

徐顺生, 裴斐, 贺家臻, 等. O₂/CO₂ 工况下回转窑和分解炉内煤粉燃烧的数值模拟及可靠性验证[J]. 环境工程学报, 2020, 14(5): 1311-1319.

XU Shunsheng, PEI Fei, HE Jiazhen, et al. Numerical simulation and reliability verification of pulverized coal combustion in rotary kiln and decomposing furnace under O_2/CO_2 condition[J]. Chinese Journal of Environmental Engineering, 2020, 14(5): 1311-1319.

O₂/CO₂ 工况下回转窑和分解炉内煤粉燃烧的数值 模拟及可靠性验证

徐顺生1,2,*,裴斐1,贺家臻1,赵鹏飞1

1. 湘潭大学机械工程学院,湘潭 411105
 2. 中南大学能源科学与工程学院,长沙 410083

第一作者: 徐顺生(1963—), 男, 博士, 副教授。研究方向: 热工过程仿真与优化。E-mail: 787749816@qq.com *通信作者

摘 要 为研究 O₂/CO₂ 烟气循环煅烧水泥技术实现 CO₂ 和 NO_x 减排的可行性,采用数值模拟的方法对某 2 500 t·d⁻¹ 回转窑和分解炉模型进行了 21%O₂/79%CO₂ 助燃氛围下煤粉燃烧的研究,对比分析了 O₂/CO₂ 助燃工况下与空气 助燃工况下回转窑、分解炉的模拟结果,并通过实验验证了数值模拟的可靠性。结果表明:与空气助燃工况下 相比,O₂/CO₂ 助燃工况下回转窑、分解炉的煤粉燃尽率分别为 92.41%、91.15%,下降了 3.06%、3.51%;分解炉 出口处生料分解率为 90.54%,下降了 2.90%,仍满足生产需求;O₂/CO₂ 助燃工况下回转窑、分解炉的 NO 排放 量明显下降,脱硝率分别为 74.47%、11.80%;烟气中 CO₂ 体积分数从 32.23% 增加到 95.35%,通过简单的处理就 可以实现 C 捕获。上述研究结果为 O₂/CO₂ 烟气循环煅烧水泥技术的推广应用提供了参考。 关键词 O₂/CO₂ 氛围;数值模拟;回转窑;分解炉;CO₂ 富集;脱硝

水泥产业是典型的能源和资源消耗密集型产业,也是仅次于电力行业的第二大 CO₂、NO_x 排放 源,减排形势严峻^[1]。O₂/CO₂烟气循环煅烧水泥技术是将分离空气制得的高纯度 O₂与部分再循环 烟气混合后通入回转窑和分解炉内助燃,使煤粉在 O₂/CO₂氛围下燃烧,不仅能实现窑尾烟气中 CO₂的富集和回收,还能降低热力型 NO_x的排放^[2],对水泥行业实现 CO₂ 和 NO_x减排具有重要意义。

许多学者针对煤粉颗粒在 O₂/CO₂ 气氛下的燃烧特性展开了大量研究。楚化强等^[3]利用数值模拟的方法研究了煤粉在空气和 O₂/CO₂ 气氛下的燃烧情况,结果表明 O₂/CO₂ 气氛下燃烧火焰温度较低。何先辉等^[4]和 SHEN 等^[5]研究表明,在 O₂/CO₂ 气氛下,煤粉颗粒的完全燃尽时间延长了 20%~25% 左右。在流化床锅炉方面,有学者通过搭建中小型实验台^[6-9]和数值模拟的方法^[10-12]进行 了 O₂/CO₂ 燃烧技术的研究,目前 O₂/CO₂ 燃烧技术已经逐渐应用在电站锅炉上的实际工程中。但是 O₂/CO₂ 燃烧技术在水泥生产领域的研究还处于起步阶段,仅有少数研究者进行了初步的探索工

收稿日期: 2019-07-16; 录用日期: 2019-09-09

基金项目:国家自然科学基金资助项目(51590891);国家自然科学基金青年基金资助项目(51806184);郴州市科技计划重点项目(CZ2013163)

