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Abstract—SAT-attack is known to successfully decrypt a func-
tionally correct key of a locked combinational circuit. It is
possible to extend the SAT-attack to sequential circuits through
the scan-chain by selectively initializing the combinational logic
and analyzing the responses. Recently, sequential locking was
proposed as a defense to SAT-attack, which works by locking
the scan-chains of flip-flops. ScanSAT [1], however, showed that
it is possible to convert the sequentially locked instance to a
locked combinational instance, and thereby decrypt the entire
sequential key using SAT-attack. In this paper, we propose SeqL,
a secure sequential lock defense against ScanSAT.

SeqL provides functional isolation, and also encrypts selective
flip-flop inputs, thereby mitigating ScanSAT and other related
SAT-attacks. We conduct a formal study of the sequential locking
problem and demonstrate automating our proposed defense on
any given sequential circuit. We show that SeqL hides functionally
correct keys from the attacker, thereby increasing the likelihood
of functional output corruption. When tested on sequential
benchmarks (ITC’99) and pipelined combinational benchmarks
(ISCAS’85, MCNC), SeqL gave 100% resilience to ScanSAT. We
also show that SeqL has expoential time complexity and hence
is provably secure against removal attack.

Index Terms—Logic Locking, SAT-Attack, Sequential Locking

I. INTRODUCTION

Dramatic increases in the cost of fabrication technol-
ogy have shifted the semiconductor business to a contract
foundry model, where leading-edge design houses outsource
fabrication, assembly and testing steps to offshore facili-
ties with lower operational costs. However, integrated circuit
(IC) piracy, overbuilding, and counterfeiting in the untrusted
offshore foundry have caused major concerns in electronic
and defense industries [2]–[4]. United States government has
recently declared trade war against loose intellectual property
rights (IPR) protection laws in Asia, and declared that this has
forced technology transfer and alleged IP theft [5]. Subsequent
tariffs imposed by the U.S. government on semiconductor
imports, will cost millions of dollars annually [6].

Reverse engineering the mask reveals the netlist, while
analyzing the scan data either on an activated IC or at an
outsourced tester reveals critical design information. This
raises concerns regarding piracy, reverse engineering, overpro-
duction, IPR violation, and hardware trojan insertion and coun-
terfeit electronics [7]–[9]. Thus, it is imperative to consider
trust in early phases of chip design, to secure it in the entirety
of supply chain. Logic locking is one such holistic solution
that was touted to address all the aforementioned threats.

A. Related work
Logic locking uses a low-overhead combinational chip-

locking system to combat these issues [4]. Its purpose is to
generate circuits that will reveal the correct output if and
only if the secret key is entered correctly. Basically, logic
locking encrypts selective nodes inside the circuit by adding a
logical gate (such as XOR/XNOR/OR/AND/MUX, etc.) with
one input driven by a secret key. Hence, the function of the
circuit will not change if this key is entered correctly. But if
the key is incorrect, the function can alter.

Several logic locking techniques have been proposed so
far in literature [4], [10]–[13]. But the SAT-attack [9] is
shown to successfully decrypt the encryption keys in all those
cases, with over 95% success rate. Several defenses were
then proposed to mitigate SAT-attack, such as Anti-SAT [14],
SARLock [15] and Cyclic Obfuscation [16], but they have
failed to address the vulnerability to AppSAT [17], Double-
DIP [18] and CycSAT [19] attacks. Secure Function Logic
Locking (SFLL) [20] was the only logic locking scheme that is
resilient to most of the above attacks, but it is recently attacked
by functional analysis of logic locking (FALL) attack [21] with
81% success. Moreover, all of the aforementionted techniques
are limited to combinationally locked circuits or locking
combinational portions of the sequential circuits.

Most of the real-world circuits are sequential in nature. It
is possible to launch the SAT-attack on sequential circuits,
by initializing the combinational logic and capturing/analyzing
the responses using scan-chains, on an activated IC or at an
outsourced tester.

