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Abstract. We give a 4-list algorithm for solving the Elliptic Curve Dis-
crete Logarithm (ECDLP) over some quadratic field Fp2 . Using the rep-
resentation technique, we reduce ECDLP to a multivariate polynomial
zero testing problem. Our solution of this problem using bivariate poly-
nomial multi-evaluation yields a p1.314-algorithm for ECDLP. While this
is inferior to Pollard’s Rho algorithm with square root (in the field size)
complexity O (p), it still has the potential to open a path to an o(p)-
algorithm for ECDLP, since all involved lists are of size as small as p

3
4 ,

only their computation is yet too costly.

1 Introduction

Given an elliptic curve E, defined over a finite field Fq and two points P and Q
on this curve, the elliptic curve discrete logarithm problem (ECDLP) consists in
recovering k modulo order of P such that Q = kP , if it exists.

Nowadays, ECDLP-based cryptosystems are omnipresent in everyday life
cryptography, as they are widely spread in cryptographic suites such as TLS.

Many algorithms for ECDLP have been proposed in the literature from Shanks
Baby-Step Giant-Step [Sha71], to Weil descent and index calculus methods
[FG98,GS99,GHS02a,GHS02b,Gau09].
Other algorithms have been designed for particular cases, such as elliptic curves
over a field Fp of group order exactly p [SA+98,Sma99], or in a subgroup of order
p [Sem98]. We refer the reader to [GG16] for an overview of ECDLP algorithms.

Pollard’s Rho algorithm offers the best time and space complexity for elliptic
curves defined over a finite field Fp, where p is prime, with a running time
of O

(√
p
)
and constant memory (e.g. using Floyd’s cycle finding algorithm).

Pollard’s Rho method basically creates a sequence (Ri)i≥1 of elements of 〈P 〉
with R0 = O and Ri+1 = g(Ri) for a well chosen function g, such that each
Ri satisfies Ri = aiP + biQ. Once a collision appears between two elements Ri
and Rj , we have (ai − aj)P = (bj − bi)Q. Provided that bi 6= bj , it follows that
Q =

ai−aj
bj−bi P .

When the elliptic curve is defined over Fpn for n ≥ 2, and p being a prime
or a power of a prime, it is possible to perform what is called a Weil Descent.
? Funded by DFG under Germany’s Excellence Strategy - EXC 2092 CASA -
390781972.



The core idea of Gaudry’s algebraic factor-base algorithm [Gau09] for Fpn is to
split a point into an n-sum of points from a factor base that is defined over
the base field Fp. Using Semaev’s summation polynomials [Sem04], the split can
be computed via a Gröbner basis computation. Such a computation yields a
relation between factor base elements. If at least q – the size of the factor base –
such relations are collected, ECDLP can be solved via linear algebra. In total,
Gaudry’s method runs in time O

(
p2−

2
n

)
, which is for n = 2 no better than

Pollard’s Rho algorithm. Moreover, with a factor base of size p, there is no hope
to obtain an o(p)-algorithm. Yet, variations of the factor base might be possible
as demonstrated in Petit et al. [PKM16].

Our contribution. Our (ultimate) goal is to break the square root bound for
ECDLP over Fp2 by designing a 4-list algorithm using the representation tech-
nique. The representation technique already proved to be useful to break the
square-root barrier in the context of the subset-sum problem [HGJ10,BCJ11].

We define a problem, called Zero-Join (ZJ-Problem), which given two lists
A and B of points of F2

p, and a polynomial f ∈ Fp[X1, X2, X3, X4] consists in
returning a list C of all ((x1, y1), (x2, y2)) ∈ A×B such that f(x1, y1, x2, y2) = 0.

We show that A and B are such that |A| · |B| = p
3
2 . Moreover, we show that

any algorithm which solves the ZJ-Problem in time T and in memory M also
solves ECDLP over Fp2 in time T and memory M . In particular, if |A| = |B| =

p
3
4 , and in (the extreme) case that the ZJ-Problem could be solved in time

linear in |A| and |B|, ECDLP could be solved in O
(
p

3
4

)
. A trivial solution to the

ZJ-Problem can be achieved in quadratic time which results in a p
3
2 -algorithm.

However, we show that the ZJ-Problem admits sub-quadratic solutions. When
using multi-evaluation techniques for bivariate polynomials, we achieve a p1.314-
algorithm. We leave it as an open problem whether this can be further improved.

Organisation of the paper. In Section 3, we present our new ECDLP 4-list algo-
rithm for an elliptic curve defined over Fp2 , for any prime p > 3. We also show
that ECDLP reduces to the ZJ-Problem. Finally, we present a sub-quadratic al-
gorithm to solve the ZJ-Problem in Section 4, resulting in our p1.314-algorithm.