作。DAVID 等^[13] 通过建立回转窑氧燃料燃烧过程的三维数学模型发现,在同一氧气浓度下,火焰 长度比在空气条件下燃烧的火焰长度短 30%~65%,辐射通量提高 2~4.5倍,在相同的燃料消耗率 下,可以提高熟料的生产率。FRANCISCO 等^[14] 和 MARIO 等^[15] 分别以实验和数值模拟的方式验证 了现代窑式燃烧器可在不作额外改造的情况下适用氧燃料燃烧。但三者都只单独进行了回转窑的 研究,缺少炉、窑一体的研究,没有进一步研究分解炉中 NO_x 的生成情况和煤粉燃烧特性的改变 对生料分解产生的影响,无法支持该技术在水泥回转窑和分解炉上的应用。

本研究对某公司 2 500 t·d⁻¹ 回转窑和分解炉进行数值模拟,探讨了 O₂/CO₂ 烟气循环煅烧水泥技 术实现 CO₂ 和 NO_x 减排的可行性,对比分析了 21%O₂/79%CO₂ 助燃工况下与空气助燃工况下回转 窑、分解炉的模拟结果,为水泥行业实现 O₂/CO₂ 燃烧技术的应用提供参考。

1 模型与数值模拟方法

1.1 数学模型

考虑到分解炉、回转窑内均为复杂湍流,且有较强旋流和回流,因此,在解决工程问题时, 回转窑、分解炉的气相湍流模型都采用了处理旋流和回流运动更准确的重整化群模型(即 RNG κε模型)。湍流动能 κ 方程见式 (1);耗散率 ε 方程见式 (2)。

$$\frac{\partial(\rho_0\kappa)}{\partial t} + \frac{\partial(\rho_0ku_i)}{\partial x_i} = \frac{\partial}{\partial x_i} \left(\alpha_k \mu_{\text{eff}} \frac{\partial \kappa}{\partial x_i} \right) + G_k - \rho_0 \varepsilon \tag{1}$$

$$\frac{\partial(\rho_0\varepsilon)}{\partial t} + \frac{\partial(\rho_0\varepsilon u_i)}{\partial x_i} = \frac{\partial}{\partial x_j} \left(\alpha_\varepsilon \mu_{\text{eff}} \frac{\partial\varepsilon}{\partial x_j} \right) + C_{1\varepsilon} \frac{\varepsilon}{\kappa} G_\kappa - \rho_0 C_{2\varepsilon} \frac{\varepsilon^2}{\kappa}$$
(2)

式中: u_i 为 x_i 、 x_j 方向上的速度; G_{κ} 为紊动能 κ 的生成项; μ_{eff} 为有效黏性系数; $C_{1\varepsilon}$ 、 $C_{2\varepsilon}$ 为模型常数; a_{κ} 、 a_{ε} 分别为 κ 和 ε 的逆有效普朗特数。

针对煤粉颗粒的轨迹模拟,选用 DPM 模型中随机轨道模型对颗粒进行追踪。针对分解炉内燃料燃烧与生料分解的耦合过程,选用组分输运模型结合涡耗散概念模型^[16];不考虑回转窑内CaCO₃分解反应,针对回转窑内湍流气相燃烧,采用预混燃烧下的涡耗散模型;针对煤粉燃烧过程和挥发分析出过程,选择单步竞争反应速率模型;针对剩余焦炭燃烧过程,选择动力/扩散控制反应速率模型;针对辐射换热过程,均选择 P-1 模型。在反应产生的 NO_x 中,只计算 NO;在分解 炉中,只考虑燃料型 NO;在回转窑中,只考虑热力型、燃料型 NO。

1.2 物理模型

回转窑结构如图1所示。可以看出,1次风携带煤粉与2次风携带煤粉充分混合后燃烧,窑尾烟气通入烟室。考虑到回转窑的厚度,将模型的尺寸设定为60m×3.6m。回转窑内的物料区分别为冷却区、烧成区、反应区和分解区,在计算时,将物料区做壁面处理,并分别给定各个区域温

Fig. 1 Schematic diagram of the rotary kiln structurer

第5期

度值。

分解炉几何结构如图2所示。分解炉由上 到下分别为上柱室、缩口、下柱室、底锥。在 分解炉锥体底部插入1根3次风管,其偏心距 离为0.6m。生料管位于喷煤管的上方,与水 平面成60°夹角,斜向下插入分解炉下柱室; 在3次风管与生料管之间,斜向下对称插入 2根喷煤管,与水平面成26°夹角,与下柱室壁 面成35°夹角。