To address this issue, encrypt flip-flop (EFF) based sequen-
tial locking [22] was recently proposed as a defense to SAT-
attack on sequential circuits. In EFF, flip-flip outputs (FOs) are
locked, and the locked FOs drive both the combinational logic
as well as the next flip-flops in the scan chain. ScanSAT [1],
however, showed that it is possible to convert the EFF-
style sequentially locked instance to a locked combinational
instance, and thereby decrypt the entire sequential key using
SAT-attack. Although, existing works like SARLock [15] and
AppSAT [17] consider sequential circuits, they target unrolled
versions and do not consider FO locking.
B. Contributions

The main contributions of this paper are as follows:
1) We identify there is 100% correlation between flip-flop

input (FI) locking and functional output corruption;
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Fig. 1. (a) EFF-style: Sample sequential circuit with logic locking and FO locking; (b) Scan-unrolled equivalent combinational circuit for Figure 1(a);
(c)SeqL-style: Circuit in Figure 1(a), with functional isolation and locked FIs; and (d) Scan-unrolled equivalent combinational circuit for Figure 1(c)

2) Exploiting this property, we propose SeqL, a defense
to ScanSAT, that has two properties: (a) it isolates
functional path from the locked scan path; (b) it locks
FIs and causes functional output corruption, thus making
the sequential circuit resilient to SAT-attack;

3) SeqL hides majority of the total number of functionally
correct keys. This minimizes the fraction of functionally
correct keys, among scan-correct keys, thus maximizing
the likelihood of functional output corruption;

4) The small area, timing and energy-per-toggle overheads
of SeqL and its ease of implementation makes it attrac-
tive for industry practice.

C. EFF [22] and ScanSAT [1]

The EFF sequential locking technique is done in addition to
combinational logic locking. In EFF, flip-flops on the non-
critical timing paths of the sequential circuits are selected,
and XOR/XNOR-type key gates are added to encrypt the Q-
outputs similar to how combinational circuits are locked. The
encrypted Q-output of a scan-flip-flop reaches combinational
logic, as well as the scan-input of the next flip-flop in the scan
chain.
Figure 1(a) shows a sample sequential circuit with all flip-flops
encrypted using EFF-style sequential locking. In Figure 1(a):
• G0 and G1 are the primary inputs;
• G6 is the primary output;
• G2 and G4 are flip-flop inputs (FIs);
• G3 and G5 are FOs;
• SI and SO are the circuit’s scan-input port and scan-

output port respectively;
• ck0 and ck1 are the logic locking key bits;
• fok0 is the key bit used to lock the FO G5, using an

XOR-type key gate;
• fok1 is the key bit used to lock the FO G3, using an

XNOR-type key gate; and
• Since these key gates are used to lock FOs, they are

referred to as FO key gates in rest of the paper.
ScanSAT [1] shows that it is possible to convert this

sequentially locked instance to the logic locked instance
shown in Figure 1(b). The basic idea is that each FI, un-
dergoes a series of inversions along the scan-chain due to
the encrypted XOR/XNOR-gates. In effect, each FI signal
propagates through a corresponding portion of the encrypted
XOR/XNOR-chain along the scan-chain. Thus, for each FI,
corresponding flip-flop can be removed, and

• equivalent encrypted scan-input XOR/XNOR-chain can
be appended to the primary input, and

• equivalent encrypted scan-output XOR/XNOR-chain can
be appended to the primary output,

thus arriving at the scan-unrolled equivalent combinational
circuit shown in Figure 1(b) where:
• SI(G3) is the scan-input-bit corresponding to flip-flop 1,

in the scan-mode of operation;
• SI(G5) is the scan-input-bit corresponding to flip-flop 2,

in the scan-mode of operation;
• ESO(G2) is the encrypted-scan-output bit corresponding

to flip-flop 1, in scan-mode of operation; and
• ESO(G4) is the encrypted-scan-output bit corresponding

to flip-flop 2, in scan-mode of operation.
Since original sequentially locked instance (shown in Figure

1(a)) and the generated logic-locked instance (shown in Figure
1(b)) are functionally equivalent, the attacker is able to launch
the SAT-attack on the logic-locked equivalent instance, and
recover the functionally correct sequential key. Hence, this
EFF technique is not secure. Additionally, the FO key gate
is along the functional path, thus it toggles during functional
operation, wasting power without contributing to any useful
computation. Therefore, there is a clear need to propose secure
and cost-effective solutions for sequential locking.

