文章编号:1000-8551(2019)09-1765-09

小麦制粉不同组分中铁锌含量的影响因素探析

巩翰颖¹ 李 明^{2,*} 刘宏艳² 卢大新^{1,*} (¹北京农学院,北京 102206;²中国农业科学院农产品加工研究所,北京 100193)

摘 要:提高小麦籽粒有益微量元素含量,特别是对人体影响较大的 Fe、Zn 含量,是解决中国广大居民 微量元素营养匮乏的重要途径之一。2012-2015 年将 3 个不同基因型小麦品种(邯 6172、衡 5229 和周 麦 16),种植于河北石家庄赵县、陕西杨凌区和河南省新乡辉县。每个地域 3 个小区,每小区面积 10 m²,试验田按照当地小麦品种区域试验管理。共采集 36 份小麦样品,小麦籽粒粉碎制得全麦粉;同时将小麦籽粒加工制粉,得到粗麸、细麸和面粉。采用电感耦合等离子体质谱法(ICP-MS)测定全麦粉及 制粉产品(粗麸、细麸和面粉) 中的 Fe、Zn 含量。结合单因素方差分析及 Duncan 多重比较分析不同地 域、不同基因型、不同年际获得的小麦不同制粉产品间的 Fe、Zn 含量差异。结果表明,基因型对本研究 全麦粉 Fe 含量影响最为显著,地域是影响全麦粉 Zn 含量的最重要因素。Fe、Zn 含量在小麦制粉不同 组分中的变化趋势为:粗麸>细麸>面粉。Fe 含量在各组分中受基因型影响最大。Zn 含量在全麦粉和 粗麸中受地域影响最大,细麸中受年际影响最大,面粉中分别受年际×地域的交互作用、基因型和年际 3 个因素的影响最大。综上所述,全麦粉相对面粉的 Fe、Zn 含量更高,且更容易通过选种和选择合适地域 耕种提高其 Fe、Zn 含量。本研究为从小麦的种植及加工角度改善主食中铁锌含量较低这一现状提供了 理论参考。

关键词:小麦制粉; Fe/Zn 含量; 地域; 基因型; 年际 DOI:10.11869/j.issn.100-8551.2019.09.1765

大宗作物的籽粒存在重要微量营养元素(如 Fe、 Mn、Zn、I、Se)缺乏或其含量较低、生物有效性低等问题,导致全世界大约 30 亿发展中国家的人群正面临着 潜在性微量营养元素缺乏症——"隐性饥饿"(hidden hungry)^[1]的威胁。中国等许多发展中国家人群不同 程度地存在微量元素缺乏问题,尤以缺铁、缺锌较为普 遍。缺铁可能导致贫血,缺锌可能导致代谢紊乱、免疫 力降低、生长发育停滞、智力发育障碍等,进而引起多 种疾病^[2-6]。应对缺铁、缺锌症状引起的健康问题,使 用铁、锌补充剂或者食用高铁食品^[7]极为必要。但我 国缺铁、缺锌的人口多集中在经济不发达的地区^[8], 这些地区的人群往往饮食结构单一,难以通过多种途 径补充微量元素。因此,提高小麦籽粒有益微量元素 的含量,特别是对人体影响较大的 Fe、Zn 含量,是解决 中国广大居民微量元素营养匮乏的重要途径之一。

目前,国内外专家已经成功通过育种方式实现生物强化小麦,达到微量元素在可食部位的富集^[9-11]。 小麦籽粒中的 Fe、Zn 含量还受到基因型、环境等因素的影响。前人研究发现,地域和品种会影响小麦中矿质元素的积累,不同地域的小麦籽粒矿质元素受到其生长环境(如土壤、大气、水质)的影响,其中产地土壤对小麦籽粒矿质元素影响较大^[12-14]。姜丽娜等^[15]研究了来自河南省 5 个地区的 17 个小麦品种(系),认为环境因素对籽粒 Zn、Mn、Cu 含量影响最大;基因型与环境互作对籽粒 Fe 含量的影响最大。此外,肥料也可能影响植物的矿质元素含量。刘晓东等^[16]分析了分别种植于 5 个地域的 7 种谷子的矿质元素含量,发现谷子中 Fe 含量既受遗传因素影响,也受肥量因素影

收稿日期:2018-03-23 接受日期:2018-07-23

作者简介: 巩翰颖, 女, 主要从事谷物科学研究。E-mail: 394264276@ qq.com

基金项目:国家重点研发计划项目(2016YFD0400200),中国农业科学协同新任务(CAAS-XTCX2016009)

^{*} 通讯作者:李明,女,助理研究员,主要从事谷物科学研究。E-mail:minglicaas@126.com;

卢大新,男,教授,主要从事农产品加工研究。E-mail:dx.lu@126.com。同为通讯作者。

响,而 Zn 含量既不受遗传因素的影响,也不受肥量因素的影响;各地域、各品种间谷子 Zn 含量水平变化幅度大,数据分布无规律。

前人研究大多集中在地域或品种等单一因素对小 麦等谷物籽粒中矿质元素含量的影响^[17],而年际对小 麦籽粒矿质元素含量的影响研究较少,且对于小麦籽 粒加工后不同组分,尤其是面粉中的 Fe、Zn 含量的影 响因素缺乏系统研究。因此,本研究分析了不同地域、 基因型和年际的小麦籽粒及其制粉产品(粗麸、细麸、 面粉)中 Fe、Zn 含量的变化,旨在明确地域、基因型、 年际和制粉对小麦制粉产品中 Fe、Zn 含量的影响,从 小麦的种植及加工角度为改善主食中铁锌含量较低这 一现状提供理论参考。

