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Chains

Abstract

Estimating entropy of random processes is one of the fundamental problems of
machine learning and property testing. It has numerous applications to anything
from DNA testing and predictability of human behaviour to modeling neural
activity and cryptography. We investigate the problem of Renyi entropy estimation
for sources that form Markov chains.
Kamath and Verdú (ISIT’16) showed that good mixing properties are essential
for that task. We show that even with very good mixing time, estimation of min-
entropy requires Ω(K2) sample size, while collision entropy requires Ω(K3/2)
samples, where K is the size of the alphabet. Our results hold both in asymptotic
and non-asymptotic regimes.
We achieve the results by applying Le Cam’s method to two Markov chains which
differ by an appropriately chosen sparse perturbation; the discrepancy between
these chains is estimated with help of perturbation theory. Our techniques might be
of independent interest.

1 Introduction

We follow up after [Han et al., 2018] to investigate efficiency of estimators for other popular notions
of entropy - namely min-entropy and collision entropy.

Entropy estimation is one of the fundamental problems in the field of distribution testing. In addition
to being mathematically interesting it has multiple applications to anything from DNA introns
identification to predictability of human behaviour [Lanctôt et al., 2000; Song et al., 2010; Takaguchi
et al., 2011; Wang and Huberman, 2012; Krumme et al., 2013]. In all of those applications one could
easily replace Shannon entropy with any other Renyi entropy.

Renyi entropy [Rényi, 1960] arises in many applications as a generalization of Shannon Entropy [Shan-
non, 2001]. It is also of interests on its own right, with a number of applications including unsuper-
vised learning (like clustering) [Xu, 1998; Jenssen et al., 2003], multiple source adaptation [Mansour
et al., 2009], image processing [Ma et al., 2000; Neemuchwala et al., 2006; Sahoo and Arora, 2004],
password guessability [Arikan, 1996; Pfister and Sullivan, 2004; Hanawal and Sundaresan, 2011],
network anomaly detection [Li et al., 2009], quantifying neural activity [Paninski, 2003] or to analyze
information flows in financial data [Jizba et al., 2012].

In particular Renyi entropy of order 2, known also as collision entropy, is used in quality tests for
random number generators [Knuth, 1998; van Oorschot and Wiener, 1999], to estimate the number of
random bits that can be extracted from a physical source [Impagliazzo and Zuckerman, 1989; Bennett
et al., 1995], characterizes security of certain key derivation functions [Barak et al., 2011; Dodis and
Yu, 2013], helps testing graph expansion [Goldreich and Ron, 2011] and closeness of distributions to
uniformity [Batu et al., 2013; Paninski, 2008] and bounds the number of reads needed to reconstruct
a DNA sequence [Motahari et al., 2013].

There are two models of randomness source which we consider when estimating entropy: model with
iid samples, and one where samples form a Markov chain. Over the years asymptotic regime for iid
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samples got the most attention [Wyner and Ziv, 1989; Antos and Kontoyiannis, 2001; Effros, 1999;
Cai et al., 2006; Han et al., 2017]. More recent work considers an exact, non-asymptotic behaviour of
the estimators for iid case [Paninski, 2003; Valiant and Valiant, 2011; Wu and Yang, 2014; Han et al.,
2014]. Only recent papers considered Renyi entropy for iid samples [Acharya et al., 2015; Obremski
and Skorski, 2017].

Estimation of entropy of Markov chains is a much harder task. [Kamath and Verdú, 2016] gave Renyi
entropy estimators for reversible Markov chains in a non-asymptotic regime. They also showed that
giving any guarantees on the estimator is impossible for chains with bad mixing time properties. In
[Han et al., 2018] authors give bounds for Shannon entropy of Markov chains.

In this paper we investigate lower bounds on sample complexity of Renyi entropy estimator in Markov
chain model. Our results hold both when estimating asymptotic entropy of Markov chain, and when
estimating entropy of any fixed number of steps with any starting distribution. Our bounds hold even
for the Markov chains with close to optimal mixing properties.

1.1 Estimation for Iid Samples

It is interesting to recall the lower bounds for Renyi entropy estimators sample complexity for the
case of iid samples, bounds were achieved in a series of papers by [Acharya et al., 2015; Obremski
and Skorski, 2017].