D. Threat model
The design house receives locked IPs from third-party vendors,
and integrates them with in-house designed IPs, and prepares
the final locked netlist. After physical design is completed,
the layout is sent to the foundry for fabrication. We consider a
malicious foundry that offers fabrication, assembly and testing
services [23]. Thus, the attacker has access to layout and mask
information, and is thus able to reverse-engineer the gate-level
netlist. There are two possible instances, where the attacker at
the malicious foundry is able to launch the attack:

1) The attacker purchases an activated IC from the open
market, and applies input as well as scan patterns, and
observes output as well as scan responses in embedded
deterministic test (EDT)-bypass mode. Typically, scan
ports are not deactivated to facilitate debug of customer
returns. The attacker exploits these active scan ports to
launch the SAT-attack;

2) The attacker has access to the outsourced tester, where
the activated ICs are sent for testing. In this scenario, the
scan ports are not yet deactivated, hence he can place



the dies in EDT-bypass mode, applies desired input as
well as scan patterns and collects the outputs as well as
scan response data.

E. Organization
Section II provides insight into the the proposed solution.

This section explains the idea of functional isolation using
an abstract model. This section also explains FI locking and
provides mathematical analysis of the likelihood of solver
returning functionally incorrect key. Section III explains the
proposed solution in detail. Results obtained using the pro-
posed solution are provided and analyzed in Section IV. We
conclude the paper in Section VI.

II. SOLUTION INSIGHT

As discussed in previous section, when SAT-attack is launched
on the scan-unrolled EFF-style sequentially locked circuit
shown in Figure 1(b), the SAT solver returns the functionally
correct sequential key. In the discussion that follows, we
exploit the following two principles:

1) In EFF-style locking, the FO key-gate corresponding
to the flip-flop appears both in the scan-input-path and
scan-output-path of the flip-flop in the scan-unrolled
instance. Since the attacker has access only to scan-data,
if functional path can be isolated from the locked scan
path, functional output can be corrupted; and

2) Since the FO key gates form XOR/XNOR-chains with
FIs, it is possible to obfuscate the solver by adding
dummy XOR/XNOR-gates at the FIs.

Figure 1(c) shows the proposed idea by transforming the
circuit in Figure 1(a), using above principles. Figure 1(c) is
different from Figure 1(a) in two ways:
• There is a separate Q and SQ, and FO key gate is added

at SQ, thus leaving the functional output Q unencrypted.
This is referred to as functional isolation;

• Extra key gates,(both of XOR type in this case) are added
at FIs of both the flip-flops. fik0 and fik1 the FI locking
key bits. These key gates are referred to as FI key gates
in the rest of this paper.

Figure 1(d) shows the corresponding scan-unrolled equivalent
combinational circuit. The purple dashed line is the functional
boundary. This means that the key gates to the right of this
boundary (FO key gates) only affect scan-operation, and do
not affect normal functional operation of the circuit. This is
because the attacker uses scan mode of operation, and hence
observes ESO(G2) and ESO(G4).

However, the circuit’s normal functional operation is purely
influenced by E(G2) and E(G4), and the XOR/XNOR-chains
(in red) cease to exist. As a result, the FO portion of the
sequential key returned by the SAT-solver (which is correct for
scan operation) will not affect the circuit’s normal operation,
(intuitively) can lead to corruption of the functional outputs.
When the following are inputted to the formal equivalence
checker
• the combinational portion of the sequential circuit shown

in Figure 1c;
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Fig. 2. Abstract models for circuits in Figures 1(a) and 1(c)

• the combinational portion of the the original unencrypted
sequential circuit; and

• the combination portion of this solver key K,
the result will be either equivalent or different. In the example
shown in Figure 1(d), it was found that the result was different,
or in other words not equivalent. Hence, by functional isolation
and FI locking, functional output corruption was achieved.
This behavior is explained using an abstract model, in the
next section.