1 材料与方法

1.1 试验材料

将3种基因型小麦(周麦16、衡5229、邯6172)于 2012-2015年间分别种植于河南省辉县、陕西省杨凌 区、河北省赵县3个试验站,这3个地区的土壤类型、 海拔和气候类型见表1、表2。基因型随机排列,每种 基因型小麦种植面积为10m²。试验田按照当地小麦 基因型区域试验管理,于次年的收获期在每个试验点 收割1m²,采集小麦籽粒共36份。每份籽粒加工制粉 得到不同的4部分(全麦粉、粗麸、细麸、面粉)共144 份样品(3×4×3×4)。

	Table 1	Geographical information of ea	ach pilot station	
地域 Region	地理坐标 Geographical coordinates	海拔 Altitude/m	气候类型 Climate type	土壤类型 Soil type
杨凌 Yangling	34. 29°N, 108. 06°E	513	温带大陆性气候	棕壤土
辉县 Huixian	35.39°N,113.83°E	82	温带季风性气候	粘土
赵县 Zhaoxian	37.83°N,114.82°E	39	温带季风性气候	壤土

表 1 各试验站地理信息

表 2 各试验站气候信息

Climate information of each nilet station

14	ible 2 Cim	late information	of each phot s	tation
1.4 44	左匹	总降水量	平均温度	日照时间
地域 Decision	平所 Vaar	Total	Average	Duration of
Region	Tear	precipitation/mm	temperature∕℃	sunshine/h
杨凌	2012-2013	255.2	10.6	1 417.3
Yangling	2013-2014	338.1	10.3	1 248.8
	2014-2015	338.3	10.4	1 102.8
	2015-2016	261.0	10.5	1 374.6
辉县	2012-2013	147.7	10.5	1 309.2
Huixian	2013-2014	205.4	11.6	1 284.3
	2014-2015	221.2	11.5	1 387.0
	2015-2016	426.9	11.3	1 389.0
赵县	2012-2013	228.3	8.4	1 494.1
Zhaoxian	2013-2014	95.5	10. 2	1 456.1
	2014-2015	136.4	10. 2	1 686.6
	2015-2016	219.8	9.9	1 538.5

1.2 试验方法

1.2.1 样品前处理 将收获后小麦进行晾晒,手工脱 粒。清理小麦籽粒中的石子、杂草等杂物,用去离子水 反复冲洗干净,38℃烘箱内烘干约 24 h 至恒重。

表 3 各试验站土壤铁、锌含量

Table 3 So	il iron and zinc content	at each pilot station
地域	铁含量	锌含量
Region	Iron content/($mg \cdot kg^{-1}$)	Zinc content/($mg \cdot kg^{-1}$)
杨凌 Yangling	34 638. 37±334. 15a	111.85±1.71b
辉县 Huixian	32 070. 85 \pm 285. 49b	125. 09±3. 89a
赵县 Zhaoxian	25 371.21±529.49c	64. 89±1. 43c

注:数值以平均值±标准差表示;同列不同字母表示差异显著(P< 0.05)。下同。

Note: Values in the table showed by Means \pm Standard deviations. Different lowercase letters in the same column mean significant differences at 0.05 level. The same as following.

1.2.2 小麦不同组分的获得 将经过前处理的小麦 籽粒用 FW80 高速万能粉碎机(天津泰斯特仪器有限 公司)粉碎,过 100 目筛,制备全麦粉样品。用 Milli-Q 超纯水(Millipore,USA)进行润麦,调整衡 5229 和周麦 16 小麦含水率至 14.5%,调整邯 6172 小麦含水率为 15%,润麦时间 24 h。采用 MLU-202 布勒磨粉机(瑞 士 Buhler)得到 3 个组分,即粗麸、细麸和面粉。粗麸 和细麸样品用高速万能粉碎机粉碎,过 100 目筛,烘干 备用。

 $/(\mathbf{mg} \cdot \mathbf{kg}^{-1})$

1.2.3 样品消解及测定 称取 0.25 g 样品于专用的 聚四氟乙烯微波消解罐中,加入6 mL 浓硝酸(BV-Ⅲ 级,北京化学试剂研究所)置于通风橱中消解2h后加 人2 mL H₂O₂(BV-Ⅲ级,北京化学试剂研究所),静置 0.5 h 后排气, 使酸溶液充分混合, 于 CEM Mars 240/ 50 微波消解仪(美国 Pynn 公司)进行消解,之后于赶 酸器上赶酸至1滴,静置冷却并定容至100 mL^[18]。每 批消解的小麦样品中加入一个空白和一个小麦标准物 质。利用 7500a 电感耦合等离子体质谱仪(inductively coupled plasma mass spectrometry, ICP-MS)(美国 Agilent 公司)测定所得样品中的 Fe 和 Zn 元素的含 量。每个小麦样品重复2次,当内标的 RSD 值>5% 时,需重新测定。由于小麦根系在土壤中主要分布在 0~100 cm 土层^[19],取这一区域土壤进行 Fe、Zn 含量 的测定结果见表3。

1.3 数据处理及质量控制

用 SPSS 22.0 软件分别对数据进行单因素方差分析、Duncan 多重比较分析和多因素方差分析。使用小 麦标准物质[GBW(E)100195]测定 2 种元素的回收 率在 90%~110%之间,方可使用。