Entropy Accuracy Sample Complexity

1 < α < 2
δ 6 1 Ω(1) ·min

(
δ−

1
2K

1
2 , δ−αK1− 1

α

)
δ > 1 Ω(1) ·min

((
2−δK

) 1
2 , 2−(1− 1

α )δK1− 1
α

)
2 6 α

δ 6 1 Ω(1) · δ− 1
αK1− 1

α

δ > 1 Ω(1) ·
(

2−(1− 1
α )δK

)1− 1
α

Table 1: Lower bounds for Renyi entropy α and iid samples from an alphabet of size K, as in
[Obremski and Skorski, 2017]

1.2 Our Results and Techniques (Renyi Entropy Rates)

Our main results

• we establish lower bounds for the sample complexity under Markov model of dependency,
for Renyi entropy, known results only concern IID samples

• we show that those bounds hold both when estimating asymptotic entropy of Markov chain,
and when estimating entropy of any fixed length path taken from any starting distribution.

Our techniques

• we develop a lemma which measures closeness of sample paths of two chains; it non-trivially
extends the classical result on the distance of two IID sequences and is of independent interest
(the motiviation is Le Cam’s method on Markov chains)

• we use perturbation theory to get insights into spectral properties of matrices; this technique
greatly simplifies otherwise complicated calculations and is of independent interest.

2 Preliminaries

2.1 Notation

By 1p,q we denote the matrix of ones of size p× q. By 0p,q we denote the matrix of zeros of size
p× q. By Ip we denote the identity matrix of size p× p
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Entropy Num. of samples
H∞ Ω

(
|S|2

)
H2 Ω

(
|S| 32

)
Hα (1 < α <∞) Ω

(
|S|2− 1

α

)
Table 2: Lower Bounds for Markov Chain Entropy Estimation

The spectral radius of M is denoted by ρ(M). The α-th Hadamard power of M is defined as
M�αi,j = (Mi,j)

α (the entry-wise power).

Matrix norms induced by vector p-th norms are denoted as usual by ‖ · ‖p.

2.2 Entropy Rates

2.2.1 Entropy H∞

Min-entropy of a discrete random variable X is defined as H∞(X) = − log maxx log Pr[X = x].
It is known that the min-entropy rate of a markov chain is determined by the average heaviest
cycle [Kamath and Verdú, 2016]. The average weight of a cycle C = s0 → s1 → s2 → . . . sn = s0

is defined as w(C) = (
∏n
i=1M(si−1, si))

1
n where M is the transition matrix; the entropy rate equals

H∞(M) = − log max
C

w(C)

2.2.2 Entropy Hα

To evaluate the limiting Renyi entropy of order α, one considers the spectral properties of the
Hadamard power of the transition matrix. Namely for a chain with a transition matrix M by [Rached
et al., 2001] we have

Hα(M) =
1

1− α
log ρ (M�α)

2.3 Le Cam’s method

The popular technique of proving lower bounds on a minimax estimator is to find two sample
distributions such that (a) they are statistically close and (b) the true values of estimated parameters
or functionals are far away.

Since the values of estimated parameters are far away, we can use the estimator as a distinguisher
between two sample distributions. But the samples are close together (say ε-close) thus any dis-
tinguisher with constant chance of success requires at least Ω(1/ε) samples, which provides lower
bound.

2.4 Perturbation Theory

The spectrum of a matrix remains (somewhat) stable under perturbations. There are many results of
this form and we refer to [IPSEN, 2003] or [Zhan and Society, 2013] for more details and a survey;
for our needs the classical result due to Bauer-Firke will be enough.
Lemma 2.1 (Bauer-Firke Eigenvalue Perturbation [Bauer and Fike, 1960]). If A is a real normal
matrix, that is AAT = ATA then each eigenvalue of the matrix A+ E is at most δ-close to some
eigenvalue of A, where δ = ‖E‖2.

Also the perturbations of eigenvectors have been studied. We will need to apply them to the stochastic
matrices; in our case we will use bounds depending on a hitting times, due to Cho and Meyer.
Lemma 2.2 (Perturbation of MC stationary distributions [Cho et al., 2000]). The stationary distribu-
tion before and after the perturbation by a matrix E differ in `1-norm by at most κ · ‖E‖∞, for any κ
such that mi,jmj,j

6 2κ for all i, j and mi,j is the expected time of hitting j when the chain starts from i.
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Note that for a uniform random walk over state space S hitting times equal mi,j = |S|. Indeed the
probability that the walk returns to the starting state after more than n steps equals (1− |S|−1)n; thus
the expectation equals |S|.