2 Preliminaries

For any integer r, we denote by Zr the ring Z/rZ. For any two integers a < b ∈ Z,
we denote by [a, b] the set of all integers a ≤ k ≤ b and by [a, b) the set of all
integers a ≤ k < b. For any n > 0, we denote by log n the logarithm in basis 2
of n. For any real x, we denote by bxe the rounding to the closest integer to x,
when tied, we round to the greater one. Let us denote Fp the finite field with p
elements. Let x be an element of Fp2 , x = x(0) + αx(1), such that there exists
β ∈ Fp and α is a root of X2 − β, which is irreducible over Fp. Let B be a
basis of F2

p with respect to α. The vector (x(0), x(1)) ∈ F2
p in basis B is uniquely

associated to x.
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Let q = pn for n ≥ 1, and p > 3 prime. Let Fq be a finite field and let E be
an elliptic curve over Fq. We denote by O the point at infinity of E. The group
E(Fq) is the group of all the points in E. As p > 3, we can define E in Weierstraß
form. In particular, there is a function f : Fq → Fq that maps elements x to
f(x) = x3 + ax + b, for some a, b ∈ Fq such that the set of points E(Fq) equals
{P = (x, y) ∈ F2

q : y2 = f(x)}∪{O}. Although there are other ways to represent
an elliptic curve, in this paper, we focus on the Weierstraß model.

Let S1 and S2 be subsets of N, we denote by S1 + S2 the set of integers z
such that z = x+ y with x ∈ S1 and y ∈ S2, and for all ` ∈ N, we denote by `S1
the set of integers z such that z = `x with x ∈ S1.

Let L be a list. We consider L as a tuple (`0, . . . , `N−1), where N = |L| ≥
0. We denote by L[i] the (i + 1)-th element of the list. Given two lists L1 =
(`0, . . . , `N ) and L2 = (t0, . . . , tM ), we denote by L1 + L2 the list (`0 + t0, `0 +
t1 . . . `0 + tM . . . `N + tM ). An empty list is denoted by ⊥.

Complexities. We use the standard Landau notations to describe the complex-
ities presented in this paper. The time complexities are given in number of
elementary operations (negation, addition, multiplication, inverse) over Fp, and
the memory complexities in number of elements of Fp that are to be stored.
Using this convention, elementary operations over Fp2 and sum of two points of
the group E(Fp2) are performed in time O (1), and storing an element of Fp2 or
a point of E(Fp2) requires O (1) memory.

Discrete logarithm over an elliptic curve. Let E be an elliptic curve over a finite
field Fq. Let us denote by |E(Fq)| the order of the group (i.e. the cardinality
of E(Fq)). By Hasse’s Theorem, we know that |E(Fq)| = O (q). Let P be a
point of E(Fq). The order r of P is the cardinality of the cyclic group 〈P 〉 =
{O,P, 2P, . . . , (r − 1)P}. It is also the first integer ` > 0 such that `P = O. As
〈P 〉 is a subgroup of E(Fq), it is clear that r ≤ |E(Fq)|.

Definition 1 (ECDLP). Let Fq be a finite field, and let E be an elliptic curve
over Fq. Let P be a point of E(Fq) of prime order r = O (q). Let G = 〈P 〉.
Given P and Q in G, solving the discrete logarithm problem over E consists in
recovering k ∈ Zr such that kP = Q.

We are interested in the case where q = p2, for a prime p > 3. We call this
particular variant p2-ECDLP.

Representation Technique. In [HGJ10], Howgrave-Graham and Joux introduced
the representation technique to improve methods for the subset-sum problem.
Given a vector a ∈ Zn and a target t in Z the problem basically consists in
finding a vector e ∈ {0, 1}n such that 〈a, e〉 = t. When the solution e consists
exactly of n/2 non-zero coefficients, Howgrave-Graham and Joux noticed that
it can be split into sums of two vectors e = e1 + e2, where e1 and e2 both
consist of n/4 one coefficients, in

(
n/2
n/4

)
different ways. It is enough to find only

one of these representations to recover a solution to the problem, thus additional
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constraints can be enforced on the dot products 〈a, e1〉 and 〈a, e2〉, so that only
one of these representation survives. This yields a 20.337n algorithm for subset-
sum that breaks the square root bound.

We would like to transfer this idea to the p2-ECDLP problem.

Definition 2 (Representation). Let ` > 0, r ∈ N, k ∈ Zr, and let S1, . . .S`
be subsets of N. A tuple (k1, . . . , k`) ∈ S1 × · · · × S` is a representation of k if
k = k1 + · · ·+ k` mod r.

3 New ideas to solve p2-ECDLP

Let E(Fp2) be an elliptic curve defined over Fp2 , with p > 3. Let r be the order
of E(Fp2), which can be computed in time polynomial in log p with Schoof’s
algorithm [Sch85,Sch95]. Since we are interested in cryptographic applications
we assume that r is prime. By Hasse’s theorem we know that r ≈ p2. Let P
generate E(Fp2) and let Q = kP for some unknown k ∈ Zr that we want to
compute.

First notice that for all (k1, k2) ∈ Z2
r, (k1 + k2)P = Q is equivalent to

k1P = Q− k2P . In the following we try to recover such a tuple (k1, k2).

Heuristic. For the complexity analysis of our algorithm, we assume that the
points of E(Fp2) are uniformly distributed over F2

p2 . The results of Kim, Ti-
bouchi [KT19] provide some theoretical justification for our assumption.

3.1 Solving p2-ECDLP Using the Representation Technique

First note that every positive integer s can be uniquely decomposed as

s = s0 + s1 b
√
pe+ s2p, (1)

by computing first the integer division of s = s2p+ s̄ by p, and then the integer
division of s̄ = s0 + s1

⌊√
p
⌉
by
⌊√

p
⌉
. In this case, s0, s1, s2 are in N such that

0 ≤ s0 <
⌊√

p
⌉
, 0 ≤ s1 < p ·

⌊√
p
⌉−1 and s2 ≥ 0.