A. Abstract model

Figure 2 shows an abstracted model of the sequential circuit,
with the combinational logic abstracted into a source-sink
circular vertex C, each FI key-gate abstracted into a green
circular vertex, and each flip-flop key-gate abstracted into
a red rectangular vertex. Figures 2(a) and 2(b) show the
models corresponding to sequential circuits in Figures 1(a)
and 1(c) respectively. The green circles correspond to FIs
and red rectangles correspond to flip-flops. In the abstract
model corresponding to the proposed flip-flop locking shown
in Figure 2(b), the following are functional paths:
• FP0 : fik0 −→ C
• FP1 : fik1 −→ C

and the following are scan-out paths:
• SP0 : fik0 −→ fok0 −→ fok

′

1 −→ SO
• SP1 : fik1 −→ fok

′

1 −→ SO

It can be noted from Figure 2(b), that the number of inversions
for the scan-output-paths SP0 and SP1, are 2 and 0 respec-
tively. Since all scan-output-paths have even inversion parity,
the proposed locked circuit is correct for scan operation.
However, when it comes to functional paths, the number of
inversions for FP0 and FP1, are 1 and 0 respectively. Since
functional path FP0 has odd-inversion-parity, the circuit is
incorrect for functional operation.

The inferences from this experiment are:
1) If the sequential circuit is applied with the key returned

by SAT solver, the circuit is guaranteed to function cor-
rectly during scan operation, but not during functional
operation; and

2) It is possible to achieve functional output corruption, by
isolating the functional path from the locked scan path;

3) The FI XOR/XNOR-type key gates, cascade with the un-
rolled XOR/XNOR-chain of the scan path, and thereby



TABLE I
TRUTH TABLE OF OUR PROPOSED SEQUENTIAL LOCK IN FIGURE 1(C)
fik1 fok′1 fik0 fok0 Scan-Correct Functional-Correct
0 0 0 0 TRUE TRUE
0 0 0 1 FALSE TRUE
0 0 1 0 FALSE FALSE
0 0 1 1 TRUE FALSE
0 1 0 0 FALSE TRUE
0 1 0 1 FALSE TRUE
0 1 1 0 FALSE FALSE
0 1 1 1 FALSE FALSE
1 0 0 0 FALSE FALSE
1 0 0 1 FALSE FALSE
1 0 1 0 FALSE FALSE
1 0 1 1 FALSE FALSE
1 1 0 0 FALSE FALSE
1 1 0 1 TRUE FALSE
1 1 1 0 TRUE FALSE
1 1 1 1 FALSE FALSE

obfuscating the SAT-solver to return the functionally
incorrect key; and

4) The combinational portion of the returned solver key,
excluding the FIs, i.e., {ck0, ck1} = {1, 0}, is correct,
while the portion of the key corresponding to the flip-
flops and FIs is incorrect. We shall see in later sections,
that this is true in general, hence it is sufficient to lock
the FIs and flip-flops (which contribute to security), thus
saving area and power.

To understand this behavior more systematically, ta-
ble I enumerates all possibilities for the sequential lock
{fik1, fok1, fik0, fok0} for the circuit in in Figure 1c.

The rows in this table, that show up as TRUE for the scan-
correct column, are the possible keys returned by ScanSAT. So,
there are four possible scan-correct keys, among which only
one is the functionally correct key. SeqL maximizes the odds
against the functionally-correct-key among the scan-correct-
keys, thus increasing the likelihood of functional output cor-
ruption.

Figure 3 shows the key assignment graph (KAG) for the
circuit shown Figure 1(c). The sequential key returned by
the solver, as discussed previously, corresponds to the second
leaf from the left. Since this leaf is a functional incorrect
key, the technique is able to achieve functional output cor-
ruption. In this example, odds against the functionally key
is p = 3

4 = 0.75, hence the chance of functional output
corruption is higher than otherwise.

There is one additional benefit. In Table I, there are few rows
in which, it is FALSE for scan-correctness, while it is TRUE for
functional-correctness. This indicates that our technique hides
three out of four functional-correct keys from the attacker.

B. Analysis

Definition: Given a FI, FO pair {fiki, foki}, there are 4
possible assignments {00, 01, 10, 11}.
Definition: Let n be the number of locked FI, FO pairs.

Definition: KAG = (V,E) be a vertex-labelled edge-weighted
directed graph, where the vertices correspond to FI, FO pairs
and the edges correspond to inversion parity. The direction of
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Fig. 3. Key Assignment Graph (KAG) for circuit in Figure 1(c). KAG is a
binary tree, the leaves of which correspond to the rows in Table I, where the
scan-correctness column is TRUE

edges is opposite to the scan-out-path direction).

