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Abstract. At Crypto 2018, Aggarwal, Joux, Prakash and Santha (AJPS) described a new public-key
encryption scheme based on Mersenne numbers. Shortly after the publication of the cryptosystem,
Beunardeau et al. described an attack with complexity O(22h). In this paper, we describe an improved
attack with complexity O(21.75h) .

1 Introduction

The AJPS public-key encryption scheme. At Crypto 2018, Aggarwal, Joux, Prakash and
Santha (AJPS) described a new public-key encryption scheme based on arithmetic modulo Mersenne
numbers [AJPS18]. A Mersenne prime is a prime integer p of the form p = 2n − 1 where n is a
prime. The arithmetic modulo p has good properties and one can establish a correspondence between
integers modulo p and binary strings of length n. In particular one can define the Hamming weight
of a number as the Hamming weight of the unique binary string associated to it, i.e. the number
of 1s in its binary representation. In the earliest version of their work, the authors presented a
public-key encryption scheme (AJPS-1) somewhat similar to the NTRU cryptosystem, but based
on a new assumption: the Mersenne Low Hamming Ratio Assumption. Its security relies on the
following assumption: given H = F/G mod p, where the binary representation of F and G modulo
p has low Hamming weight, then H looks pseudorandom, namely it is hard to distinguish H from
a random integer modulo p.

The Beunardeau et al. attack. Even though the authors claimed that the known lattice attacks
against NTRU would not apply, very soon Beunardeau et al. [BCGN17] described a lattice-based
attack against the first AJPS proposal. The attack complexity is O(22h), where h is the Hamming
weight of F and G. The attack was further analyzed in [dBDJdW18]; the authors also described
a Meet-in-the-Middle attack against AJPS-1 based on locality-sensitive hash functions to obtain
collisions; they showed that the lattice attack from [BCGN17] is more efficient.

Since AJPS-1 allows to encrypt only a single bit at a time, it is not very efficient. However in
a the later version of the article, published at Crypto 2018 [AJPS18], Aggarwal et al. described
a variant (AJPS-2) that encrypts many bits at a time, wtih much larger security parameters to
prevent the lattice attack.

Our contribution. In this paper we describe a variant of the Beunardeau et al. attack against
AJPS-2, with improved complexityO(21.75h) instead ofO(22h). Instead of recovering the private-key,
our attack only breaks the indistinguishability of ciphertexts.

2 The AJPS Cryptosystems

In this section we recall the two versions of the AJPS cryptosystems; see [AJPS18] for further
details.



AJPS-1: bit-by-bit encryption. Let p = 2n − 1 be a Mersenne prime, where n itself is prime.
Let h be an integer. Let F and G be two random integers modulo p with Hamming weight h such
that 4h2 < n ≤ 16h2. Then the public-key is pk = H = F/G mod p and the private key is sk = G.
To encrypt, choose two random integers A and B of Hamming weight h. Encrypt the bit b as:

C = (−1)b · (A ·H +B)

To decrypt, compute d = Ham(C ·G). Output 0 if d ≤ 2h2, otherwise output 1.

Decryption works because

C ·G = (−1)b · (A ·H ·G+B ·G) = (−1)b · (A · F +B ·G)

which has Hamming weight at most 2h2 if b = 0, and at least n − 2h2 if b = 1. Namely for any
number x of Hamming weight h, the integer x ·2z mod p for z ≥ 0 is a cyclic shift of x, and therefore
its Hamming weight remains unchanged. Therefore the Hamming weight of A ·F is at most h2 and
the Hamming weight of B ·G is also at most h2; therefore the Hamming weight of C ·G is at most
2h2 for b = 0.

AJPS-2: error correcting codes. Let n be a positive integer such that p = 2n−1 be a Mersenne
prime. Let h ∈ N be such 10h2 < n ≤ 16h2. Let F,G be two random integers modulo p with
Hamming weight h and R be a random integer modulo p. Set

pk = (R,F ·R+G) = (R, T )

and sk = F . To encrypt a message m ∈ {0, 1}h, first generate three random integers A, B1, B2

modulo p, with Hamming weight h. Then, using the encoding algorithm E : {0, 1}h → {0, 1}n of an
error correcting code (E ,D), compute the ciphertext:

(C1, C2) = (A ·R+B1, (A · T +B2)⊕ E(m))

To decrypt, compute D((F · C1)⊕ C2), where D is the corresponding decoding algorithm.