With respect to this decomposition, we denote by S1 and S2 the subsets of
[0, r) such that

S1 = {s = s0 + s2p}, S2 = {s = s1 + s2p}.

Informally, the bits of the elements of S1 and S2 are dispatched as shown in
Figure 1a. We consider k as the sum k1 + k2 where k1 ∈ S1 and k2 ∈ S2.
Since k1, k2 overlap in log( rp ) bits we expect that each k has at least r

p ≈ p
representations as a sum k1 + k2. This is shown more formally in the following
lemma.

Lemma 1. There are at least rp +1 representations of k as the sum k1 +k2 with
(k1, k2) ∈ S1 × S2.

4



S1 :

S2 :

1
2

log p 1
2

log p log r − log p

(a) Bits repartition of elements from S1 and S2, as vector of Flog r
2 , the leftmost part

being the least significant bits of the numbers. The white rectangles represent a portion
of zeroes.

T1 :

T2 :

T3 :

1
2

log p 1
2

log p λ log p log r − (1 + λ) log p

(b) Bits repartition of elements from T1, T2, T3 as vector of Flog r
2 , the leftmost part

being the least significant bits of the numbers. The white rectangles represent a portion
of zeroes.

Fig. 1: Bits repartition of the elements of Si and Tj for i ∈ [1, 2], j ∈ [1, 3].

Proof. Let k̄ = k̄0 + k̄1
⌊√

p
⌉

+ k̄2p ∈ [0, r) be such that k̄ (mod r) = k, and let
k̂ = k̂ + r = k̂0 + k̂1

⌊√
p
⌉

+ k̂2p when decomposed as in Equation 1. We denote
by S11 the subset of S1 of the elements s = k̄0 + s2p, and by S12 the subset of
S1 of the elements s = k̂0 + s2p.

We first show that for any k1 ∈ S11 such that k1 ≤ k̄, there exists some
k2 ∈ S2 such that k1 + k2 = k̄. Then we claim that for any k1 ∈ S12, such that
k1 > k̄, there is a k2 ∈ S2 such that k1 + k2 = k̂.

Let k1 ∈ S11 be arbitrary such that k1 ≤ k̄. From the definition of S11,
k1 = k̄0 + k12p. In particular k1 ≤ k̄ means that k̄2 − k12 ≥ 0, and as k̄ < r,
k̄ − k1 ∈ [0, r). Finally we have

k̄ − k1 = k̄0 + k̄1 b
√
pe+ k̄2p− k̄0 − k12p

= k̄1 b
√
pe+ (k̄2 − k12)p ∈ S2.

Let now k1 ∈ S12, such that k1 > k̄. First note that k1 < r < k̂. From
the definition of S12, k1 = k̂0 + k12p, and k̂ − k1 ≥ 0 means that in particular
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k̂2 − k12 ≥ 0. Furthermore as k1 > k̄, k̂ − k1 = r + k̄ − k1 ∈ [0, r). Finally

k̂ − k1 = k̂0 + k̂1 b
√
pe+ k̂2p− k̂0 − k12p

= k̂1 b
√
pe+ (k̂2 − k12)p ∈ S2.

It follows that the number of representations (k1, k2) ∈ S1 × S2 of k is at
least equal to the number N1 of elements of S11 that are smaller than k̄ plus
the number N2 of elements of S12 that are bigger than k̄. N1 is the number of
k1 = k̄0 + k12p such that 0 ≤ k12 ≤ k̄2, meaning that N1 = k̄2 + 1. N2 is the
number of k1 = k̂0 + k12p such that k̄2 ≤ k12 < r

p , meaning that N2 ≈ r
p − k̂2 It

follows that there are at least r
p + 1 representations of k in S1 × S2. ut

Out of the r
p + 1 ≈ p representations of k as k1 + k2, (k1, k2) ∈ S1 × S2 it

suffices to compute a single one. Therefore, computing only a 1
p -fraction of all

points (P1, P2) = (k1P,Q− k2P ) is sufficient to compute k. In order to compute
a 1
p -fraction we restrict to those points (P1, P2) whose x-coordinate lies in the

base field (i.e. Pi = (x, y) with x ∈ Fp). 1

More precisely, we proceed as follows. We compute a list L of all P1 = k1P =
(x, y) such that x ∈ Fp and k1 ∈ S1. Moreover, we compute a list L′ of all
P2 = Q − k2P = (x′, y′) for k2 ∈ S2 such that x′ ∈ Fp. Then we search for a
collision in L and L′. This gives us k as the sum of the corresponding k1 and k2.

This results in RepECDLP, described in Algorithm 2. Notice that the resulting
lists L,L′ have expected size only p1/2, since we impose a 1

p restriction on a
search space of size p2/3.

Now let us turn to the tricky part, the computation of L,L′. Let 0 < λ < 1
2

be a parameter and let T1, T2, T3 be three sets of elements of [0, r) such that

T1 =
{
s = s0 + ps1 ∈ S1 : s1 ∈

[
0,
⌊
pλ
⌉)}

T2 =
{
s = ps1 ∈ S1 ∩ S2 : s1 = t

⌊
pλ
⌉
∈ [0, p)

}
T3 =

{
s = s0 + ps1 ∈ S2 : s1 ∈

[
0,
⌊
pλ
⌉)}

The bit repartition of the elements of T1, T2 and T3 is given by Figure 1b. The
reader is advised to use the illustration in Figure 2 for the following description.