1.3 计算模型和边界条件

分解炉网格划分和边界条件如图 3 所示。 回转窑内部使用的燃烧器为 Duoflex DBC四通 道燃烧器,燃烧器结构尺寸与回转窑整体尺寸 相差较大,在进行局部加密处理后,网格总数

为1.2×10⁶个,网格质量良好。分解炉网格划如图 3(a)所示,用四面体网格对分解炉生料管以下位置进行划分并局部加密,用六面体网格划分其余部分,网格总数约为1.32×10⁶个。

在回转窑内,物料上表面沿窑体自左向右分别给定温度为1545、1650、1473和1123K, 各区域长度之比为6:42:36:16,除此之外的其余壁面温度均设为800K,过量空气系数取 a=1.20。 通过查询资料获得所需回转窑燃烧器的结构参数,由热平衡测试获得数值模拟边界条件。表1为 回转窑燃烧器运行参数。

分解炉的边界条件如图 3(b) 所示。基于分解炉的绝热设计,设定整个壁面温度为1000 K,选择无滑移壁面标准函数进行描述,过量空气系数取 a=1.15。在本研究中,分解炉进、出口边界条件为:3次风流量 18.62 kg·s⁻¹,温度 1300 K;生料流量 35.45 kg·s⁻¹,温度 1140 K,生料中烧失量质量分数 35.40%、SiO₂质量分数 12.36%、Al₂O₃质量分数 2.87%、Fe₂O₃质量分数 1.98%、CaO 质量分数 44.31%、MgO 质量分数 3.08%; 窑尾烟气流量 30 kg·s⁻¹,窑尾烟气温度 1250 K,窑尾烟气中CO₂摩尔分数 27.12%、O₂摩尔分数 3.9%、CO 摩尔分数 0.17%、N₂摩尔分数 68.81%;煤风速度 45 m·s⁻¹,

温度 321 K; 出口压力-1 200 Pa。

本研究所使用的无烟煤A、烟煤B的工业 分析与元素分析见表2。在基础运行工况下, 回转窑使用的混煤为无烟煤A与烟煤B按质 量比为4:6混合得到的,煤粉质量流量为1.36 kg·s⁻¹, 平均粒径为80 µm; 分解炉使用的是烟 煤B,煤粉质量流量为2.58 kg·s⁻¹,平均粒径 为 60 µm。

表1 回转窑燃烧器运行参数(基础工况)

Table 1 Operating parameters of rotary kiln burner (basic working condition)

风种类	风量/(m ³ ·h ⁻¹)	风速/(m·s ⁻¹)	风温/K	占比/%	
1次风轴流风	547	120	306		
1次风内旋流风	383	120	306	0	
1次风煤风	2 101	24	319	0	
1次风中心风	901	40	306		
2次风	47 095	1.3	1 320	92	

Table 2 Elemental and industrial analysis of coal sample element									
煤粉种类	工业分析/%				元素分析/%				低位热值/
	M_{ad}	A _{ad}	V_{ad}	FC _{ad}	C _{ar}	H _{ar}	O_{ar}	(N+S) _{ar}	$(kJ \cdot kg^{-1})$
А	1.65	26.80	6.11	65.44	87.3	10.8	1.2	0.7	22 268.8
В	2.05	17.22	31.82	48.91	53.8	42.6	2.2	1.4	22 647.2
A与B混合(A:B=4:6)	2.21	20.73	21.62	55.44	67.18	30.0	1.4	1.42	22 495.8

表 2 煤样元素分析及工业分析

注: Mad为空气干燥基水分含量; Aad为空气干燥基灰分含量; Vad为空气干燥基挥发分含量; FCad为空 气干燥基固定碳含量; Car、Har、Oar、(N+S)ar为煤粉中各组分的收到基质量分数。

1.4 数值模拟方法

使用 Ansys-Fluent 软件进行数值模拟,采用有限体积法对连续相控制方程离散化,使用压力和 速度耦合的 SIMPLE 算法,采用二阶迎风格式,使用 TDMA 法逐面迭代求解。连续相与颗粒相的 相互耦合均采用先对连续相进行求解计算的方法,在达到初步收敛后,加入离散相进行耦合计算。