2.5 Coupling

Coupling refers to building joint distribution with given marginals and is a powerful technique used to
study Markov chains [Frank, 2010]. The following lemma slightly extends the standard construction
of coupling
Proposition 2.1 (Consistent Coupling). For any four discrete random variables X1, X2, Y1, Y2 there
exist distributions X ′1, X

′
2, Y

′
1 , Y

′
2 over same probability space, such that X ′1 = X1, X

′
2 = X2, Y

′
1 =

Y1, Y
′
2 = Y2 and Pr[X ′1 6= Y ′1 ] = dTV (X1, Y1).

2.6 Chernoff-Type Bounds for Markov Chains

Chernoff-type bounds hold also for Markov chains with exponentially small tails, but the constant
depends on spectral properties of the transition matrix [Lezaud, 1998] or (which is related) on return
times of the corresponding random walk [Chung et al., 2012]. In our case this translates to the sample
complexity dependency also on the spectral gap.

3 Results

3.1 Sample Paths of Perturbed Markov Chains

The lemma below states that sample paths of two chains with close transition matrices remains
statistically close, when the number of samples is not too big.
Lemma 3.1 (Total Variation of Markov Chains with Close Transitions). Consider two Markov chains
with transition matrices M and M +E, starting from their stationary distributions µM , µM+E . The
total variation between n+ 1 samples is bounded by

dTV 6 ‖µM − µM+E‖1 + n · (µM )T · |E| · 1
where |E| is the matrix of absolute entries of E and 1 is the vector of ones.

Before we proceed to the proof let us make few remarks.
Remark 3.1 (Sparsity of Perturbation Helps). Note that (µM )T · |E| ·1 is a combination of row-sums
of E with weights µM . For fixed µ the mapping E → µT · |E| · 1 is a matrix norm which captures
sparsity.
Remark 3.2 (Bounds for IID distributions). Consider the following matrices MX =[

1
m−`1m,m−` 0m,`

]
and MY =

[
0m,`

1
m−`1m,m−`

]
. They describe IID distributions µX uni-

form over 1, . . . ,m− ` and µY uniform over `, . . . ,m respectively. We can write MY = MX + E
where E =

[
− 1
m−`1m,` 0m,m−2`

1
m−`1m,`

]
. Applying Lemma 3.1 we get that the total varia-

tion between n samples from X and n samples from Y is bounded by n · `
m−` = n · dTV(µX ;µY ),

as in the standard bound for the distance of IID variables.

We give two proofs of Lemma 3.1- one by a coupling, the other by a dynamic programming technique
where the distance for n samples is expressed in terms of the distance of n − 1 samples, and the
connection is explicit due to factorization of finite-sample distributions under the Markov assumption.

Coupling. Let X0, . . . , Xn and Y0, . . . , Yn be samples from Markov chains that have transition
matrices MX and MY respectively. For any coupling

dTV (X6n, Y6n) = Pr[X6n−1 = Y6n−1] · dTV (Xn;Yn|X6n−1 = Y6n−1) (1)
+ Pr[X6n−1 6= Y6n−1] · dTV (Xn;Yn|X6n−1 6= Y6n−1)

6 dTV (Xn;Yn|Xn−1 = Yn−1) + Pr[X6n−1 6= Y6n−1] (2)
where we used dTV (Xn;Yn|X6n−1 = Y6n−1) = dTV (Xn;Yn|Xn−1 = Yn−1) which follows from
the Markov property. For two Markov matrices MX ,MY and any distribution µ we have

‖µT (MX −MY )‖1 6 µT · |MX −MY | · 1
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If X starts from the stationary distribution µTX we have Xn = µX for all n. Therefore

dTV (Xn;Yn|Xn−1 = Yn−1) 6 µTX · |MX −MY | · 1 (3)

There is a coupling such that

Pr[X6n−1 6= Y6n−1] = dTV (X6n−1, Y6n−1) (4)

Putting Equation (3) and Equation (4) into Equation (2) we get

dTV (X6n, Y6n) 6 µT · |MX −MY | · 1 + Pr[X6n−1 6= Y6n−1].

so that the statement follows by induction.