We consider k1, k2, k3, k4, such that k1 ∈ T1, k2, k4 ∈ T2, and k3 ∈ T3. It
is clear that k1 + k2 ∈ S1 and k3 + k4 ∈ S2 (see Figure 1). We create the list
L1 of (P1, k1) such that P1 = k1P for all k1 ∈ T1, the list L2 of (P2, k2) such
that P2 = k2P for all k2 ∈ T2, the list L3 of (P3, k3) with P3 = Q− k3P for all
k3 ∈ T3, and the list L4 of (P4, k4) with P4 = −k4P for all k4 ∈ T2. From here,
we compute the list L = {(P12, k1 + k2) : (P1, k1) ∈ L1, (P2, k2) ∈ L2, P12 =
P1 + P2 = (x, y) with x ∈ Fp}. Then for all (x′, y′) = P3 + P4 with x′ ∈ Fp we
check if (x′, y′) ∈ L, and if so return the sum of the corresponding k1, k2, k3, k4.
In other words, we consider the following problem.
1 If this approach fails to produce a representation of k, we could rerandomize our
ECDLP-instance and start over.

6



Algorithm 1 BuildLists(E, P )

Require: An elliptic curve E over Fp2 , a point P ∈ E(Fp2).
Ensure: L1, L2, L3, L4.
1: for i ∈ [1, 4] do
2: Li ← ⊥
3: (k1, k2)← (1, 0)
4: P2 = O
5: for 1 ≤ i ≤ pλ do . Build lists L1 and L3

6: P1 ← P + P2

7: for 1 ≤ j < p
1
2 do

8: L1 ← L1 ∪ {(P1, k1)}
9: P1 ← P1 + P ; k1 ← k1 + 1

10: if i = 1 then . Only on the first iteration
11: P0 ← P1, k0 ← k1

12: P2 ← P1; k2 ← k1
13: for 1 ≤ j < p

1
2 do

14: L3 ← L3 ∪ {(Q− P2, k2)}
15: P2 ← P2 + P0; k2 ← k2 + k0

16: if i < pλ then . In all iterations except the last one
17: L1 ← L1 ∪ {(P2, k2)}
18: L3 ← L3 ∪ {(Q− P2, k2)}
19: P1 ← P2, k1 ← k2
20: for 0 ≤ i < rp−(1+λ) do . Build lists L2 and L4

21: L2 ← L2 ∪ {(P2, k2)}
22: L4 ← L4 ∪ {(−P2, k2)}
23: P2 ← P2 + P1, k2 ← k2 + k1

Problem 1. Given two lists L1 and L2 of points P ∈ E(Fp2), compute the list
L = {(x, y) = P1 + P2 P1 ∈ L1, P2 ∈ L2, x ∈ Fp}

We claim that any algorithm solving Problem 1 can be used as the main
routine to solve the p2-ECDLP problem. Our whole RepECDLP algorithm is sum-
marised in Algorithm 2. The BuildLists algorithm, described in Algorithm 1
builds the lists Li for i ∈ [1, 4] and we denote by ECJoin an algorithm solving
Problem 1, with a slight modification that does not influence the run time: the
input lists contain tuples (Pi, ki), where ki is an element of [0, r), the output list
must also contain tuples (P1 + P2, k1 + k2).

The following lemma gives the complexities of BuildLists.

Lemma 2. The BuildLists procedure constructs lists of sizes

|L1| = |L3| = p
1
2+λ and |L2| = |L4| = p(1−λ)

in O
(

max
(
p

1
2+λ, p(1−λ)

))
field operations using memory O

(
max

(
p

1
2+λ, p(1−λ)

))
.

Proof. We start by proving the time complexity. It is dominated by the runtime
of the two main for-loops: the one at line 5, which fills L1 and L3, and the one
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Algorithm 2 RepECDLP(E, P,Q)

Require: An elliptic curve E over Fp2 , two points P,Q ∈ E(Fp2).
Ensure: k such that Q = kP .
1: (L1, L2, L3, L4)← BuildLists(E, P )
2: L← ECJoin(L1, L2)
3: L′ ← ECJoin(L3, L4)
4: for all P34 : ∃k34, (P34, k34) ∈ L′ do
5: if ∃(P12, k12) ∈ L such that P34 = P12 then
6: return k12 + k34

return ⊥

at line 20, which fills L2 and L4. The first one is iterated pλ times, and each
iteration takes time p1/2. Indeed, each iteration consists in a constant number
of elementary operations in Fp and two for-loops which are each iterated p1/2,
and whose iterations consist in O (1) elementary operations in Fp. Thus the
whole execution of the for-loop line 5 requires to perform O

(
p

1
2+λ

)
operations.

The for-loop line 20 is iterated rp−(1+λ) times, and each iterations consists in
a constant number of elementary operations over Fp. The claimed complexity
follows.

We now show that the memory required is indeed O
(

max(p
1
2+λ, rp−(1+λ))

)
.

The memory complexity is dominated by the storage of the four lists. Now, for
i ∈ [1, 4], Li contains O (|Li|) elements of Fp. As such, the memory complexity
of the whole procedure is O (maxi(|Li|)). Furthermore, |L1| = |L3| = p

1
2+λ and

|L2| = |L4| = rp−(1+λ). As r = O
(
p2
)
, |L2| = |L4| = O

(
p1−λ

)
, which proves

the given complexities. ut

Remark 1. Notice that the choice λ = 1
4 implies that all lists have size O

(
p

3
4

)
.