2 结果与分析

2.1 全麦粉中 Fe、Zn 在不同因素间的差异

36 份小麦籽粒磨粉后所得全麦粉中 Fe、Zn 元素 含量的统计分析结果见表 4。全麦粉 Fe 含量的变幅 较大,且全麦粉 Zn 含量略高于 Fe。其中,全麦粉 Fe 含量为 17.76~38.81 mg·kg⁻¹,全麦粉 Zn 含量为 20.30~43.80 mg·kg⁻¹,与 Zhang 等^[20]的研究结果一 致。

表 4 不同地域、年际、基因型中小麦全麦粉中 Fe、Zn 元素含量 Table 4 Contents of Fe and Zn in whole wheat flour of different regions years and genotypes

1.000			铁 Fe			锌 Zn	
年际 Year	地域 Region	周麦 16 Zhoumai 16	衡 5229 Heng 5229	邯 6172 Han 6172	周麦 16 Zhoumai 16	衡 5229 Heng 5229	邯 6172 Han 6172
2012	杨凌	25. 89±1. 48ABa	19. 12±0. 94Ba	31. 23±3. 20Aa	27. 59±0. 93Ab	23. 24±0. 16Ac	27. 51±2. 33Ab
	辉县	31. 37±1. 21Aa	25. 80±2. 02Aa	31. 78±0. 24Aa	38. 69±2. 23Aa	38. 55±0. 75Aa	43. 80±4. 18Aa
	赵县	34. 16±2. 66Aa	27. 99±3. 67Aa	32. 33±4. 49Aa	35. 62±0. 12Aa	29.55±0.15Bb	33.98±0.72Aab
2013	杨凌	38. 81±0. 85Aa	18.76±1.69Cb	26. 13±0. 48Ba	33. 62±2. 01Aa	29. 25±0. 20Aa	33. 79±4. 98Aa
	辉县	34. 44±1. 15Aa	30. 65±1. 15Aa	33. 38±3. 53Aa	35.34±0.64Ba	33. 23±0. 95Ba	42. 65±0. 71Aa
	赵县	$28.65{\pm}1.25{\rm Ab}$	31. 16±3. 25Aa	29. 98±0. 78Aa	33. 09±0. 41Aa	31. 24±1. 81Aa	32. 18±1. 13Aa
2014	杨凌	28. 96±0. 66Aa	17. 76±2. 08Ba	23. 87±3. 44ABa	$20.\ 30{\pm}0.\ 59\mathrm{Bb}$	26. 85±0. 07Aa	25.98±1.63Ac
	辉县	31. 39±1. 91Aa	24. 32±1. 61Ba	31. 05±0. 59Aa	33. 19±0. 51Ba	28.76±1.62Ba	38. 81±0. 97Aa
	赵县	30. 64±3. 29Aa	29. 44±5. 85Aa	21. 62±1. 30Aa	33. 55±2. 31Aa	30. 28±6. 71Aa	33. 58 \pm 0. 26Ab
2015	杨凌	31. 52±3. 21Aa	30. 45±2. 66Aa	29. 50±2. 82Aab	22.87±0.50Bb	21. 93±0. 25Ba	27. 38±1. 20Ab
	辉县	35. 61±1. 88Aa	33. 60±2. 70Aa	35. 04±0. 84Aa	32. 44±0. 88Aa	25. 38±0. 30Ba	27.92±1.77ABb
	赵县	32. 59±3. 74Aa	29. 95±1. 59Aa	22. 57±2. 14Ab	31. 81±1. 02Aa	27. 42±3. 36Aa	34. 53±0. 18Aa

注:数值以平均值±标准差表示。同行不同大写字母表示差异显著(P<0.05);同列不同小写字母表示差异显著(P<0.05)。下同。

Note: Values were showed by means ± standard deviations. Different uppercase in the same row mean significant difference at 0.05 level. Different lowercase in the same column mean significant difference at 0.05 level. The same as following.

对 2012-2015 年在同一地域不同基因型全麦粉 Fe、Zn 含量(4 年平均值)进行单因素方差分析(表 5)。杨凌和辉县种植的衡 5229 全麦粉的 Fe 含量与周 麦 16、邯 6172 存在显著差异,而赵县不同基因型小麦 全麦粉 Fe 含量间无显著差异。辉县和赵县种植的周 麦 16 和邯 6172 全麦粉中 Zn 含量与衡 5229 全麦粉 Zn 含量存在显著差异。 对 2012-2015 年不同地域同一基因型小麦全麦 粉 Fe、Zn 含量进行单因素方差分析(表 6),不同地域 中全麦粉 Zn 含量存在显著差异,其平均值含量大小 为:辉县>赵县>杨凌。地域对全麦粉 Fe 含量的影响 因基因型不同而不同,其中周麦 16 的 Fe 含量在不同 地域无显著差异,衡 5229 的 Fe 含量在杨凌和赵县两 个地域间存在显著差异,邯 6172 的 Fe 含量在辉县和 ᇚᇳᇈᆂᇫᆂᇞᆂᇎ