Definition: In KAG, the children of every vertex at depth i
from the root, has to satisfy scan-correctness for (i+1)th flip-
flop from the end of the scan-out-path.

Definition: KAG is a tree, whose root vertex is a dummy
node, with exactly two children 00 and 11.

Definition: The labels on the vertices in KAG are 00, 01, 10 or
11, corresponding to {fiki, foki}, {fiki, fok

′

i}, {fik
′

i, foki}
or {fik′

i, fok
′

i} depending on whether FI key-gate, FO key-
gate combination is {XOR, XOR}, {XOR, XNOR}, {XNOR,
XOR} or {XNOR, XNOR} respectively.

Definition: 00 and 11 are even-parity vertices, whereas 01 and
10 are odd-parity vertices. The children of 00 and 01 are even-
parity vertices, i.e., 00 and 11. The children of 10 and 11
are odd-parity vertices, i.e., 01 and 10. Hence every non-root
vertex has exactly 2 children.

Definition: The possible weights on the edges in KAG are 0
or 1, which signifies parity. The parity of an edge is the same
as the parity of the corresponding child.

Definition: invk equals 0 or 1, depending on whether kth scan-
cell along scan-chain from the scan-output is XOR or XNOR
respectively.

Theorem: Parities of left and right edges of a vertex are
identical.
Proof: Assume vertex vi in KAG at depth i. In order to ensure
scan-correctness,

(fiki ⊕ foki)⊕
i−1∑
k=1

(fokk ⊕ invk)

should equal 0. If

i−1∑
k=1

(fokk ⊕ invk)

equals 0, (fiki⊕foki) becomes 0 (possible children of vi are
00 and 11, in both cases parity of edge is 0).



On the other hand, if
i−1∑
k=1

(fokk ⊕ invk)

equals 1, (fiki⊕foki) becomes 1 (possible children of vi are
01 and 10, in both cases parity of edge is 1). Thus, parity of
left and right edges of a vertex are identical, hence the proof.

Theorem: KAG is a binary tree.
Proof: Root vertex has exactly two children. Additionally,
every non-root vertex has exactly two children. Since every
vertex in KAG has exactly two children, KAG is a binary
tree, hence the proof.

Definition: Number of scan-correct keys equals to the number
of leaves in KAG = 2n.

Theorem: There is exactly one functionally correct leaf in
KAG.
Proof: The path from the root to a functionally correct leaf
should have 00 nodes. There is exactly one such leaf in KAG,
whose path from the root consists of only 00 vertices, hence
the proof.

Definition: Let p be the odds against the functionally-correct-
key among the scan-correct-keys = 2n−1

2n = 1− 1
2n

Theorem 4: If circuit has n flip-flops, time complexity of
removal attack is O(2n)

Proof:
1) In the removal attack, the attacker needs to check if each

key-gate removed introduces an inversion at the output
of flip-flop.

2) Since there are 2n possibilities, let L = O(n) be the
logic simulation time of circuit, the time it takes to
launch removal attack is 2n ∗ L. Thus, time complexity
is O(n.2n) = O(2n), hence the proof.

III. AUTOMATING SEQL DEFENSE

Objective: Lock selective FI, FO pairs such that functional
output corruption is achieved, while area-overhead is
minimized.

Solution: The likelihood of functional output corruption is
maximized with increase in p = 1 − 1

2n , whereas area-
overhead increases linearly with n. Hence, the chances of
functional output corruption increases very quickly with n,
with minimal increase in area overhead. The proposed solution
i.e., SeqL exploits this principle to iteratively lock FI, FO
pairs beginning at the end of the scan-chain(s), until functional
output corruption is achieved.

The proposed sequential locking, i.e., SeqL has two parts:
1) An isolation-based flip-flop locking; and
2) An iterative FI locking algorithm.