However, as we will discuss in section 4, unbalanced list sizes might lead to time
improvements.

3.2 Computing the Join

We now need to find a way to check whether a point (x, y) = P1 + P2 satisfies
x ∈ Fp, knowing only the coordinates (x1, y1) of P1 and (x2, y2) of P2. We have

x =
(y1 − y2)2

(x1 − x2)2
− x1 − x2,

and therefore (x1 − x2)2(x1 + x2 + x) = y21 + y22 − 2y1y2

Using Weierstraß’ equation to discard the y1 and y2 terms, we obtain(
(x1 − x2)2(x1 + x2 + x)− f(x1)− f(x2)

)2
= 4f(x1)f(x2). (2)
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Join Join

(x, y)

x ∈ Fp
(x′, y′)

x′ ∈ Fp

(k1 + k2)P = Q− (k3 + k4)P

L1

k1P

L2

k2P

L3 L4

Q− k3P −k4P

Fig. 2: Illustration of RepECDLP.

We denote x = x(0)+αx(1) where x(0), x(1) are in Fp and where α satisfies α2 = β

for some β quadratic non-residue modulo p, and we denote x1 = x
(0)
1 + αx

(1)
1 ,

x2 = x
(0)
2 + αx

(1)
2 accordingly. Having x ∈ Fp implies x(1) = 0. Let us denote by

G ∈ Fp2 [Y1, Y2, Y3] the polynomial

G(Y1, Y2, Y3) = ((Y1 − Y2)2(Y1 + Y2 + Y3)− f(Y1)− f(Y2))2 − 4f(Y1)f(Y2).

As each Yi can be expressed as Yi = X2i−1 + αX2i where the Xj variables are
over Fp. It follows that there exists a pair of unique polynomials g0 and g1 of
Fp[X1 . . . X6] such that

g0(X1, . . . , X6) + αg1(X1 . . . X6) = G(X1 + αX2, X3 + αX4, X5 + αX6).

Now, for any x1, x2, x ∈ Fp2 satisfying Equation (2)

g0(x
(0)
1 , x

(1)
1 , x

(0)
2 , . . . , x(1)) + αg1(x

(0)
1 , . . . , x(1)) = 0.
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Taking into account that x = x(0) ∈ Fp, we come up with the following polyno-
mial system in five variablesg′0

(
x
(0)
1 , x

(1)
1 , x

(0)
2 , x

(1)
2 , x(0)

)
:= g0

(
x
(0)
1 , x

(1)
1 , x

(0)
2 , x

(1)
2 , x(0), 0

)
= 0

g′1

(
x
(0)
1 , x

(1)
1 , x

(0)
2 , x

(1)
2 , x(0)

)
:= g1

(
x
(0)
1 , x

(1)
1 , x

(0)
2 , x

(1)
2 , x(0), 0

)
= 0

.

Computing the elimination ideal of 〈g′0, g′1〉, in the variable x(0), we obtain a
polynomial f of constant degree such that for all P1 = (x1, y1), P2 = (x2, y2)
summing up to (x, y) with x ∈ Fp, we have

f
(
x
(0)
1 , x

(1)
1 , x

(0)
2 , x

(1)
2

)
= 0.

Remark 2. Speaking in terms of ideal and algebraic varieties, we claim that
(x

(0)
1 , x

(1)
1 , x

(0)
2 , x

(1)
2 ) ∈ V (〈f〉) = {(z1, . . . , z4) ∈ F4

p, f(z1, . . . z4) = 0}. This comes
from the fact that by definition 〈f〉 ⊆ 〈g′0, g′1〉, It follows that V (〈g′0, g′1〉) ⊆
V (〈f〉). Since by construction of g′0 and g′1, (x

(0)
1 , x

(1)
1 , x

(0)
2 , x

(1)
2 ) ∈ V (〈g′0, g′1〉),

our claim follows.

We are now ready to define the ZJ-Problem, which lies at the heart of our
ECDLP algorithm.

Problem 2 (ZJ-Problem). Given two listsA andB respectively of points (xA, yA)
and (xB , yB) in F2

p, and given a polynomial f of Fp[X1, . . . X4] compute the list
C of all ((xA, yA), (xB , yB)) ∈ A×B such that f(xA, yA, xB , yB) = 0.

We claim that any algorithm solving the ZJ-Problem can be used as the
main routine to solve Problem 1. Indeed, given our lists L1 and L2 respectively
of points P1 = (x1, y1) and P2 = (x2, y2), and given the polynomial f defined as
above, we compute the list A of all

(
x
(0)
1 , x

(1)
1

)
where x1 = x

(0)
1 +αx

(1)
1 . Then we

compute the list B of all
(
x
(0)
2 , x

(1)
2

)
where x2 = x

(0)
2 +αx

(1)
2 . Now, let us denote

by ZeroJoin any algorithm solving the ZJ-Problem. Let C = ZeroJoin(A,B, f).
We claim that for every P1, P2 satisfying P1 + P2 = (x, y) with x ∈ Fp,((
x
(0)
1 , x

(1)
1

)
,
(
x
(0)
2 , x

(1)
2

))
∈ C. This comes from the definition of f.

However, there may be false positives — meaning tuples
((
x
(0)
1 , x

(1)
1

)
,
(
x
(0)
2 ,

x
(1)
2

))
for which f

(
x
(0)
1 . . . x

(1)
2

)
= 0 holds, but P1 + P2 = (x, y) with x /∈ Fp.