 $(1 \text{ mask} a^{-1})$

		衣 3 小门垣	国空小麦主麦树中	·re、Zn 古里		
	Table 5 Co	ntents of Fe and Z	In in whole wheat f	lour among differe	ent genotypes	∕(mg•kg ⁻¹)
基因型		铁 Fe			锌 Zn	
Genotype	杨凌 Yangling	辉县 Huixian	赵县 Zhaoxian	杨凌 Yangling	辉县 Huixian	赵县 Zhaoxian
周麦 16 Zhoumai 16	31. 29±1. 55a	33. 21±0. 60a	31. 51±2. 73a	26. 09±0. 46a	34.92±0.37b	33. 52±0. 25a
衡 5229 Heng 5229	21.52 ± 1.84 b	28. 59 \pm 1. 30b	29.64±3.59a	25. 32±0. 04a	31.48±0.75c	29.62±0.35b
邯 6172 Han 6172	27. 68±2. 24a	32. 81±0. 76a	26. 62±1. 79a	28.66±1.93a	38. 30±1. 41a	33. 57±0. 01a

表 6 不同地域小麦全麦粉中 Fe、Zn 含量

Table 6 Contents of Fe and Zn in whole wheat flour among different region $/(mg \cdot kg^{-1})$

地域		铁 Fe			锌 Zn	
Region	周麦 16 Zhoumai 16	衡 5229 Heng 5229	邯 6172 Han 6172	周麦 16 Zhoumai 16	衡 5229 Heng 5229	邯 6172 Han 6172
杨凌 Yangling	31. 29±1. 55a	$21.52 \pm 1.84 \mathrm{b}$	27.68±2.24ab	26.09 \pm 0.46c	$25.32 \pm 0.04 c$	28.66±1.93c
辉县 Huixian	33. 21±0. 60a	28.60±1.30ab	32. 81±0. 76a	34. 92±0. 37a	31. 48±0. 75a	38. 30±1. 41a
赵县 Zhaoxian	31. 51±2. 73a	29. 64±3. 59a	$26.62 \pm 1.79 \mathrm{b}$	33.52±0.25b	29.62±0.35b	33.57±0.01b

赵县两个地域间存在显著差异。

由表 7 可知,不同区域小麦全麦粉的 Fe、Zn 含量 在不同年际间存在显著差异。例如,衡 5229 全麦粉 Fe、Zn 含量在杨凌和辉县不同年际间均差异显著。但 年际对全麦粉 Fe、Zn 含量的影响无明显规律,年际间 的差异可能与特定地域每年的气候变化相关,主要包 括温度、降水量、日照时间等的变化。由表 8 可知,温 度、降水量、日照时间与全麦粉 Fe 含量之间无显著相 关关系。表3显示3个地域的土壤 Fe、Zn 含量均具有 显著差异,而与全麦粉 Fe、Zn 含量无显著相关关系,这 可能与土壤中 Fe 的分布及其有效性有关。因此,不同 年际对小麦全麦粉中 Fe、Zn 含量的影响有待作进一步 研究。

		Table 7 Colle	chies of i've and Z	in in whole wheat	t nour among u	nerent year	/ mg kg /
基因型	在EV		铁 Fe			锌 Zn	
Genotype	平所 Year	杨凌 Yangling	辉县 Huixian	赵县 Zhaoxian	杨凌 Yangling	辉县 Huixian	赵县 Zhaoxian
周麦 16	2012	25.89±1.48c	31. 37±1. 21a	34. 16±2. 66a	27.59 ± 0.93 b	38. 69±2. 23a	35. 63±0. 12a
Zhoumai 16	2013	38.81±0.85a	34. 44±1. 15a	28.65±1.25a	33. 63±2. 02a	35.35±0.64ab	33.09±0.42ab
	2014	28.96±0.66bc	31. 39±1. 91a	30. 64±3. 29a	20. 30±0. 59c	33.19±0.51b	33.55±2.31ab
	2015	31.52±3.21b	35. 61±1. 88a	32. 59±3. 74a	22. 87±0. 49c	$32.44 \pm 0.88 \mathrm{b}$	$31.81 \pm 1.02b$
衡 5229	2012	19.12±0.94b	25. 80±2. 02ab	27. 99±3. 67a	23.24±0.16c	38.55±0.75a	29.55±0.15a
Heng 5229	2013	$18.76 \pm 1.69 \mathrm{b}$	30.65±1.15ab	31. 16±3. 25a	29. 25±0. 20a	33.23±0.95b	31. 24±1. 81a
	2014	$17.76 \pm 2.08 \mathrm{b}$	24.32±1.61b	29.44±5.85a	$26.85{\pm}0.07\mathrm{b}$	28.76±1.62c	30. 28±6. 71a
	2015	30. 45±2. 66a	33. 60±2. 70a	29.95±1.59a	$21.93{\pm}0.25{\rm d}$	25.38±0.30c	27. 42±3. 36a
邯 6172	2012	31. 23±3. 20a	31. 78±0. 24a	32. 33±4. 49a	27. 51±2. 33a	43. 80±4. 18a	33. 98±0. 72a
Han 6172	2013	26. 13±0. 48a	33. 38±3. 53a	29.98±0.78ab	33. 79±4. 98a	42.65±0.71a	32. 18±1. 13a
	2014	23. 87±3. 44a	31.05±0.59a	21.62 ± 1.30 b	25. 98±1. 63a	38. 81±0. 97a	33. 58±0. 26a
	2015	29. 50±2. 82a	35. 04±0. 84a	22. 57±2. 14ab	27.38±1.20a	$27.92 \pm 1.77 \mathrm{b}$	34. 53±0. 18a