A. Isolation-based flip-flop locking

Define the sequential key to be K = {Kc,Kfi,Kfo}, where
Kc, Kfi and Kfo are portions of the key that lock the
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Fig. 4. Flip-Flop variants for Sequential Locking

combinational logic (excluding the FIs), the FIs and the flip-
flops respectively. In EFF technique, all these components
influence the sequential circuit’s normal functional operation.
Figure 4(a) shows the EFF-style flip-flop locking scheme,
where the FO key gate output, is broadcasted to Scan-Q
(referred to as SQ in the figure), as well as Functional-Q
(referred to as FQ in the figure). The proposed isolation-
based flip-flop locking is shown in Figure 4(b), which isolates
the functional path from the locked scan path. Hence, the FO
key gate locks only SQ and has no influence on FQ. Thus,
in the proposed SeqL technique, only Kc and Kfi influence
(while Kfo has no effect on) the sequential circuit’s normal
functional operation. This assists in returning the functionally
incorrect key, thus aiding in functional output corruption when
applied with the key returned by the SAT-solver.

There is an additional transmission gate added to this struc-
ture in the scan path to avoid toggling of the encryption key
gate along the scan path. Although this adds 2 extra transistors
per flip-flop, the overhead is marginal compared to the benefit
of savings obtained in Energy-Per-Toggle (EPT ) of the flip-
flop during normal functional operation. The comparison of
area, timing and EPT of the EFF as well as SeqL flip-flops
are provided later in Section IV.

B. Iterative key pushing algorithm (IKPA) for pipelined com-
binational circuits

First we shall evaluate adding key gates on FI boundary
on pipelined combinational circuits, which are already logic-
encrypted. Algorithm 1 shows the iterative key gate pushing
algorithm, that takes a logic-encrypted combinational circuit
with pipeline stages both at its inputs and outputs. Since the
circuit already has key gate overhead, to avoid any further
overhead, the algorithm iteratively pushes some of the key
gates inside combinational logic to the boundary.

Figure 5 shows the ScanSAT resilience verification flow
used iteratively in SeqL. Algorithm 1 generates C3 shown



Algorithm 1: Iterative key pushing algorithm for pipelined
logic-locked combinational circuits

Input: C

while C
′
= C do

Identify a combinational key gate kc, an unvisited FI
kb and mark corresponding kb as visited ;

Push kc key gate kc;
Run SAT-solver and update Kfi, C

′
;

end
Result: C

′
, Kfi
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Fig. 5. ScanSAT resilience verification flow

in Figure 5. The SAT-based key generation solver takes
the original combinational circuit, and scan-encrypted scan-
unrolled combinational circuit as inputs and outputs the
logic encryption key K = {Kc,Kfo,Kfi}. Subsequently, the
lcmp solver takes the combinational portion of the generated
key i.e., {Kc,Kfi}, original combinational circuit and the
combinational portion of the sequentially locked circuit as
inputs, and verifies whether the corresponding circuits are
formally equivalent. We measure the success of the IKPA
algorithm using formal equivalence checking. If the returned
solver key makes the two circuits different or in other words
not equivalent, then we are successful i.e., functional output
corruption is achieved. Additionally, even with SeqL, we have
found that in all the cases, the decrypted Kc is correct. Hence,
it is only the Kfi, that causes functional output corruption.
We shall see the detailed results in Section IV. With this
important observation, we proceed to the iterative boundary
locking algorithm for sequential circuits.

C. Iterative boundary locking algorithm (IBLA) for sequential
circuits

Unlike pipelined logic-encrypted combinational circuits, there
are no already existing key gates. Hence, FI locking or in
other words, boundary locking has to be done afresh. Since
the higher the number of inserted key gates at the FI boundary,
the higher the area overhead, we make this parameter as user-
configurable.

Algorithm 2: Iterative boundary locking algorithm for
sequential circuits
Input: C, Kfo

while C
′
= C and |Kfi|+ |Kfo| < γ do

Identify an unvisited FI and mark corresponding FI
as visited ;

Add key-gates at corresponding FI;
Run SAT-solver and update Kfi, C

′
;

end
Result: C

′
, Kfi

Let γ be this user-configurable parameter. This IBLA al-
gorithm runs iteratively until functional output corruption is
achieved or |Kfi|+ |Kfo| > γ. Algorithm 2 takes a sequential
benchmark as input, and iteratively adds XOR/XNOR-type key-
gates at unvisited FIs, until functional output corruption is
achieved or |Kfi| + |Kfo| > γ. Since the implementation is
simple and security is achieved with low overheads, this is
attractive for industry practice.