Therefore, we need to check the corresponding sum (x, y), while computing the
list L. In other words, for all

((
x
(0)
1 , x

(1)
1

)
,
(
x
(0)
2 , x

(1)
2

))
∈ C, we first retrieve the

corresponding (P1, P2) ∈ A× B. Then we compute (x, y) = P1 + P2. If x ∈ Fp,
we add (x, y) to L.

This is summarized in Algorithm 3. The following lemma provides a reduction
from the ZJ-Problem to Problem 1.

10



Algorithm 3 ECJoin(E, f, L1, L2)

Require: An elliptic curve E over Fp2 , two lists of point L1, L2, the polynomial f
associated to E.

Ensure: L = {(P0, k1 + k2) : P0 = P1 + P2 = (x, y), (Pi, ki) ∈ Li, i ∈ [1, 2], x ∈ Fp}.
1: A,B,L← ⊥
2: for all (P1, k1) ∈ L1 do
3: A← A ∪ {((x(0)1 , x

(1)
1 ), k1)}, where P1 = (x1, y1)

4: for all (P2, k2) ∈ L2 do
5: B ← B ∪ {((x(0)2 , x

(1)
2 ), k2)}, where (x2, y2) = P2

6: C ← ZeroJoin(A,B, f)
7: for all (i, j) ∈ C do
8: (P1, k1)← L1[i], (P2, k2)← L2[j]
9: P0 = (x, y)← P1 + P2

10: if x ∈ Fp then
11: L← L ∪ {(P0, k1 + k2)}

Lemma 3. If ZeroJoin solves the ZJ-Problem in time T and memory M , The
ECJoin algorithm solves Problem 1 in time T and memory M .

Proof. Let us denote by TECJoin the time complexity of the ECJoin algorithm.
This algorithm consists of three for-loops and the ZeroJoin procedure. The first
for-loop is iterated |L1| times, and each iteration takes time O (1). The second
for-loop is iterated |L2| times. Once again each iteration requires a constant num-
ber of field operations. Then comes the ZeroJoin procedure which has a runtime
T . Finally, the last for-loop requires to perform |C| constant time iterations. It
follows that:

TECJoin = O (max(|L1|, |L2|, T, |C|)) .

It is clear that T ≥ |C|, as the list C is built during the ZeroJoin procedure.
We claim that T also satisfies T ≥ |L1| + |L2|, as each of the |L1| polynomial
and each of the |L2| point have to be considered at least once in order to create
C. It follows that

TECJoin = T.

Let us focus on the memory. We denote by MECJoin the memory required by
the ECJoin procedure. We have:

MECJoin = O (max(|L1|, |L2|,M, |C|)) .

Once again it is clear that M ≥ |C|. We also claim that M ≥ |L1| + |L2| as
our algorithm requires to store lists A and B of respective size |L1| and |L2|. It
follows that

MECJoin = M.

ut

We now reduce the ZJ-Problem to p2-ECDLP.
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Theorem 1. Under our heuristic, if there exists an algorithm ZeroJoin solving
the ZJ-Problem in time T and memory M , then RepECDLP solves the p2-ECDLP
problem in time T and memory M .

Proof. We start by proving the time complexity. The RepECDLP algorithm con-
sists basically of three steps. In the first step the lists Li for i ∈ [1, 4] are created
using the BuildLists procedure. According to Lemma 2 this can be done in time
O (maxi(|Li|)). The second step consists in creating both the join of L1 and L2,
and of L3 and L4. According to Lemma 3, this takes time T . It remains to search
for a collision between two lists. This can be done in time proportional to the size
of the two lists provided that they are sorted according to the first component.
Under our heuristic, we can assume that the points (x, y) contained in the lists
are uniformly distributed over Fp × Fp2 , as such the sorting step can be done in
time proportional to the size of lists. Recall that T ≥ max(|Li|, |L|, |L′|) for the
same argument than the one given in the proof of Lemma 3. It follows that the
time complexity of the whole algorithm is dominated by T .

We claim that the memory complexity is dominated by the one of the ECJoin
routines. Indeed as explained before, the space M required by this routine is at
least O

(
max(p

1
2+λ, p1−λ, |L|, |L′|)

)
, which is enough to prove our claim.

For completeness, we now prove that this procedure actually solves the
p2-ECDLP problem. For simplicity, we consider only the first component of the
lists elements. By construction

Li =


{kiP, ki ∈ Ti} if i ∈ {1, 3}
{Q− kiP, ki ∈ Ti} if i = 2

{−kiP, ki ∈ Ti} if i = 4.

We claim that L = ECJoin(L1, L2) is the list

L = {k12P = (x, y), k12 ∈ S1, x ∈ Fp}. (3)

Indeed, by construction, it is obvious that ∀(x, y) ∈ L, x ∈ Fp. Furthermore
(x, y) = k12P for some k12 ∈ S1 as (x, y) = k1P + k2P = (k1 + k2)P for some
(k1, k2) ∈ L1 × L2. It follows that L ⊆ {k12P = (x, y), k12 ∈ S1, x ∈ Fp}. We
show that this is indeed an equality.