表 7 不同年际小麦全麦粉中 Fe、Zn 含量

Contants of Eq and Zn in whole wheat flour among different year

2.2 小麦制粉组分中 Fe、Zn 在不同因素间的差异

2.2.1 Fe、Zn 含量在小麦制粉组分中的差异 由表9 可知, Fe、Zn 含量在同一基因型小麦不同组分中均有

显著性差异,且粗麸、细麸和面粉的 Fe、Zn 含量依次减少。不同组分中 Fe 含量大小依次为周麦 16>邯 6172> 衡 5229,不同基因型粗麸与细麸中的 Fe 含量差异较

Table 8 Correlation	analysis	of iron and	zinc contents	in wheat kernel and	l environmental conc	litions
指标 Index	海拔 Altitude	温度 Temperature	降水量 Precipitation	日照时间 Duration of sunshine	土壤铁含量 Iron content in soil	土壤锌含量 Zinc content in soil
全麦粉 Fe 含量 Iron content of WWF	-0.51	-0.05	-0.41	0.09	0.23	0. 41
P值Pvalue	0.09	0.91	0.27	0. 81	0.66	0. 42
全麦粉 Zn 含量 Zinc content of WWF	-0.67*	0.14	-0.55	0. 17	-0.72	-0.33
P值Pvalue	0.01	0.71	0.13	0.67	0.11	0. 52

表 8 小麦籽粒铁、锌含量与不同环境条件的相关性系数

注:WWF 表示全麦粉;*表示差异显著(P<0.05)。

Note: WWF represents whole wheat flour. * indicate significant difference at 0.05 level.

17.61±3.28b

5.69±1.44c

大,其中粗麸中 Fe 含量为 29.07~84.27 mg·kg⁻¹(变 异系数为 55.99%),细麸为 17.61~53.89 mg·kg⁻¹(变 异系数为 50.83%), 而面粉中 Fe 含量相近, 在 5.69~ 8.55 mg·kg⁻¹之间(变异系数为 19.95%)。Zn 含量在 粗麸中为 87.49~97.03 mg・kg⁻¹ (变 异 系 数 为

5.78%),细麸中为64.17~69.98 mg·kg⁻¹(变异系数为 4.36%),面粉中在 7.59~9.09 mg·kg⁻¹之间(变异系 数为9.06%),不同基因型小麦制粉组分间 Zn 含量差 异不显著。

		衣9 个回归	v友利初组分的 F	e、Zn 召里汀忉		
	Table	e 9 Contents of	Fe、Zn in differen	t wheat milling p	roducts	∕(mg•k
		铁 Fe			锌 Zn	
组分 Components	周麦 16 Zhoumai 16	衡 5229 Heng 5229	邯 6172 Han 6172	周麦 16 Zhoumai 16	衡 5229 Heng 5229	邯 6172 Han 6172
粗麸 Bran	84. 27±23. 50a	29. 07±5. 83a	41.66±9.95a	88. 44±20. 14a	87. 49±13. 79a	97.03±21.20a

35 56+6 10h

7.44±1.60c

69.98±14.75b

7.59±1.52c

木

2.2.2 不同小麦制粉组分中 Fe、Zn 含量的多因素方 差分析 由表 10 可知,不同小麦制粉组分中 Fe 含量 受到所有因素(年际、地域、基因型、年际×地域、年际× 基因型、地域×基因型、年际×地域×基因型)的极显著 影响(P<0.01)。基因型对全麦粉 Fe 含量的方差贡献 率最大,为33.96%,是主要影响因素;其次是地域因 素,为25.53%。粗麸中Fe含量受基因型的影响最大, 其方差贡献率为 84.95%,基因型对细麸中 Fe 含量的 方差贡献率仅次于粗麸,为75.49%。各因素对面粉 中 Fe 含量的方差贡献率在 7.48%~23.31%之间,其 中基因型和年际为主要影响因素,分别为23.31%和 20.48%

53 89+22 89h

8.55±5.62c

由表 11 可知,粗麸、细麸、面粉中的 Zn 含量受到 所有因素(年际、地域、基因型、年际×地域、年际×基因 型、地域×基因型、年际×地域×基因型)的极显著影响 (P<0.01),年际、地域和基因型均对小麦全麦粉 Zn 含 量有极显著影响(P<0.01),年际×地域、地域×基因型 及年际×地域×基因型对全麦粉 Zn 含量影响显著(P< 0.05),年际×基因型对其无显著影响。其中,地域对 全麦粉中 Zn 含量的方差贡献率为 54.30%,为主要影 响因素:粗麸中Zn含量主要受到地域的影响,其方差 贡献率为 60.89%,年际对细麸中 Zn 含量影响的方差 贡献率为55.40%,为主要影响因素:在面粉中各因素 对 Zn 含量的方差贡献率范围为 3.66%~26.10%,方 差贡献率大小依次为:年际×地域(26.10%)、基因型 (24.87%)、年际(19.72%)。面粉中两者含量大小均 受到多种因素影响且各因素方差贡献率相近,无决定 性因素。此外,地域的影响程度随粗麸、细麸、面粉中 Zn 含量的减小而逐渐减弱。

64.17±12.52b

8.24±1.77c

讨论 3

小麦微量矿质元素含量受到地域、基因型、年际的 共同影响。在实际生产过程中,不同制粉组分有不同 用途,探究制粉产品中矿质元素的分布及不同因素对 其影响程度具有实际意义。从小麦的生理特征来看, 矿质元素在种皮中含量最高,糊粉层高达10%以上, 胚乳中含量最低,仅为0.3%~0.5%[21]。在实际的制