2 回转窑和分解炉仿真结果的对比分析

2.1 回转窑内煅烧结果对比

1) 燃烧情况对比分析。在空气助燃氛围和 21%O₂/79%CO₂ 助燃氛围下,回转窑 Y=0 截面温度云 图如图 4 所示。回转窑内的火焰形状均呈现"棒槌"型,均匀地充满回转窑截面,但是后者的高温 火焰长度较短,出口烟气温度较低,回转窑内平均温度较低,模拟计算得到煤粉燃尽率分别为 95.47%和 92.41%, O₂/CO, 工况下燃尽率下降了 3.06%, 说明煤粉的燃烧特性变差。单独观察

Fig. 4 Temperature cloud diagram at Y=0 cross-section rotary of kiln under two working conditions

21%O₂/79%CO₂工况,火焰填充度良好,沿回转窑方向温度梯度分明,燃烧稳定。火焰的高温区从回转窑 3 m 处开始,Duoflex DBC 四通道燃烧器伸入回转窑的长度为 1 m,说明该工况下燃烧器不会被烧坏,适应性良好,符合生产需求。

2) NO 生成情况对比分析。21%O₂/79%N₂ 与 21%O₂/79%CO₂ 2 种工况是在保证加入 O₂ 量、体积 比不变的前提下,用同体积的 CO₂ 替换 N₂,因此,可以通过比较 2 种工况下 NO 的摩尔分数观察 NO 的生成情况。在空气助燃和 21%O₂/79%CO₂ 助燃氛围下,回转窑 Y=0 截面 NO 摩尔分数分布云 图如图 5 所示。可以看出,3~13 m 区域为煤粉燃烧高温区域,温度高达 2 100 K 以上,此时回转窑 内 NO 大量生成且热力型 NO 占据主导,浓度达到最高。高温区后,燃料中的含氮化合物生成少量 的燃料型 NO,NO浓度迅速下降。在回转窑 NO 生成过程中,热力型占据主导,因此,NO 浓度分 布基本遵循窑内温度分布,符合热力型 NO 生成机理。而 21%O₂/79%CO₂ 助燃氛围下助燃气体中没 有 N₂,根据热力型 NO 生成原理,可知此时没有热力型 NO 产生,因此,NO 生成量有较大幅度的 下降。

在空气助燃氛围和 21%O₂/79%CO₂ 助燃氛 围下,沿回转窑长度方向各横截面 NO 质量分 数的变化如图 6 所示。2 种工况下 NO 质量分 数的变化趋势基本一致,均为先升高后回落, 最终趋于稳定。O₂/CO₂ 工况下,NO 浓度最高 点比空气工况下延迟到达,且最高点的数值较 小,这是因为 21%O₂/79%CO₂ 助燃氛围下无热 力型 NO 生成,且煤粉的燃烧特性变差导致了 燃料型 NO 生成量减少。经换算,在空气工况 下和 O₂/CO₂ 工况下,回转窑出口烟气中 NO 质 量流量分别为 0.038 7 kg·s⁻¹和 0.009 84 kg·s⁻¹, 脱硝率为 74.47%。

2.2 分解炉煅烧效果对比

1) 燃烧情况对比分析。在空气助燃和 21%O₂/79%CO₂ 助燃下,分解炉 X=0 截面温度云图如图 7 所示。在分解炉下部的锥体处,3次风与煤粉发生剧烈的燃烧反应,放出大量热量,同时由于生料 管入口下方设置的挡板对生料的阻挡作用,此处没有发生生料分解反应,因此,出现了局部高温 区域。随后炉内煤粉燃烧放热速度减缓, 生料 分解大量吸热,炉内温度逐渐下降。2种工况 下温度分布特征基本相同,其中O2/CO2工况 下高温燃烧区域变小,这说明该处煤粉燃烧特 性变差。在2种助燃条件下,沿分解炉高方向 各横截面平均温度的变化如图8所示。可以看 出,温度变化的基本趋势一致,均为先升高后 降低,说明2种情况下流场稳定,燃烧稳定; 2条曲线的起点温度不同,是由2种工况下回 转窑燃烧状况不同和窑尾烟气温度不同导致 的;在炉高2~5m时,斜向下注入煤粉,与高 温3次风充分混合,燃烧后释放出大量热量, 使温度迅速达到峰值;在空气工况下,最高横 截面平均温度为1346 K, O₂/CO₂工况下最高 横截面温度为1271K;高温区之后,从生料管 喷入温度较低且分散性较好的生料, CaCO, 迅 速吸热发生分解反应,炉内温度降低。空气工 况下煤粉燃烧情况良好,模拟计算得到的煤粉 燃尽率为94.66%,比O₂/CO₂工况下燃尽率高 3.51%, 但此时 O₂/CO₂ 工况下分解炉内高浓度 的CO2在一定程度上抑制了CaCO3分解,生料 分解总吸热量减少,导致分解炉内温度超过空 气工况。