Decryption works because

F · C1 = A · F ·R+ F ·B1 = A · (T −G) + F ·B1 = (A · T +B2)−A ·G−B2 +B1 · F

and therefore the Hamming distance between A · T + B2 and F · C1 is expected to be low, which
enables to recover m with good probability.

3 The Beunardeau et al. Attack

Basic attack. Beunardeau et al. described an attack against AJPS-1 in [BCGN17] that recovers
the private-key from the public-key. More precisely, they consider the following problem:

Definition 3.1 (Mersenne Low Hamming Search Problem (MLHSP)). Let p = 2n − 1 be
an n-bit Mersenne prime and h an integer. Let F , G be two n-bit random strings with Hamming
weight h. Given H = F/G mod p, recover F and G.

Their basic attack is based on the following observation. With probability 2−2h, we have both
F <

√
p and G <

√
p, and therefore, given H = F/G mod p, one can recover F and G by applying

LLL in dimension 2. In the original proposal [AJPS17], it was recommended to take h = 17 for
λ = 120 bits of security. However here we have an attack that recovers the private-key from the
public-key with probability 2−34; see also [dBDJdW18] for a detailed analysis.
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More precisely, one considers the lattice L generated by the rows of the matrix:[
1 H
0 p

]
We have that detL = p; hence by the Gaussian heuristic it contains a vector of norm ' (detL)1/2 =√
p. Moreover (G,F ) is a short vector of the lattice. Therefore if both F <

√
p and G <

√
p we can

recover F and G; since F and G have Hamming weight h, this happens with probability 2−2h.

We note that a similar attack can also be applied to the encryption equation:

C = (−1)b · (A ·H +B)

Namely if both A <
√
p and B <

√
p, then we can recover A and B by applying LLL in dimension

3, and then the plaintext bit b. Indeed we have that only one between (H,C) and (−H,C) is an
instance of the following problem:

Definition 3.2 (Mersenne Low Hamming Combination Search Problem (MLHCSP)).
Let p = 2n − 1 be an n-bit Mersenne prime, h be an integer, R be a uniformly random n-bit string
and F,G having Hamming weight h. Given the pair (R,F ·R+G mod p), find F,G.

Given R and T = F · R + G mod p, a variant attack recovers F , G with probability 2−2h. More
precisely, the attack works by considering the lattice L of row vectors: 2n/2 0 T

0 1 −R
0 0 p


We have that (2n/2, F,G) belongs to the lattice L. Moreover detL = 2n/2p ' 23n/2. Hence by the
Gaussian heuristic the lattice L contains a vector of norm ' 2n/2. Therefore if both F <

√
p and

G <
√
p we can recover F and G by applying LLL to the lattice L.

Extension with random partitions. The basic attack from [BCGN17] is only a weak-key attack
that recovers the private-key from the public-key with probability 2−2h over the set of possible
public-keys. Similarly, the above variant attack against the encryption equation can only decrypt a
fraction 2−2h of the ciphertexts. Therefore, the authors extended their attack by considering random
partitions, with higher dimensional lattices. In that case, the attack can recover the private-key from
any public-key, solving MLHSP, with complexity O(22h). The same partition strategy can be used
for the MLHCSP with the same complexity. In our improved attack in the next section, we will also
use random partitions.

4 Our new attack

We describe our new attack against AJPS-2. We consider the previous encryption equation:

(C1, C2) = (A ·R+B1, (A · T +B2)⊕ E(m))

Given the public-key (R, T ) and a ciphertext (C1, C2), our attack can distinguish between m = 0
and m 6= 0. Assume that m = 0 and E(m) = 0. In that case, we have:

C1 = A ·R+B1

C2 = A · T +B2
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We claim that if A, B1 and B2 are less than 22n/3, then we can recover A, B1 and B2 with LLL.
Namely we consider the lattice of row vectors:


2

2
3
n 0 C1 C2

0 1 −R −T
0 0 p 0
0 0 0 p


We have that detL = 22n/3p2 ' 28n/3. Therefore by the Gaussian heuristic the lattice L contains
vectors of norm ' 22n/3. Moreover the lattice L contains the vector (22n/3, A,B1, B2). Therefore if
A, B1 and B2 are less than 22n/3, we can recover A, B1 and B2 by applying LLL to L.