•kg⁻¹)

66.57±15.40b

9.09±2.27c

细麸 Fine bran

面粉 Flour

			Table 10 An	alysis of v	ariance for]	Fe content in	different w	heat compon	ients			
	全支	洲 Whole whea	t flour		粗麸 Bran			细麸 Fine brar	_		面粉 Flour	
变异来源 Source of variation	自由度 Degree of freedom	平均方差 Average variance	方差贡献率 Variance contribution rate/%									
年际 Y	6	72.80 **	13.99	e	386. 22 **	1.64	e	431.65 **	4.13	e	43. 82 **	20.48
地域R	2	132. 89 **	25.53	2	1 232.56 **	5.21	2	648.57 **	6.20	2	22. 83 **	10.69
基因型 G	2	176.75 **	33.96	5	20 084. 32 **	84.95	2	7 896.28 **	75.49	2	49.87 **	23.31
年际×地域 Y×R	9	23.75 **	4.56	9	95.41 **	0.40	9	298.88 **	2.86	9	27. 79 **	13.00
年际×基因型 Y×G	9	30. 03 **	5.77	9	143.04 **	0.60	9	249.61 **	2.38	9	15. 99 **	7.48
地域×基因型 R×G	4	59.75 **	11.48	4	$1 305. 38^{**}$	5.52	4	516.59 **	4.94	4	34. 78 **	16.26
年际×地域×基因型 Y×R×G	12	24. 50 **	4.71	12	396.90 **	1.68	12	418.55 **	4.00	12	18. 79 **	8.78
误差 Error	36	6.08		36	20.19		36	5.18		36	0.81	
	全麦	· 粉 Whole whea	tt flour	1 In ciclim	租麸 Bran			细麸 Fine brar			面粉 Flour	
变异来源 Source of variation	自由度 Degree of freedom	平均方差 Average variance	方差贡献率 Variance contribution rate/%									
年际 Y	ε	133.85 **	17.28	3	1 261.74**	14.64	æ	1 861.32**	55.40	ю	10. 83 **	19.72
地域 R	2	420. 61 **	54.30	2	5 251. 05 **	60.89	2	310.97**	9.25	2	2. 01 **	3.66
基因型 G	2	133. 61 **	17.25	2	662. 69 **	7.68	2	204.90^{**}	6.10	2	13. 66 **	24.87
年际×地域 Y×R	9	54.07*	6.98	9	919.48**	10.66	9	170. 42 **	5.07	9	14.33	26.10
年际×基因型 Y×G	9	4.58	0.58	9	143. 90 **	1.67	9	198. 06 **	5.90	9	$6.\ 00^{**}$	10.92
地域×基因型 R×G	4	12.39^{*}	1.60	4	261. 65 **	3.03	4	263. 03 **	7.83	4	2. 76 **	5.03
年际×地域×基因型 Y×R×G	12	15.55*	2.01	12	122. 77 **	1.43	12	351.01 **	10.45	12	5. 33 **	9.70

1770

表10 不同小麦制粉组分中 Fre 含量的多因素方差分析

核农学报

33 卷

0.21

36

10.71

36

23.74

36

3.90

33

误差 Error

粉工艺中,由于润麦加水量、润麦时间、剥刮力度的不同,麸皮、次粉和面粉组分中矿质元素含量也略有变化。麦麸约占小麦籽粒的22%~25%,主要由果皮、种皮、糊粉层、少量胚和胚乳组成。粗麸是制粉加工过程中分离出的片状麸皮成分,营养构成为粗纤维、粗蛋白、淀粉以及多种矿质元素,与其他加工产品相比,含有更少的胚乳成分,但矿物元素含量最高;细麸为含有少量胚乳的颗粒状麦麸,包括次粉部分,约占小麦籽粒的5%^[22]。面粉主要由胚乳磨制而成,富含淀粉和蛋白质,其矿物质含量很低^[23]。本研究结果表明,不同小麦制粉组分间 Fe、Zn 矿质元素含量均有显著性差异,Fe、Zn 含量在粗麸、细麸和面粉中依次减少。

小麦籽粒结构导致各粉路中矿质元素的分布极不 均匀,不同因素对小麦制粉组分中的 Fe、Zn 含量的影 响程度发生了变化。本研究中,基因型是决定全麦粉 Fe 含量的最主要因素,不同基因型小麦全麦粉中 Fe 含量差异明显,这与前人研究结果一致^[24]。小麦全麦 粉中 Fe 含量的变化是不同因素共同作用的结果,如作 物基因型、根际土壤溶液中铁的浓度、介质 pH 值、介 质中磷的浓度等(影响土壤中铁的生物有效性)^[25]。 地域和年际对全麦粉中 Fe 含量的影响小于基因型。 另有学者研究发现,伊朗中部 137 个田块冬小麦籽粒 Fe 含量与土壤全 Fe、有效 Fe 含量均无显著相关关 系^[26]:法国小麦籽粒 Fe 含量与土壤有效 Fe 含量之间 也无相关性[27]。因此,小麦品种的选择对提高全麦粉 的 Fe 含量十分重要。本研究中,麦麸(粗麸、细麸)中 Fe 含量受基因型的影响尤为显著:但面粉中 Fe 含量 主要受基因型和年际的影响,基因型对面粉中 Fe 的影 响远小于其对麸皮中 Fe 的影响。而影响全麦粉 Zn 含 量主要因素为地域。地域因素包含土壤类型、土壤状 态、大气环境、水质、气候条件等^[28]。不同土质中的 Zn 含量具有明显差异,沙地土壤 Zn 含量低于壤土,黏 土中 Zn 含量最高^[29]。本研究中,辉县土壤为黏土(Zn 含量 125.09 mg·kg⁻¹),赵县为壤土(Zn 含量 64.89 mg·kg⁻¹),杨凌为棕壤土(Zn 含量 111.85 mg·kg⁻¹), 与上述研究趋势一致。不同土质中 Zn 形态与有效 Zn 相对含量的差异可能是地域对小麦全麦粉 Zn 影响显 著的原因。本研究发现基因型对小麦全麦粉 Zn 含量 有显著影响,这与张勇等^[30]通过对我国 6 个省区 240 个小麦品种和高代品系在同一地点种植发现,基因型 与小麦籽粒 Zn 含量存在一定的相关关系的结论一致。 本研究还发现基因型与年际对全麦粉 Zn 含量的影响 程度相近,均占总体的17%,远小于地域(54.30%)对 其的影响程度:粗麸中Zn含量受到地域的影响最为显