2)分解情况对比分析。通过对分解产物 CaO和CO₂的分析,可很好地说明生料分解状况。图9反映了21%O₂/79%N₂与21%O₂/79%CO₂ 燃烧氛围下分解炉炉高方向各截面CaO质量流 量变化情况。2种工况下CaO质量流量变化趋 势均为先保持不变,后迅速增长,最后增长减缓。 在分解炉4m处设置有挡板,因此,4m以下 没有生料分解反应发生,从生料管处加入CaCO₃, 生料吸收煤粉燃烧的热量并快速分解,CaO质 量流量大幅度上升,随着分解炉高度的上升, 炉内残余生料分解逐渐变缓。造成2种工况分 解炉出口CaO质量流量有差异的主要原因是, O₂/CO₂氛围下炉内CO₂浓度较高,抑制了CaCO₃ 的分解反应。最终空气工况与O₂/CO₂工况出口CaO 质量流量分别为18.47 kg·s⁻¹和17.90 kg·s⁻¹,对

图 7 2 种工况下分解炉 X=0 截面温度云图

Fig. 7 Temperature cloud map at X=0 cross-section of the decomposition furnace under two working conditions

Fig. 9 Change of CaO mass flow rate at each section of the decomposition furnace

应的分解炉出口处生料分解率分别为93.44%和90.54%,后者较前者下降了2.90%。2种工况下分解 炉炉高方向各横截面CO₂在气体中平均体积占比变化情况如图10所示。分解炉内CO₂最初体积占 比的差异来自窑尾烟气中CO₂浓度的差异。在分解炉3m处,3次风汇入,CO₂浓度下降,其中空

3) NO 生成情况对比分析。在空气助燃氛 围和 21%O₂/79%CO₂ 助燃氛围下,分解炉 X=0 截面 NO 质量分数分布云图如图 11 所示。 O₂/CO₂工况下来自窑尾的烟气中NO含量比空 气工况下低,此时分解炉内产生的 NO 绝大部 分为燃料型,所以2种工况下NO含量都有一 定程度的增加。2种工况下分解炉炉高方向各 截面 NO 平均质量流量如图 12 所示。开始的 4m几乎没有燃烧反应,大部分煤粉在 4~8m 处被燃烧,对应的区域内 NO 快速生成,此时 分解炉内的温度没有到达热力型 NO 的生成条 件,几乎都是燃料型NO。8m之后,剩余煤继 续燃烧,NO缓慢增长,直至出口处。在空气 工况下, NO 质量流量从 0.038 7 kg·s⁻¹ 增长至 0.0547 kg·s⁻¹, 增幅为 0.0160 kg·s⁻¹; 在 O₂/CO₂ 工况下, NO 质量流量从 0.009 84 kg·s⁻¹ 增长至 0.024 1 kg·s⁻¹, 增幅为 0.014 2 kg·s⁻¹, 燃料型 NO 的生成主要与煤粉的燃烧情况有关,且 O2/CO2工况下分解炉内有更多的还原性气体 CO,因此,O₂/CO₂工况下分解炉内产生的NO 较少,经计算,分解炉的脱销率为11.80%。

3 可靠性验证

在本研究中,通过将实测空气工况下的测量数据与模拟计算数据进行比较来判断模型的可靠性。如图1所示,为减少回转窑漏风、散热对测量结果的影响,在距离回转窑尾部出口截面中心0、0.5、1.0m处的a、b和c3个测点处进行测量,以测量结果代替窑尾出口实际数据。同理,在距离分解炉出口烟道截面中心0.6、1.2和1.8m处,测量温度和烟气成分。回转窑、分解炉出口温度和烟气浓度实测平均值和模拟计算结果见表3和表4。