Since A has Hamming weight h, the probability that A < 22n/3 is (2/3)h; the same holds for B1

and B2. The success probability of the attack is therefore:

(
2

3

)3h

' 2−1.75·h

which gives a slightly better success probability than the original attack with 2−2h. Therefore, using
the same partition technique as in [BCGN17], the attack complexity to break the indistinguishability
of any ciphertext is O(21.75h) instead of O(22h).

4.1 Working with random partitions

We show that using the same random partition technique as in [BCGN17], we can break the in-
distinguishability property of any ciphertext (C1, C2), whereas the basic attack above only works
when A, B1 and B2 are less than 22n/3, which only happens with probability (2/3)3h.

We consider the set [n] = {0, 1, . . . , n− 1}. We say that P = {Pi}ki=1 is an interval-like partition
if it is a partition of [n] such that the sets are of the form Pi = {y | c ≤ y ≤ d} or Pi =
{d, d + 1, . . . , 0, . . . , c − 1, c} for c ≤ d ∈ [n]. We define pi as the least element of Pi, namely as c
if the interval is of the first type and as d if it is of the second type. We can use a partition to
represent a number E modulo p by a sequence of smaller integers. More precisely, letting en−1 · · · e0
be the binary representation of e, we can divide it by the partition

ep1−1 · · · epk | epk−1 · · · epk−1
| . . . | ep2−1 · · · ep1

and letting di the number represented by epi−1 · · · epi−1 we obtain

E =
k∑
i=1

di · 2pi .

Consider P,Q, S three interval-like partitions of [n] of cardinality k, ` and j, respectively. Let
R, T,C1, C2, A,B1, B2 be as in AJPS-2. We define a family of embedded lattices parameterized with
respect to β, P,Q, S:

Lβ,P,Q,S =

{
(αβ,x,y, z) ∈ Z× Zk × Z` × Zj : α · C1 ≡ R ·

∑k
i=1 xi · 2pi +

∑`
i=1 yi · 2qi mod p

α · C2 ≡ T ·
∑k

i=1 xi · 2pi +
∑j

i=1 zi · 2si mod p

}
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for some scaling factor β ∈ Z. The dimension of Lβ,P,Q,S is d = k + ` + j + 1 and a basis of this
lattice is given by rows of the following matrix

Mβ,P,Q,S =



β 0 0 · · · 0 0 · · · 0 C1 · 2−q1 0 · · · 0 C2 · 2−s1
0 1 0 · · · 0 0 · · · 0 −R · 2pk−q1 0 · · · 0 −T · 2pk−s1
0 0 1 · · · 0 0 · · · 0 −R · 2pk−1−q1 0 · · · 0 −T · 2pk−1−s1

0
. . . 0 · · · 0 −R · 2p2−q1 0 · · · 0 −T · 2p2−s1

0 0 0 · · · 1 0 · · · 0 −R · 2p1−q1 0 · · · 0 −T · 2p1−s1
0 0 0 · · · 0 1 · · · 0 −2q`−q1 0 · · · 0 0

0 0 0 · · · 0 0
. . . 0 −2qi−q1 0 · · · 0 0

0 0 0 · · · 0 0 · · · 1 −2q2−q1 0 · · · 0 0
0 0 0 · · · 0 0 · · · 0 p 0 · · · 0 0

0 0 0 · · · 0 0 · · · 0 0 1 · · · 0 −2sj−s1

0 0 0 · · · 0 0 · · · 0 0 0
. . . 0 −2si−s1

0 0 0 · · · 0 0 · · · 0 0 0 · · · 1 −2s2−s1

0 0 0 · · · 0 0 · · · 0 0 0 · · · 0 p


We claim that we can recover A,B1, B2 by using a lattice of the family {Lβ,P,Q,S}. We define

the secret vector to be

s := (β, a1, . . . , ak, b
(1)
1 , . . . , b

(1)
` , b

(2)
1 , . . . , b

(2)
j ) ∈ Lβ,P,Q,S

where 0 ≤ ai < 2pi , 0 ≤ b(1)i < 2qi and 0 ≤ b(2)i < 2si and

A =
k∑
i=1

ai · 2pi , B1 =
∑̀
i=1

b
(1)
i · 2

qi , B2 =

j∑
i=1

b
(2)
i · 2

si

We will use the following notations a = (a1, . . . , ak), b
(1) = (b

(1)
1 , . . . , b

(1)
` ), b(2) = (b

(2)
1 , . . . , b

(2)
j ),

e = (a, b(1), b(2)) and s = (β, e).