著,与全麦粉中 Zn 受地域影响最为显著的结果一致, 且地域的影响程度随粗麸、细麸、面粉中 Zn 含量的减 小而逐渐减小;面粉中影响 Zn 含量的主要因素有年际 ×地域、基因型、年际,且影响程度相近,地域对其的影 响程度仅占 3.66%。

综上,在实际生产过程中建议选择高 Fe 小麦品 种,以提高其 Fe 的含量,需从基因型、年际和地域的互 作角度考虑高 Zn 面粉的获得。添加外源性铁剂、锌剂 也可获得富铁锌面粉,但其有效性与稳定性有待进一 步研究。

4 结论

基因型对本研究全麦粉 Fe 含量影响最为显著,地 域是影响全麦粉 Zn 含量的最重要因素,说明种植特定 基因型的小麦能有效提高全麦粉中 Fe 元素的含量,选 择适宜的地域种植能有效达到提高小麦籽粒 Zn 的目 的。矿质元素在小麦籽粒中的分布不均,粗麸、细麸、 面粉中 Fe、Zn 含量依次减少;面粉中影响 Fe 含量的最 主要因素为基因型、年际,影响 Zn 含量的主要影响因 素为年际×地域、基因型、年际,这些因素影响程度相 近,占比在 20%~30%之间。

参考文献:

- Liu Z H, Wang H Y, Wang X E, Zhang G P, Chen P D, Liu D J. Genotypic and spike positional difference in grain phytase activity, phytate, inorganic phosphorus, iron, and zinc contents in wheat (*Triticum aestivum* L.) [J]. Journal of Cereal Science, 2006, 44 (2): 212-219
- [2] 旷满华,杨青廷,翦耀文,熊文婧,高露,让蔚清.儿童缺铁性贫血与血铅水平关系的 Meta 分析[J].中华疾病控制杂志,2016,20(1):79-83
- [3] 陆勤丰. 锌强化营养小麦粉开发的实证研究[J]. 食品科技, 2006(6):109-112
- [4] Okam M M, Koch T A, Tran M H. Iron supplementation, response in iron-deficiency anemia: Analysis of five trials[J]. The American Journal of Medicine, 2017, 130(8):1-8
- [5] Rao Narasinga B S. Anaemia and micronutrient deficiencies [J]. The National Medical Journal of India, 2003, 16(Suppl 2):46-50
- [6] Prasad A S. Zinc deficiency [J]. British Medical Journal, 2003, 326 (7386): 409-410
- [7] 张帼英. 食用强化铁、锌酱油对纠正儿童铁、锌缺乏的效果观察 [J]. 中国社区医师, 1998(5):48
- [8] 张金磊,李路平.中国生物强化富铁小麦营养干预居民缺铁性贫血疾病负担分析[J].中国农业科技导报,2014,16(6):132-142
- [9] Gregorio G B. Progress in breeding for trace minerals in staple crops
 [J]. The Journal of Nutrition, 2002, 132(3): 500-502

- [10] Bouis H E. Plant breeding: A new tool for fighting micronutrient malnutrition[J]. The Journal of Nutrition, 2002, 132(3): 491-494
- [11] Schachatman D P, Barker S J. Molecular approaches for increasing the micronutrient density in edible portion of food crops[J]. Field Crops Research, 1999, 60(1): 81–92
- [12] Zhao H Y, Guo B L, Wei Y M, Zhang B. Multi-element composition of wheat grain and provenance soil and their potentialities asfingerprints of geographical origin [J]. Journal of Cereal Science, 2013, 57(3): 391-397
- Podio N S, Baroni M V, Badini R G, Inga M, Ostera H A, Cagnoni M, Gautier E A, Garcia P P, Hoogewerff J, Wunderlin D A. Elemental and isotopic fingerprint of Argentinean wheat. Matching soil, water, and crop composition differentiate provenance [J]. Journal of Agricultural and Food Chemistry, 2013, 61(16): 3763– 3773
- [14] 张正仁,宋长铣. 土壤环境和植物基因型与土壤中微量元素的 关系[J]. 南京大学学报(自然科学版), 1992(3): 472-478
- [15] 姜丽娜, 蒿宝珍, 张黛静, 邵云, 李春喜. 小麦籽粒 Zn、Fe、Mn、Cu 含量的基因型和环境差异及与产量关系的研究[J]. 中国生态农业学报, 2010, 18(5): 982-987
- [16] 刘晓东,张爱霞,王桂荣,王慧军.品种与地域因素对谷子中 Fe、Zn、Mg和Se元素含量影响的研究[J].河北农业科学, 2011,15(10):7-10,108
- [17] 贾爱霞, 王晓曦, 王绍文, 董秋晨, 冯攀屹, 刘亚楠. 小麦的营养组分及加工过程中的变化[J]. 粮食与食品工业, 2010, 17
 (2): 4-6, 17
- [18] Liu H, Wei Y, Zhang Y, Wei S, Zhang S, Guo B. The effectiveness of multi-element fingerprints for identifying the geographical origin of wheat [J]. International Journal of Food Science and Technology, 2017, 52(4): 1018-1025
- [19] 邱新强,高阳,黄玲,李新强,孙景生,段爱旺.冬小麦根系形态性状及分布[J].中国农业科学,2013,46(11):2211-2219