由表3可知,烟气温度的测量数据与计算 数据之间的相对误差小于3%,组分浓度误差 小于7%,在工程允许误差范围内,计算模型 可靠。模拟数值与测量值产生误差的原因是窑 尾漏风。

Fig. 10 Average volume fraction of CO_2 at each cross section of the decomposition furnace

图 11 2 种工况下分解炉 X=0 截面 NO 分布云图

Fig. 11 Cloud map of NO distribution at *X*=0 section of decomposing furnace under two working conditions

图 12 分解炉炉高方向各截面 NO 平均质量流量变化

Fig. 12 Change of NO average mass flow curve at each section of the decomposition furnace

表 3 回转窑出口测试数据与计算数据对比

Table 3 Comparison of test data and calculation data of rotary kiln outlet

表 4 分解炉出口测试数据与计算数据对比

 Table 4
 Comparison of test data and calculation data of decomposing furnace outlet

数据来源 -	烟气温度/K		摩尔分数/%		粉拍车池	出口烟气温度/K		出口烟气成分(摩尔分数)/%			
	测点a	测点b	测点c	CO_2	O ₂	奴 据木你一	0.6 m处	1.2 m处	1.8 m处	CO ₂	O ₂
测量	1 172.5	1 207.7	1 231.2	18.630 0	4.080 0	测量	993	1 016	1 019	31.46	1.88
计算	1 202.7	1 234.5	1 254.8	19.250 0	3.800 0	计算	1 010	1 021	1 054	32.23	1.70
相对误差	0.025 8	0.022 2	0.019 1	0.035 5	0.068 6	相对误差	0.017	0.004 9	0.034	0.024 5	0.096

由表4可知:出口烟气温度的测量数据和计算数据相对误差值相对误差较小,可满足工程需要;烟气成分中O₂浓度的测试数据和计算数据的最大相对误差为0.096,但绝对误差很小,基本能 满足工程生产的需要。出口烟气中O₂成分相对误差偏大的原因可能是炉体漏风和仪器误差共同作 用的结果。

4 结论

1) O₂/CO₂ 助燃氛围下回转窑内高温火焰长度比空气助燃氛围下要短,但是火焰填充度较好, 温度分布沿窑长方向梯度分明,燃烧依然稳定; Duoflex DBC 四通道燃烧器在该工况下适应性良好。

2) O₂/CO₂ 助燃工况下煤粉的燃烧特性变差,回转窑、分解炉中煤粉的燃尽率下降;烟气中 CO₂ 浓度较高,抑制 CaCO₃ 的分解反应,虽然分解炉出口处生料分解率降低,但仍可满足生产需求。

3) 分解炉出口烟气中 CO₂ 摩尔分数从 32.23% 增加到 95.35%,经过简单处理就能实现 C 捕捉; NO 排放量明显下降,分解炉出口处 NO 浓度为 274.5 mg·m⁻³,低于国家排放标准;O₂/CO₂烟气循 环煅烧水泥技术可实现 CO₂ 和 NO_x 的减排,具有良好的应用前景。

参考文献

- [1] 赵宏, 伍浩松. 全球能源相关碳排放连续三年持平[J]. 国外核新闻, 2017(5): 3-4.
- [2] WU F, MORRIS D A, PAUL A D, et al. Progress in O₂ separation for oxy-fuel combustion: A promising way for costeffective CO₂ capture: A review[J]. Progress in Energy and Combustion Science, 2018, 67: 188-205.
- [3] 楚化强, 冯艳, 曹文健, 等. O₂/CO₂气氛下煤粉燃烧特性模拟研究[J]. 工业炉, 2016, 38(4): 6-9.
- [4] 何先辉, 顾明言, 李红, 等. O₂/CO₂气氛下煤粉燃烧NO排放特性[J]. 燃烧科学与技术, 2017, 23(6): 554-559.
- [5] SHEN Z J, ZHANG L Q, LIANG Q F, et al. In situ experimental and modeling study on coal char combustion for coarse particle with effect of gasification in air (O₂/N₂) and O₂/CO₂ atmospheres[J]. Fuel, 2018, 233: 177-187.
- [6] LI W, XU M X, LI S Y. Calcium sulfation characteristics at high oxygen concentration in a 1MWth pilot scale oxy-fuel circulating fluidized bed[J]. Fuel Processing Technology, 2018, 171: 192-197.
- [7] XU M X, LI S Y. Experimental study on N₂O emission in O₂/CO₂ combustion with high oxygen concentration in circulating fluidized bed[J]. Journal of the Energy Institute, 2019, 92(1): 128-135.
- [8] BO L, ALBERTO G B. Oxy-fuel combustion in circulating fluidized bed boilers[J]. Applied Energy, 2014, 125: 308-318.
- [9] LI L, DUAN L B, TONG S, et al. Combustion characteristics of lignite char in a fluidized bed under O₂/N₂, O₂/CO₂ and O₂/H₂O atmospheres[J]. Fuel Processing Technology, 2019, 186: 8-17.
- [10] WU Y, LIU D Y, DUAN L B, et al. Three-dimensional CFD simulation of oxy-fuel combustion in a circulating fluidized bed