IV. EXPERIMENTAL EVALUATION

In order to perform ScanSAT resilience evaluation, we have
used sld key generation solver and lcmp formal-equivalence
checkers provided by [9]. Both the solvers use the .bench
format for the input benchmark circuit. In all the subsequent
experiments, we have used the open-source .bench designs
for ITC’99 sequential benchmarks available at [24] and
logic-encrypted ISCAS’85, MCNC combinational benchmarks
provided by [9]. Algorithms 2 (IBLA) and 1 were used for
sequentially locking the sequential benchmarks and pipelined
combinational benchmarks, respectively. Both the locking al-
gorithm were implemented in Perl. Since the locking algorithm
execution times across all the benchmarks is very small (matter
of seconds), the execution times were not reported.

Table II shows the results of applying the procedure shown
in Figure 5 on ITC’99 sequential circuits. The columns Res.,
Ov. and DT indicate overhead and decryption time respec-
tively. The resilience rate of EFF was 0%, while that of SeqL
was 100%, thus indicating the superiority of SeqL over EFF.
An abort limit of 24hours was used for key decryption. The
key decryption time for b18 and b19 circuits was more than
this abort limit, without any result, hence the results for these
2 benchmarks are not reported.

Table III shows the results of applying the procedure shown
in Figure 5 on 4 different encryption schemes validated in [9],
and compared against EFF [22]. This table shows that SeqL
secured all sequential circuits against ScanSAT in 100% of
the cases. As explained in Section II,

• Kc was successfully decrypted in all cases, while
• Kfi and Kfo were incorrect, hence causing functional

output corruption, thus achieving resilience.

Results on IOLTS′14 gave 0% resilience in EFF case and
100% resilience in SeqL case, across all benchmarks, hence
not reported in Table III for shortage of space. On the other



TABLE II
RESILIENCE OF SeqL FOR ITC’99 SEQUENTIAL BENCHMARK CIRCUITS.

THE FO LOCKING WAS DONE USING IBLA ALGORITHM.

EFF [22] SeqL
Bench. Res. Ov. DT. Res. n p γ DT.
b01 6 9% 10ms 4 4 0.93 20% 10ms
b02 6 12% 10ms 4 3 0.88 20 % 10ms
b03 6 14% 2.1s 4 5 0.97 20 % 4.4s
b04 6 8% 52s 4 4 0.93 10 % 57s
b05 6 3% 8.2s 4 3 0.88 5% 15s
b06 6 14% 10ms 4 2 0.75 20 % 0.1s
b07 6 9% 31s 4 3 0.88 10 % 38s
b08 6 10% 0.5s 4 3 0.88 15% 1.5s
b09 6 13% 0.9s 4 2 0.75 15 % 1.0s
b10 6 8% 0.3s 4 3 0.88 10% 0.5
b11 6 4% 5.5s 4 2 0.75 5% 9.5s
b12 6 10% 67s 4 2 0.75 10% 163s
b13 6 12% 24s 4 4 0.93 15% 37s
b14 6 1.0% 109s 4 8 0.99 1% 14m
b15 6 0.7% 79s 4 9 0.99 1% 35m
b17 6 0.3% 187s 4 16 0.99 0.5% 37m

TABLE III
RESILIENCE OF SeqL FOR PIPELINED COMBINATIONAL BENCHMARKS
FOR 5% LOGIC ENCRYPTION. THE FO LOCKING IS DONE USING IKPA

ALGORITHM.