- [20] Zhang Y, Song Q C, Yan J, Tang J W, Zhao R R, Zhang Y Q, He Z H, Zou C Q, Ortiz-Monasterio I. Mineral element concentrations in grains of Chinese wheat cultivars [J]. Euphytica, 2010, 174 (3): 303-313
- [21] 刘光辉.小麦籽粒理化特性及面粉生产方法概述[J].大麦与谷 类科学,2017,34(5):56-61
- [22] 魏帅.小麦制粉系统各粉路产品重金属及蛋白含量相关性研究 [C]//中国食品科学技术学会.中国食品科学技术学会第十一 届年会论文摘要集.杭州:中国食品科学技术学会,2014:2
- [23] Fistes A, Rakic D, Takaci A. The function for estimating the separation efficiency of the wheat flour milling process [J]. Journal of Food Science and Technology-Mysore, 2013, 50(3): 609-614
- [24] 杨莉琳,刘小京,徐进,毛任钊.小麦籽粒微量元素含量的研究 进展[J].麦类作物学报,2008,28(6):1113-1117
- [25] Welch R M, Graham R D. Breeding for micronutrients in staple food crops from a human nutrition perspective [J]. Journal of Experimental Botany, 2004, 55(396): 353-364
- [26] Karami M, Afyuni M, Khoshgoftarmanesh A H, Papritz A, Schulin R. Grain zinc, iron, and copper concentrations of wheat grown in central Iran and their relationships with soil and climate variables [J]. Journal of Agricultural and Food Chemistry, 2009, 57(22): 10876-10882
- [27] Oury F X, Leenhardt F, Remesy C, Ghanliaud E, Duperrier B, Balfourier F, Charmet G. Genetic variability and stability of grain magnesium, zinc and iron concentrations in bread wheat [J]. European Journal of Agronomy, 2006, 25(2): 177-185
- [28] 赵广才.中国小麦种植区域的生态特点[J].麦类作物学报, 2010,30(4):684-686
- [29] 王雪梅,柴仲平,毛东雷.不同质地耕层土壤有效态微量元素含量特征[J].水土保持通报,2015,35(2):189-192
- [30] 张勇,王德森,张艳,何中虎.北方冬麦区小麦品种籽粒主要矿物质元素含量分布及其相关性分析[J].中国农业科学,2007
 (9):1871-1876

Iron and Zinc Content Variances in Wheat Milling Fractions and Their Influencing Factors

GONG Hanying¹ LI Ming^{2,*} LIU Hongyan² LU Daxin^{1,*}

(¹Beijing University of Agriculture, Beijing 102206;²Institute of Agro-products Processing Science and Technology, Chinese Academy of Agriculture Sciences, Beijing 100193)

Abstract: Increasing the trace element contents of wheat grains, such as Fe and Zn, is one of the important ways to solve the nutritional deficiencies for Chinese. Three wheat genotypes (Zhoumai 16, Heng 5229 and Han 6172) were grown in Huixian County (Henan Province), Yangling District (Shaanxi Province) and Zhao County (Hebei Province) from 2012 to 2015. Field trials were carried out in 3 plots with an area of 10 m² for each district, and the wheat varieties were grown according to the local wheat management experience. 36 wheat samples were collected and then they were milled to obtain the whole-wheat flour, flour, bran and fine bran were obtained by milling. The Fe and Zn contents within whole-wheat flour and milling products (coarse bran, fine bran and flour) were determined using inductively coupled plasma mass spectrometry(ICP-MS). Single factor analysis of variance and Duncan multiple comparisons were applied to analyze the differences of Fe and Zn contents among different wheat flour products of wheat from different regions, different genotypes and different years. Genotype had the most significant influence on the Fe content for the whole wheat flour in this study. Region was the most important factor affecting the Zn content for the whole wheat flour. The Fe and Zn contents in different wheat flour milling components were in the trend of Bran> Fine bran> Flour. Fe content of each component was most affected by genotype. Zn content of whole-wheat flour and bran was mostly affected by the region, and Zn content of the fine bran was the most affected by the harvest year. Year×regional interaction, the genotype and year showed the highest influence on the Zn content of in wheat flour (P < 0.01). The Fe and Zn contents were higher in whole-wheat flour than in flour, and it is feasible to increase their contents by selecting certain genotypes or choosing suitable areas for cultivation. This study can provide a theoretical reference for wheat planting and processing with a purpose of increasing the iron and zinc content in the staple food.

Keywords: wheat milling, Fe/Zn content, region, genotype, year