Dynamic Programming. Consider the variation distance of n+ 1 samples

dnTV =
∑

s0,...,sn

∣∣∣∣∣µMs0
n∏
i=1

Msi−1,si − µM+E
s0

n∏
i=1

(M + E)si−1,si

∣∣∣∣∣
Writing µMs0

∏n
i=1Msi−1,si as the difference of µMs0

∏n
i=1Msi−1,si ·

(
Msn−1,sn + E

)
and

µMs0
∏n
i=1Msi−1,si · E and and applying the triangle inequality we get dTV 6 I1 + I2 where

I1 =
∑

s0,...,sn−1

∣∣∣∣∣µMs0
n−1∏
i=1

Msi−1,si − µM+E
s0

n−1∏
i=1

Msi−1,si

∣∣∣∣∣ · ‖M + E‖∞

with ‖M + E‖∞ = maxsn−1

∑
sn
|(M + E)sn−1,sn | and

I2 =
∑

s0,...,sn−1

µMs0

n−1∏
i=1

Msi−1,si ·
∑
sn

∣∣Esn−1,sn

∣∣
with ‖E‖∞ = maxsn−1

∑
sn
|Esn−1,sn |. Observe that ‖M+E‖∞ = 1 becauseM+E is stochastic.

Therefore

I1 6
∑

s0,...,sn−1

∣∣∣∣∣µMs0
n−1∏
i=1

Msi−1,si − µM+E
s0

n−1∏
i=1

(M + E)si−1,si

∣∣∣∣∣ = dn−1TV (5)

If µM is stationary for M then by Chappman-Klomogorov

I2 = (µM )T · (M + E)n−1 · |E| · 1
= (µM )T ·Mn−1 · |E| · 1
= (µM )T · |E| · 1

Summing up we get

dnTV 6 dn−1TV + (µM )T · |E| · 1
which by induction implies the statement.

3.2 Construction of Extreme Matrix

From now on we assume that the state space has |S| = m elements. We apply Le Cam’s method to
two Markov chains:

• the uniform random walk
• perturbation of uniform random walk which overweights one element, the transition matrix

of this chain is defined below

M =

[
1
m1m−1,m−1

1
m1m−1,1(

1
m −

ε
m−1

)
11,m−1

(
1
m + ε

) ] (6)

Because the perturbation is sparse, the change in the distance of finite samples will be small. On the
other hand we will see that it has a significant effect on the spectrum of Hadamard powers.
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3.3 Mixing Time is Good

[Kamath and Verdú, 2016] showed that bad mixing properties heavily impact the efficiency of an
estimator. Here we argue that Markov chains we mentioned above have very good mixing times, thus
concluding that estimation of entropy is still hard even when restricted to Markov chains with good
mixing properties.

For the unperturbed matrix eigenvalues are 1 (single) and 0 (multiplicity of m − 1); this follows
from well-known properties of matrix of ones [Horn and Johnson, 2013]. It follows that the spectral
gap is constant. After the perturbation we maintain the constant spectral gap, which follows again
by perturbation theory (Lemma 2.1). Note that elementary row operations change eigenvalues, so
calculating explicitly the spectrum is hard (although doable for this specific case)!

3.4 Entropy Rates

We state our results for entropy rates which, for stochastic sources such as Markov chains, are under-
stood as the limiting entropy per symbol (for Markov chains they exist under standard assumptions
such as ergodicity).

3.4.1 Rate Evaluation for H∞

We need to find the change in the entropy rate and statistical distance when changing from ε to ε = 0
in Equation (6).

Claim 3.1 (Min-Entopy Rate). For the chain with transition matrix as in (6)

H∞(M) = − log

(
1

m
+ ε

)
Proof. The heaviest cycle is the self-loop at the m-th state.

Claim 3.2 (Statistical Distance Closeness). The variational distance between n samples from M in
Equation (6) and the random walk, assuming both chains start from their stationary distributions, is
bounded by O(ε+ nε/m).

Proof. This follows from Lemma 3.1 applied to M being the matrix of the random walk and E equal
to

E =

[
0m−1,m−1 0m−1,1
− ε
m−111,m−1 ε

]
Since µM = 1

m1m,1 we get

µM · |E| · 1m,1 = O(ε/m)

note that the sparsity of E helps! The distance between stationary distributions can be bounded by
O(ε) according to Lemma 2.2.