with warm flue gas recycle[J]. Fuel, 2018, 216: 596-611.

- [11] JAROSLAW K, TOMASZ C, WALDEMAR M, et al. Modelling of CO₂, CO, SO₂, O₂ and NO_x emissions from the oxy-fuel combustion in a circulating fluidized bed[J]. Fuel Processing Technology, 2011, 92(3): 590-596.
- [12] WOJCIECH P A, PAWEŁ K, ADAM K, et al. Numerical simulations of the industrial circulating fluidized bed boiler under air-and oxy-fuel combustion[J]. Applied Thermal Engineering, 2015, 87: 127-136.
- [13] DAVID A G, FARID C, JUAN M M, et al. Effect of flue gas recirculation during oxy-fuel combustion in a rotary cement kiln[J]. Energy, 2014, 64: 615-625.
- [14] FRANCISCO C, SIMON G, JÖRG M, et al. Experimental investigations of oxyfuel burner for cement production application[J]. Fuel, 2019, 236: 608-614.
- [15] MARIO D, JØRN B. Study of a full scale oxy-fuel cement rotary kiln[J]. International Journal of Greenhouse Gas Control, 2019, 83: 166-175.
- [16] 梅书霞, 谢峻林, 陈晓琳, 等. 涡旋式分解炉中煤及垃圾衍生燃料共燃烧耦合CaCO₃分解的数值模拟[J]. 化工学报, 2017, 68(6): 2519-2525.

(本文编辑:郑晓梅,张利田)

Numerical simulation and reliability verification of pulverized coal combustion in rotary kiln and decomposing furnace under O₂/CO₂ condition

XU Shunsheng^{1,2,*}, PEI Fei¹, HE Jiazhen¹, ZHAO Pengfei¹

1. School of Mechanical Engineering, Xiangtan University, Xiangtan 411105, China

2. School of Energy Science and Engineering, Central South University, Changsha 410083, China

*Corresponding author, E-mail: 787749816@qq.com

Abstract In order to study the feasibility of reducing CO₂ and NO_x emission by using O₂/CO₂ flue gas cycling calcinating cement technology, a numerical simulation method was used to study the pulverized coal combustion of the 2 500 t·d⁻¹ rotary kiln and decomposing furnace models under $21\%O_2/79\%CO_2$ combustion-supporting atmosphere. The simulations results of rotary kiln and decomposition furnace under O₂/CO₂ combustion-supporting conditions and air-supported combustion conditions were compared and analyzed. The reliability of numerical simulations was also verified by experiments test. The results showed that in comparison with the air-supported combustion conditions were 92.41% and 91.15%, respectively, which decreased by 3.06% and 3.51%. The decomposition rate of raw materials at the exit of the decomposing furnace was 90.54%, which decreased by 2.90% and still basically met the production demand. Under O₂/CO₂ combustion-supporting conditions, NO emission of rotary kiln and decomposing furnace decreased significantly, and the denitrification rates were 74.47% and 11.80%, respectively. The CO₂ volume fraction in flue gas increased from 32.23% to 95.35%, and the C capture could be achieved through simple treatment. This study provides a reference for the generalization and application of the O₂/CO₂ flue gas cycle calcinating cement technology.

Keywords O_2/CO_2 atmosphere; numerical simulation; rotary kiln; decomposition kiln; CO_2 enrichment; denitrification