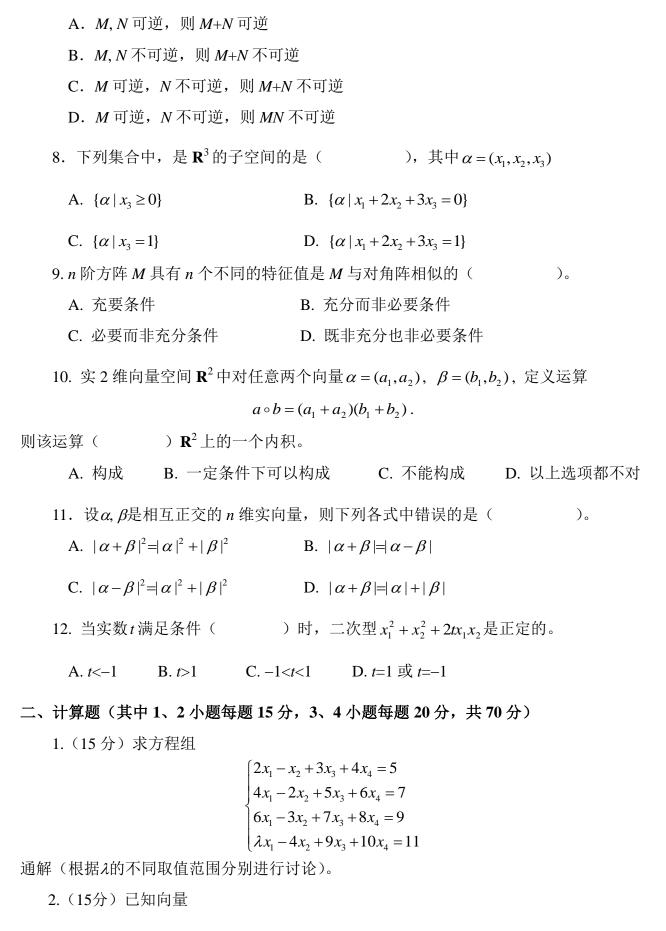
2017 年上海海事大学攻读硕士学位研究生入学考试试题

(重要提示: 答案必须做在答题纸上,做在试题上不给分)

考试科目代码_____考试科目名称____高等代数_

1. 在 <i>F</i> [x]里能整网	余任意多项式的多	项式是 ()	0
A. 零多项式	B. 零次多项式	C. 本原多项式	D. 不可约多项式
2. 行列式 4 1 3 -2 6 5	0 a 中,元素 a 的 -7	代数余子式是()。
A. $\begin{vmatrix} 4 & 0 \\ 6 & -7 \end{vmatrix}$	B. $\begin{vmatrix} 4 & 1 \\ 6 & 5 \end{vmatrix}$	$C \begin{vmatrix} 4 & 0 \\ 6 & -7 \end{vmatrix}$	D. $-\begin{vmatrix} 4 & 1 \\ 6 & 5 \end{vmatrix}$
3. 设 <i>M</i> 是 4 阶方	阵, <i>M</i> =-3, 则	$\left -2M^{2}\right = $)。
A. 18	B. –18	C. 144	D. –144
4. 设 M, N 均为 n	阶矩阵,则以下约	吉论正确的是()。
A. $ M+N = M + N $	V	B. <i>MN</i> = <i>NM</i>	
C. MN=NM		D. $(M-N)^2 = M^2 - 2M$	$N+N^2$
5. 要使矩阵 1 -1 2	$\begin{pmatrix} -1 & -2 \\ 1 & t \\ 3 & 4 \end{pmatrix}$ 的秩最小	、 ,则 <i>t</i> =()。
A. 2	B2	C. 3	D. –3
6. 设 α_1, α_2 是 n 维	向量,令		
	$\beta_1 = 2\alpha_2 - \alpha_1, \beta$	$\beta_2 = \alpha_1 + \alpha_2$, $\beta_3 = \alpha_1$	$\alpha_1 - \alpha_2$,
可量组 β_1,β_2,β_3 ()。		



$$\alpha_{1} = \begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \end{bmatrix}, \quad \alpha_{2} = \begin{bmatrix} 1 \\ -1 \\ -6 \\ 6 \end{bmatrix}, \quad \alpha_{3} = \begin{bmatrix} -2 \\ -1 \\ 2 \\ -9 \end{bmatrix}, \quad \alpha_{4} = \begin{bmatrix} 1 \\ 1 \\ -2 \\ 7 \end{bmatrix}.$$

求线性子空间 $W=L(\alpha_1,\alpha_2,\alpha_3,\alpha_4)$ 的维数与一个基。

3. (20分) 已知 σ 是线性空间V上的线性变换, σ 关于V的基的矩阵为

$$A = \begin{pmatrix} 4 & 6 & 0 \\ -3 & -5 & 0 \\ -3 & -6 & 1 \end{pmatrix}.$$

求矩阵T使A可对角化.

4. (20分) 求一个正交变换把下列二次型化成标准形

$$f(x_1, x_2, x_3) = x_1^2 - 2x_2^2 - 2x_3^2 - 4x_1x_2 + 4x_1x_3 + 8x_2x_3$$

三、证明题(每题10分,共20分)

1. (10分) 已知 $\alpha_1, \alpha_2, \dots, \alpha_{s+1}$ 是s+1个向量, $\alpha_{s+1} \neq 0$. 而向量 $\beta_1, \beta_2, \dots, \beta_s$ 满足以下条件 $\beta_i = \alpha_i + t\alpha_{s+1}, t \in R;$ 且对于任意 $t, \beta_1, \beta_2, \dots, \beta_s$ 线性无关。

求证向量 $\alpha_1, \alpha_2, \dots, \alpha_{s+1}$ 也线性无关。

2.(10分)设A为实 $m \times n$ 矩阵,试证 $A^T A$ 与A有相同的秩,即 $r(A^T A) = r(A)$.