Recall that f ∈ Fp[X1, X2, X3, X4] is constructed so that, for all points
P1 = (x1, y1), P2 = (x2, y2) ∈ E(Fp2), if (x, y) = P1 + P2 satisfies x ∈ Fp
then f(x

(0)
1 , x

(1)
1 , x

(0)
2 , x

(1)
2 ) = 0. Now for any Pi = (xi, yj), let us consider the

polynomial fi ∈ Fp[X,Y ] such that fi(X,Y ) = f(x
(0)
i , x

(1)
i , X, Y ). It is clear that,

for all Pj = (xj , yj) such that Pi + Pj = (x, y) with x ∈ Fp, fi(x(0)j , x
(1)
j ) = 0.

As A is the set of the fi polynomials for all (xi, yi) ∈ L1, and B is the set
of the (x

(0)
j , x

(1)
j ) tuples for all (xj , yj) ∈ L2, it follows, from the definition of

the ZeroJoin procedure, that if Pi + Pj = (x, y) satisfies that x ∈ Fp, then
(i, j) ∈ C = ZeroJoin(A,B). As such {k12P = (x, y), k12 ∈ S1, x ∈ Fp} ⊆
{Pi + Pj , (i, j) ∈ C}, only those points which indeed satisfy x ∈ Fp are kept in

12



L. A similar argument is used to show that

L′ = {Q− k34P = (x′, y′), k34 ∈ S2, x ∈ Fp}.

It remains to show that a representation (k12, k34) of our solution k is con-
tained in the list L × L′. We argue that our algorithm succeeds in solving
p2-ECDLP if there is a representation (k12, k34) ∈ S1 + S2 of k such that k12P =
(x, y) with x ∈ Fp.

It is clear that if there is no such representation of k our procedure fails,
as only k12 ∈ S1 for which k12P = (x, y) with x ∈ Fp are considered. Now,
if such a k12 exists, according to Equation 3, k12P is in L. Similarly, if k34
satisfies that Q − k34P = (x′, y′) with x′ ∈ Fp, then k34 is in L′. Furthermore,
as k12P = Q− k34P , it is enough to know that k12 satisfying k12P = (x, y) with
x ∈ Fp exists, to ensure that the algorithm recovers the solution.

We also claim that if the elements of E(Fp2) are uniformly distributed (as
we assume by our heuristic), then on expectation, there exists a representation
(k12, k34) which satisfies k12P = (x, y) with x ∈ Fp. First note that the uniform
distribution implies

P[x ∈ Fp|(x, y) = `P, ` ∈ S1] = P[x ∈ Fp] =
1

p
.

We denote by Nrep the number of representation of k as the sum k12 + k34,
k12 ∈ S1, k34 ∈ S2. In other words Nrep is the number of elements k12 ∈ S1 such
that there exists k34 ∈ S2, with k12 + k34 = k. We denote by Y the number of
surviving representations in L+L′. In other words, Y is the number of k12 ∈ S1
such that there exists k34 ∈ S2 with k12 + k34 = k, and such that k12P = (x, y)
with x ∈ Fp. By Lemma 1, we have

E[Y ] = Nrep
1

p
>

r

p2
.

By Hasse’s theorem, r ≥ p2 − 2p and therefore for sufficiently large p we expect
that one representation survives. ut

4 Solving the ZJ-Problem

The running time of our new p2-ECDLP algorithm is dominated by solving the
ZJ-Problem. Recall that in the ZJ-Problem we are given two lists A and B
consisting respectively of N points (x11, y11) . . . (x1N , y1N ) ∈ F2

p and M points
(x21, y21) . . . (x2M , y2M ) ∈ F2

p, and a polynomial f for which we have to find all
roots ((x1i, y1i), (x2j , y2j)) in our lists, that is f(x1i, y1i, x2j , y2j) = 0.

Naively, we can solve the ZJ-Problem in time T = O (NM). Namely, from
the first list A of points (xi, yi) we construct a list Ā of bivariate polynomials

fi(X,Y ) = f (x1i, y1i, X, Y ) .

13



Then we successively evaluate all fi(X,Y ) in allM points (x1, y1) . . . (xM , yM ) ∈
F2
p from the second list B. As each polynomial has constant degree, each of the
NM evaluations costs time O (1). As a result we obtain a list C of all the
(fi, (xj , yj)) ∈ Ā × B, such that fi(xj , yj) = 0. Since we have NM = p

3
2 , this

gives us an ECDLP algorithm with run time O
(
p

3
2

)
.

Fast Polynomial multiplication. Let I ⊂ [1,M ]. Obviously, if

FI(X,Y ) =
∏
i∈I

fi(X,Y ) = 0,

then there is an i ∈ I with fi(x, y) = 0. This gives rise to the following algorithm.

1. Partition the set Ā of polynomials into buckets AI1 , AI2 , . . . AIk , for some
k ≥ 1, such that fi ∈ AI` iff i ∈ I`.

2. For each I`, compute the set BI` of points (xj , yj) ∈ B, such that
FI`(xi, yj) = 0.

3. For each fi ∈ AI` , find all (xj , yj) ∈ BI` , such that fi(xj , yj) = 0.

Our solution uses fast bivariate polynomial multi-point evaluation, that has
on optimal choice N =

√
p, M = p, for which only a single FI = F has to be

computed. This special case is given in Algorithm 4. The following multi-point
evaluation result is due to Nüsken and Ziegler [NZ04].

