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Abstract. MiMC and GMiMC are families of MPC-friendly block ciphers and hash
functions. In this note, we show that the block ciphers MiMC-2n/n (or Feistel-MiMC)
and univariate GMiMC are vulnerable to an attack which allows a key recovery in
on/2 operations. This attack, which is reminiscent of a slide attack, only relies on
their weak key schedules, and is independent of the round function (z* here) and the
number of rounds.
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1 Description of the ciphers

1.1 MiMC-2n/n

MiMC-2n/n [Alb+16] is a 2n-bit block size, n-bit key block cipher. It claimed n bits of
security. Its round function is described in Figure 1, and can be written as

Ri(vp,2r) =2r® (v, @k ® ¢;)°, 21,

Figure 1: MiMC-2n/n round function

1.2 GMiMC

GMIMC [Alb+19] generalizes the MiMC-2n/n construction to generalized Feistels. Two
key schedules are proposed. The univariate key schedule uses a fixed key for each round,
while the multivariate key schedule uses t initial keys and updates the round keys. Their
claimed security corresponds to the number of bits of the key. Four generalized feistel
constructions are proposed:
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GMiMC-crf. GMiMC-crf has ¢ branches and adds a function of ¢t — 1 branches on one
branch. The round function is

t
Ry (z1,...,@) = To,..., 2,21 D @:@@k@q
Jj=2

GMiMC-erf. GMiMC-erf has ¢t branches, and adds a function of one branch on all the
other. The round function is

Ri(w1,...,m) =12 @ (@1 0kee) .. 0@ @ @koa),n

GMiMC-Nyb. GMiMC-Nyb has 2t branches, and adds a function of each odd branch to
the next branch. The round function is

Ri(z1,...2,) =

To® (1 Dk i)’ 23,24 @ (3 Dk D crig1)’, o, Lot  (Tar1 Bk D crige1)’, 1.

GMIMC-mrf. GMiMC-mrf is a generalization of the previous construction with a permu-
tation of the branches that change for each round.

2 Attacks
2.1 Attack on MiMC-2n/n

The attack relies on an invariant property of the round function, and can be seen as a
slight generalization of a slide attack presented in [BNPS19]. The invariant property is
described in Figure 2.
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Figure 2: Illustration of Lemma 1

Lemma 1. Let Ri be the round function of MiMC-2n/n with the key k for round i. Then
for all x,y,k,i, Ri(z,y)® (k,k) = Ri(x ® k,y ® k)

Proof. Ry(x@k,y®k) = (yok® (t0k® )’ 20k) = (y@ (0 k® ) ) ®(k k) =
Ry (z,y) & (k, k)

Theorem 1. Let Ey, be MiMC-2n/n with the key k. Then, for all z,y,k, Ex(z,y)®(k, k) =

O

Proof. By induction over the number of rounds. The base case is Lemma 1. If the property
holds after ¢ — 1 rounds, then

(Ri "o Ry 2o Ry)(w,y) @ (k, k) = (R{T o Ry Z -0 Ry)(w @ k,y @ k).
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By Lemma 1,
(Roo Ry '---oRy)(z @ k,y®k) = Ry((Ry "o Ry -+ 0 Ry)(x @ k,y ® k)

=Ri((Ry ' o Ry7% - o Ry)(z,y) @ (k, k) = (R o R+ o RY)(z,y) @ (k, k) O
Corollary 1. Let Ey be MiMC-2n/n with the key k. Let f(x) = Ex(z,x) ® (z,x) and
9(z) = Fo(z,2) & (z,7). Then f(z) = g(z & k).
Proof.

gzdk)=Ey(z@k,2®k)® (D k,zDk)=Ep(z,2) ®(k,k) (e D k,zDEk)

= Ey(z,z) & (z,2) = f(z) O

Key recovery. The key recovery simply consists in looking for a collision between f and
g from Corollary 1, which can be done in time 2"/2 as the two functions have an n-bit
input. This contradicts the claim of n bits of security of MiMC-2n/n.

Hash function. MiMC can be used keyless as a permutation for a sponge-based hash
function. As there is no key in this construction, it is unclear how Theorem 1 could be
used to attack the hash function.

2.2 Attacks on GMiMC

In most cases ,the same property can be found in univariate GMiMC, that is, Ex(x1, ..., x:)®
(k,....,k) = Eo(x1®k,...,z: ®k), which allows to apply the same attack as in the MiMC-
2n/n case.

GMiMC-Nyb and GMiMC-mrf. One round of GMiMC-Nyb and GMiMC-mrf can be
seen, up to a permutation of the branches, as ¢ Feistel in parallel. Hence, the property
holds.

GMiMC-erf. The added function only depends on one input branch, hence the property
also holds.

GMiMC-crf. The function is slightly different in that case, as it depends on more than
one branch. For the property to hold, we must have that

(@sz)) @k @)’ = (D)ol @ k) @)’

Hence, the property holds only if ¢ is even.

2.3 Variants in large characteristics

MiMC and GMiMC can also be defined over a finite field of large characteristic. In that
case, the property we have is Ey(z1,...,x¢) + (k,..., k) = Eo(z1 + k,...,2; + k), and the
same attack can be applied. The only exception is GMiMC-crf, where we need to have
k + k = 0 for the property to hold.

2.4 Quantum attacks

The collision property corresponds to a hidden period, and as such, permits a key recovery
in O(n) quantum queries. With a restriction to classical queries, these attacks happens to
be in a form suitable for the offline Simon’s algorithm [Bon+19], which allows to make a
key recovery in (9(2”/ 3) classical queries and quantum time.
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3 Conclusion

We have shown that MiMC-2n/n and all the versions of univariate GMiMC except
some instances of GMiMC-crf are vulnerable to a collision attack. More generally, this
demonstrates that using round constants is not enough for a key schedule to secure a
Feistel or generalized Feistel construction.

This attack does not appear to be applicable to the other MiMC construction, MiMC-
n/n, nor to the hash functions based on any version of MiMC or GMiMC.
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