along with 12 bits of additional noise, leading to a 2−9 statisti-
cal hiding of the error. (We note that this is less statistical hiding, but since we
are only hiding a single homomorphic addition, this is enough to drown out the
original error. We defer a detailed analysis.)

We present the measurements in Table 6. For easy comparison, we also
present the costs previously shown in Table 3, namely the cost when using
unslotted-Paillier to encrypt both Li[vi] and the associated values, and also the
costs from Table 4, which shows the cost when using unslotted-Paillier to en-
crypt the Li[vi] and slotted-Ring-LWE to encrypt the associated values. We refer
to the three variants as Paillier-Paillier, Paillier-RLWE and RLWE-RLWE, with
the first part representing the scheme used to encrypt which shows the cost when
using unslotted-Paillier to encrypt both Li[vi] and second part representing the
scheme used for the associated values.

We note that using RLWE for both the Li[vi] values and the associated values
nearly halves the computational cost of the scheme, while significantly increasing
communication costs. However, the total computation is still about 20% more
than the DDH + RLWE protocol (see Table 4).
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Paillier-Paillier Paillier-RLWE RLWE-RLWE

Input Size Time(s) Comm.[MB] Time(s) Comm.[MB] Time(s) Comm.[MB]

1000 11.31 1.64 9.89 1.33 5.15 7.07
2000 21.82 3.20 19.61 2.52 9.71 14.07
3000 32.31 4.76 29.66 3.74 14.28 21.12
4000 43.28 6.32 39.33 4.94 19.00 28.17
5000 53.83 7.89 48.72 6.16 24.22 35.26

10000 107.91 15.75 97.67 12.22 46.99 70.79
20000 216.57 31.51 196.86 24.55 94.73 142.30
30000 325.42 47.36 294.95 36.73 140.37 214.13
40000 434.27 63.22 399.50 49.02 187.31 286.17
50000 543.68 79.09 492.17 61.34 245.57 358.36

100000 1,115.10 158.74 989.88 123.21 554.75 720.83

Table 6: Comparison of variants of the Random-OT based Private Intersection-
Sum protocol, using different homomorphic encryption schemes to encrypt the
Li[vi] values and the associated values.

F Comparison of Garbled-Circuit style approaches

In this section, we reproduce the table of [11] that provides an excellent an-
alytical comparison of the communication and computation costs of different
Garbled-circuit style protocols for privately computing generic functions over an
intersection. This table appears as Table 1 in [11]. The specific private function
considered by [11] in creating this table is “Private Set Membership with en-
crypted output”, which is a building block for privately computing any generic
function over the intersection.

They key high-level takeaway from this table from the point of view of our
work is that the communication cost of each protocol is O(λMs), that is, it
depends on the product of the security parameter, the set size and, crucially
the bit length of each identifier. This asymptotic communication complexity also
appears in garbled-circuit style solutions for functionalities beyond Private Set
Membership, and is roughly due to the need to separately encrypt each bit of
the identifiers.

# of sym. key operations Communication bits]

Yao SCS [29] 12λM + 3λM 2λMs(1 + 3 logM)
GMW SCS [29] 12λM logM 6λM(s+ 2) logM
Yao PWC [46] 4λM + 6393λ λ(M3s+ 3198s+ 15)

GMW PWC [46] 6λM + 9594λ λ(M4+6396+2sM+6396s)
Graph Navigation [11] 4λM + 3λ 2λMs+Ms

Table 7: (Table 1 from [11]) Computation and communication complexity com-
parison for the PSM case. M represents the size of the set, s is the security
parameter and λ is the bit-length of each element.
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To clarify the comparison to our works, compare to Table 1. Table 1 shows
that our protocols all have communication dominated by the size of group ele-
ments and homomorphic ciphertexts, and the size of the sets held by each party.
Our protocols do also depend in subtle ways on the bit length of the identi-
fiers, for example, the parameters of homomorphic encryption may have to be
increased if the identifiers are very large. However, of the protocols presented
in this work, none have communication complexity with a multiplicative depen-
dency on the bit length of the identifiers in the way that garbled-circuit style
protocols do.