Corollary 3.1 (Entropy Separation). If we take ε = 1/m, then min-entropy of perturbed chain will
be log(m2 ) while min-entropy of uniformly random walk remains log(m), thus the min-entropies of
two Markov chains differ by 1.

Corollary 3.2 (Statistical Distance). Let ε = 1
m , by Claim 3.2 the distance between n samples is

bounded by O(n ·m−2).

By the two above corollaries and the Le Cam’s method described in Section 2.3 we get our lower
bound for min-entropy.

3.4.2 Rate Evaluation for H2

In the lemmas below we estimate the difference in entropy and closeness in statistical distance for
these two chains. The results are given in Corollary 3.4 and Corollary 3.3 below.
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Lemma 3.2 (Spectral Radious Gap). Consider the matrix in Equation (6). The spectral radius of its
second Hadamard power satisfies

ρ(M�2) = max

(
1

m
,

(
1

m
+ ε

)2
)

+O(m−
3
2 )

More generally, the eigenvalues are O(m−
3
2 ) (with m− 2 repeats), 1

m +O(m−
3
2 ) and

(
1
m + ε

)2
+

O(m−
3
2 ).

Corollary 3.3 (Entropy Separation). For ε =
√

2/m one obtains ρ(M�2) = 2+o(1)
m for large m.

For ε = 0 we have ρ(M�2) = 1
m . Therefore collision entropy rates of these two Markov chains differ

by 1 bit.

Corollary 3.4 (Statistical Distance). By Claim 3.2, for ε =
√

2/m the distance between n samples
is bounded by O(n ·m−3/2).

Again by applying the Le Cam’s method described in Section 2.3 to above corollaries we get our
lower bound for collision entropy.

Proof of Lemma 3.2. We have

M�2 =

[ 1
m21m−1,m−1

1
m21m−1,1(

1
m −

ε
m−1

)2
11,m−1

(
1
m + ε

)2 ]
We want to compute the spectral radious of M�2. We can write

M�2 = Z + E

where Z is the block-diagonal matrix given by

Z =

[ 1
m21m−1,m−1 0m−1,1

01,m−1
(

1
m + ε

)2]
and E has non-zero elements only in the last row and column, of magnitude O(m−2). In particular
we obtain ‖E‖2 6 O(m−

3
2 ) (for example by bounding the Frobenius norm which in turn bounds the

second norm) and by Lemma 2.1 (Z is symmetric hence normal!)

ρ(M�2) = ρ(Z) +O(m−
3
2 )

so that we can focus on finding the spectrum of Z. But they follow from the block-diagonal structure
- the first m − 1 ×m − 1 minor has eigenvalues m−1

m2 (simple) and 0 (repeated m − 2 times); the
m-th eigenvalue is

(
1
m + ε

)2
. In view of the previous bound this finishes the proof.

3.4.3 Rate Evaluation for Hα

By proceeding in the same way as for H2 we arrive at ρ(M�α) = ρ(Z) +O(m−
2α−1

2 ) where Z has
same structure but the power of 2 is replaced by α. This gives us

ρ(M�α) = max

(
1

mα−1 ,

(
1

m
+ ε

)α)
+O(m−

2α−1
2 )

Let ε = (2/m)
α−1
α then we get ρ(M�α) = (2/m)α−1(1 + o(1)) for large m. This gives a constant

entropy gap and the statistical distance of O(n ·m−2+ 1
α ) between the two paths studied in Le Cam’s

method.

Note: when deriving formulas above we assumed large m in o(1) terms, but in fact we have lower
bounds of form ρ(M�α) > (2/m)α−1 which is sufficient.

3.5 Upper Bounds

We can apply Chernoff-type bounds to get frequencies up to a multiplicative error term. This will
cost |S|2polylog(|S|, 1/ε) samples. We defer the easy proof to the final version.
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4 Finite Sample Bounds

Our bounds were derived for the problem of estimating asymptotic entropy rate, but they remain valid
also for the task of estimating entropy of finite number of samples. We will give the argument for
min-entropy, the Renyi entropy case will be discussed in the full version.

For the min-entropy this follows because the entropy of n samples for both matrices considered
equals n times the entropy rate. Indeed, the min-entropy of n samples generated from the chain with
the transition matrix as in Equation (6) is full when ε = 0 and for the case ε > 0 achieved for n
repetitions of the m-th symbol.

5 Conclusions

We have shown lower bounds for Renyi entropy rate estimation under the Markov chain model.
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