Bench. RND DAC’12 ToC’13/xor ToC’13/mux
EFF SeqL EFF SeqL EFF SeqL EFF SeqL

apex2 6 4 6 4 4 4 6 4
apex4 6 4 6 4 4 4 4 4
i4 4 4 6 4 4 4 6 4
i7 4 4 6 4 4 4 6 4
i8 4 4 6 4 4 4 6 4
i9 4 4 6 4 6 4 6 4
seq 4 4 6 4 4 4 6 4
k2 4 4 6 4 4 4 6 4
ex5 4 4 6 4 4 4 6 4

ex1010 4 4 6 4 4 4 6 4
dalu 4 4 6 4 4 4 6 4
des 4 4 6 4 4 4 6 4
c432 6 4 6 4 6 4 6 4
c499 6 4 6 4 6 4 6 4
c880 4 4 4 4 6 4 6 4
c1355 4 4 6 4 4 4 6 4
c1908 4 4 6 4 6 4 6 4
c3540 4 4 6 4 6 4 6 4
c5315 4 4 4 4 6 4 6 4
c7552 4 4 6 4 6 4 6 4

hand, results on DTC ′10/LUT were not reported because it
is LUT-based.

TABLE IV
FLIP-FLOPS COMPARISON: AREA, FUNCTIONAL TIMING AND ENERGY

FF # Ts Tsetup TCK−to−Q % Inc. EPT % Inc.
Orig. 38 45ps 113ps - 13.1fJ -
EFF 48 45ps 163ps 44% 17.1fJ 31%
SeqL 50 45ps 127ps 12% 13.9fJ 6%

A. Overheads

Table IV shows the comparison of area, timing and en-
ergy for original, EFF -type and proposed SeqL-type locked

flip-flops, obtained using SPICE transistor-level simulation.
NGSPICE open-source simulator, Nangate 45nm library
scan flip-flop and 45nm predictive technology model was used
to arrive at these results. From Table IV, it is evident that
the proposed SeqL-style locked scan flip-flop has 22% and
19% reduction in TCK−to−Q and Energy-Per-Toggle (EPT )
respectively, with only 4% area overhead as compared to
EFF -style locked scan flip-flop.

B. Decryption time

Comparison of decryption times for ITC’99 circuits were
shown earlier in Figure II. Figure 6 shows the comparison of
key decryption times of SeqL (red) with EFF (blue) techniques
for pipelined combinational benchmarks, on the 4 different
encryption schemes validated in [9]. The benchmarks are
shown on X-axis and the key decryption time is shown on
a logarithmic scale on Y-axis. Clearly, SeqL is superior with
regard to decryption time, as compared to EFF, across all the
benchmarks, across all the encryption categories.

V. DISCUSSION

A. Comparison to Timing-Driven SAT Defenses

In [25], delay-locking was proposed to mitigate SAT-attack.
In delay-locking, the key not only determines the functionality
of the circuit but also its timing profile. A functionally-correct
but timing-incorrect key will result in timing violations and
thus make the circuit malfunction. In [26], a novel SAT
formulation based approach called TimingSAT was used to
deobfuscate the functionalities of such delay locked designs
within a reasonable amount of time. Since delay locking is
orthogonal to EFF in defending SAT-attack, we do not compare
with delay-locking or TimingSAT.

B. Limitations of SeqL

While ScanSAT [1] uses EFF as a representative example,
there are other sequential locking variants. While EFF uses
statically obfuscated scan-chains, a dynamically-obfuscated-
scan (DOS) architecture is proposed in [27] and design-for-
security (DFS) architecture is proposed in [28]. We do not
cover those extensions in this work.

From Table II, we note that value of n = |Kfi| = |Kfo| in
most cases is less than 10. So, the total number of possible
sequential key bits is |Kfi| + |Kfo| < 20, hence it possible
to find the functionally correct key using brute-force-search.
Solution to address this issue is to lock extra FOs (after
Algorithm 1 or 2 quits), which results in exponential increase
in sequential key search space, with linear increase in area
overhead.

VI. CONCLUSIONS AND FUTURE WORK

We have proposed SeqL, that performs functional isolation
and FI locking. SeqL hides a major fraction of the functionally
correct keys, thus maximizing functional output corruption. We
have shown both the theoretical and emprical improvements
in the security of sequential locking. The results have shown
100% resilience to ScanSAT and furthermore SeqL has lower



(a) RND [4]

(b) DAC’12 [10]

(c) ToC’13/xor [11]

(d) ToC’13/mux [11]

Fig. 6. Pipelined combinational benchmarks: key decryption time comparison
between SeqL and EFF

area, timing and power overheads. Additionally, it takes time
exponential in number of locked flip-flops, to launch removal
attack on SeqL, and is hence provably secure.
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