In the following, we determine under which conditions the secret vector s is the unique shortest
vector of the lattice Lβ,P,Q,S . Given A,B1, B2, we say that the triple (P,Q, S) of partitions of [n] is a
lucky triple if there exists a scaling factor β ∈ N such that the secret vector s is the unique shortest
vector of Lβ,P,Q,S . In that case Lβ,P,Q,S will be said to be a lucky lattice respect to A,B1, B2. In
other words, we aim to establish sufficient conditions under which a lattice Lβ,P,Q,S is lucky given
a ciphertext C = (C1, C2) such that E(m) = 0.

The volume of Lβ,P,Q,S is

vol(Lβ,P,Q,S) = |det(M)| = p2 · β.

We write β = 2tn; thus we have vol(Lβ,P,Q,S) ' 2(2+t)n. By the Gaussian heuristic, we obtain the
following estimate of the length of the shortest vector of Lβ,P,Q,S√

d

2πe
· vol(Lβ,P,Q,S)

1
d =

√
d

2πe
· 2

(2+t)n
d (1)

Since the Hamming weight of A,B1, B2 is the same, we take k = j = `. We note that the lattice
Lβ,P,Q,S contains intrinsic short vectors u = (0, . . . , 0, 2g,−1, 0, . . . 0) whose norm is ' 2g when g
is of the form pi − pi−1 or qi − qi−1 or si − si−1. If we consider partitions with interval of similar
length, we obtain ‖u‖ ≈ 2n/k. Therefore we have to ensure that such vectors are not shorter than
our target secret vector.
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In low dimensions we can assume that LLL recovers the shortest vector s of the lattice. From
(1) we must therefore ensure:

‖s‖ ≤
√

d

2πe
· 2

(2+t)n
d

where d = 3k+ 1 is the lattice dimension. We expect the entries of the secret vector to be about of
the same size for a lucky triple, hence we take the scaling factor β such that β = 2tn ' ‖e‖. Then
we have approximately:

2tn+
1
2 ≤ 2

(2+t)n
3k+1

which gives t ≤ 2
3k −

3k+1
6kn . Therefore we have the approximative condition to have a lucky triple

(P,Q, S) of partitions:

‖e‖ < 2
2n
3k . (2)

It remains to evaluate the probability to find a lucky triple of partitions (P,Q, S). It is actually
easier to assume that the partitions (P,Q, S) are fixed, and the ciphertext C = (C1, C2) is random.
In that case, from the bound (2), each of the h bits from the integers A, B1 and B2 must land in one
of the subintervals of length 2n/(3k) of the k partition intervals. For a single bit, this happens with
probability roughly k ·2n/(3k) ·1/n = 2/3. Therefore, as in the basic attack, the success probability
is roughly (2/3)3h ' 2−1.75·h. Therefore, the number of partitions to try before finding a lucky one
is approximately:

O(21.75h)

instead of O(22h) in the original attack from [BCGN17].

Security parameter selection. In the latest version of the paper the authors recommended to
take for λ bit of security h = λ, in order to prevent possible improvements of Beunardeau et al.
attack. Then our attack does not affect the choice of parameter proposed in [AJPS18].

4.2 Practical experiments

We have performed some practical experiments for various values of bitsize n and Hamming weight
h of AJPS-2, in order to compare our new attack with the original Beunardeau et al. attack. For
both attacks, since we don’t know a priori the optimal size of the partition k to recover the secret,
we perform a repeated loop over all possible 1 ≤ k ≤ h. We summarize our results in Table 1,
showing that our attack indeed requires fewer partitions than the original attack.

h n log2(ȳ) log2(Ȳ )

3 127 6.5 7.4
6 521 13.0 14.5
7 607 14.6 16.5
9 1279 14.9 16.4

Table 1. Average number ȳ of partitions required to recover the secret values A, B1, B2, compared
to the average number Ȳ required for the original attack. We used 70 samples for h = 3, 6, 7, and 9
samples for h = 9.
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