Lemma 4 ([NZ04, Result 4]). For any fixed ε > 0, a bivariate polynomial
f ∈ Fp[X,Y ] of degree in X,Y ≤ d, specified by its coefficients, can be eval-
uated simultaneously at M given points (x, y) ∈ F2

p, with pair-wise different

x-coordinates using O
(

(M + d2)d
ω2
2 −1+ε

)
operations in Fp, where ω2 ≤ 3.257

is the exponent of n× n by n× n2 matrices multiplications.

Algorithm 4 MultiEval(Ā, B)

Require: A list A of
√
N polynomials of Fp[X,Y ] and a list B of p points of F2

p.
Ensure: The list C of all the (fi, (xj , yj)) ∈ Ā×B such that fi(xj , yj) = 0.
1: B′, C ← ⊥
2: F←

∏√p
i=1 fi.

3: E ← BivariatePolynomialMultipointEvaluation(F, B)
4: for all 1 ≤ j ≤ p: E[j] = 0 do
5: B′ ← B′ ∪ {(xj , yj)}
6: for all fi ∈ Ā do
7: for all (xj , yj) ∈ B′ do
8: if fi(xj , yj) = 0 then
9: C ← C ∪ (fi, (xj , yj))

return C

We make use of the Schwartz-Zippel Lemma, from which we derive an upper
bound on the number of zeroes of F in B in Algorithm 4.
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Lemma 5 (Schwartz-Zippel). Given a polynomial F ∈ Fp[X,Y ] of degree at
most d in X,Y , a random point (x, y) ∈ F2

p is a zero of F with probability

P[F(x, y) = 0] ≤ d

p
.

Theorem 2. RepECDLP in combination with MultiEval solves p2-ECDLP in time
T = Õ

(
p1.314

)
.

Proof. We start by showing that the time complexity of MultiEval is dominated
by the bivariate polynomial multi-point evaluation line 3. At this aim, we denote
by TF, TE , TB′ and TC respectively the time complexity required to compute F at
line 2, to perform the multi-point evaluation at line 3, to execute the for-loop in
line 4 and to execute the for-loop in line 6. The total runtime of the MultiEval
procedure is given by

T = max(TF, TE , TB′ , TC). (4)

First we estimate TF. Notice that the degree of F in X and in Y is bounded
by a constant c times √p, since F is the product of √p polynomials of constant
degree in X and Y . It follows that F can be computed in TF = Õ (p) operations,
using fast polynomial multiplication algorithms, where logarithmic factors are
hidden in the Õ.

Next, we have to evaluate this polynomial simultaneously in all the p points.
From Lemma 4, this takes time O

(
p

1
2 (1+

ω2
2 )+ε

)
for any fixed ε > 0.

There is a small twist, however as lemma 4 can only be applied for a list of
points (x, y) with pair-wise different x-coordinates. Considering that all x are in
Fp and that |B| = p, this condition implies that all elements of Fp are present
once and only once as the x-coordinate of an element of B. This is very unlikely.
In fact, we proceed as follows. We partition B according to the x-coordinate and
apply the Nüsken-Ziegler algorithm with one element of each partition of B. We
restart until all elements of each partitions have been processed.

The number of time we have to restart is bounded by the size of the largest
partition of B. If the x-coordinated are uniformly distributed over Fp, we can es-
timate this size, using maximum-load results [Mit96]. We obtain that the number
of time we have to restart is with high probability bounded by a constant times

log p
log log p . Replacing ω2 by the best known bound 3.257 [LG14], and for ε < 10−4,
its follows that TE = Õ

(
p1.314

)
.

We may assume that for each evaluated value E[j] we kept track of the
corresponding (xj , yj). Then building B′ from E requires only to scan through
each entry of E once, and add (xj , yj) in B′ for all E[j] = 0 that are encountered.
The runtime of this step is thus linear in |E| = |B|, and therefore TB′ = O (p).

The last step consists in evaluating all fi simultaneously in all the point of
B′. We proceed in a naive way by taking all the polynomials, one by one, and
evaluating each of them simultaneously in all the point of B′. This results in
the two entwined for-loops in line 6 and 7. The first one iterates over all the
polynomials and thus is iterated √p times. The second one iterates over all the
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points of B′ and thus is iterated |B′| times. Each iteration of the second loop
can be performed in O (1) as all the fi are of constant degree. It follows that
TC = O

(√
p|B′|

)
.

It remains to estimate |B′|. From Lemma 5, for any random (x, y) ∈ F2
p

P[F(x, y) = 0] ≤
√
p

p
.

Assuming that the points of B are uniformly distributed over F2
p, it follows that

the expected size Z of B′ satisfies

E[Z] =
√
p,

and thus the expected time complexity of this third step is O (p). From Equa-
tion 4, it follows that

T = O
(
max(p, p1.314)

)
= O

(
p1.314

)
.

Building the list Ā of the polynomials fi from the list A of points (xi, yi) and
the polynomial f can be done in time linear in |A| =

√
p, since f has constant

total degree. Thus the ZJ-Problem can be solved in time T too. From Theorem 1,
we can conclude that RepECDLP solves p2-ECDLP in time O

(
p1.314

)
. ut

We hope that the result of Theorem 2 may be further improved. A possible
direction is to replace the (unnecessary) multi-evaluation of F by some presum-
ably more efficient zero testing method. An other research direction, as pointed
out by one of the reviewers, could be to have a look at a different elliptic curve
model than the one of Weierstraß (e.g. Edwards Curve). However, we are not
sure whether the problem would become easier in this case.
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