DOI:10.16334/j.cnki.cn31-1652/k.2004.03.001 第16卷第3期

2004年8月

文物保护与考古科学 SCIENCES OF CONSERVATION AND ARCHAEOLOGY

文章编号:1005-1538(2004)03-0001-06

[•]研究报告[•]

历代耀州窑釉料渊源关系的初步分析

李国霞1,高正耀1,赵维娟1,李融武2,谢建忠1,

郭 敏¹, 冯松林³, 禚振西⁴, 范东宇³, 张 颖³, 柴之芳³
(1. 郑州大学物理工程学院, 河南郑州 450052 2. 北京师范大学物理系, 北京 100875;
3. 中国科学院高能物理研究所, 北京 100080; 4. 陕西省考古研究所, 陕西西安 710054)

摘要: 耀州窑是我国古代著名瓷窑。为了探讨历代耀州窑釉料之间的渊源关系,用中子活化分析(NAA)技术测定 古耀州瓷釉样品和耀州窑博物馆附近粘土矿样品中 29 种元素的含量,将这批 NAA 数据进行模糊聚类分析,得到动 态模糊聚类分析图。结果表明:唐代的黑瓷釉原料产地非常集中,矿料成分单纯。宋代青瓷釉料配方比较稳定,五 代青瓷具有承前启后的作用。金代月白釉料成分和宋代青瓷釉料接近。唐三彩蓝釉料与其他耀州瓷釉料来源明 显不同。

关键词: 古耀州窑;釉料;微量元素;渊源关系;中子活化分析;模糊聚类分析

中图分类号: K876.3 文献标识码: A

耀州窑是我国古代著名瓷窑,在宋代以前称黄 堡窑,其窑址位于陕西省铜川市西南20公里黄堡 镇,窑址分布范围 5 公里左右。自 20 世纪 50 年代 以来,由陕西省考古研究所等单位进行了三次大规 模发掘、出土了包括唐、宋、金、元各时期的青釉瓷瓷 片,为深入研究提供了极有价值的资料。唐代耀州 窑是烧造中国陶瓷品种最多的一个窑场,出产有白 瓷、青瓷、黑瓷、花釉瓷、茶叶末釉瓷和素胎黑花、黑 釉剔花填彩、白釉绿彩、白釉褐彩、青釉白彩以及唐 三彩等;五代以烧青瓷为主,创烧出天青、淡天青釉, 开辟了中国烧造天青瓷的先河,多素面,间有雕花、 贴花和划花;宋代创造了独具风格的青瓷刻花和印 花装饰工艺,被誉为中国宋代青瓷刻花之最,为中国 的陶瓷艺术史增添了不朽的光彩^[1-3]。有关学者曾 对耀州瓷的科学技术问题进行过深入的研究,但以 往的研究多是针对某一个时代的瓷器,采用的方法 多是化学分析和显微结构分析^[4]。这些时间跨越几 百年,釉色迥然不同,出自不同窑口的耀州瓷釉,其 原料产地是否相同? 古耀州兔毫瓷釉、唐三彩和其 它的耀州瓷釉之间存在什么关系?这些是困扰考古 学界的问题。古陶瓷中微量元素的成分和含量,是 人工不能控制的,但它却反映出原料产地的特征^[5]。 本工作用中子活化分析^[6]测量了耀州瓷釉中 29 种 元素的含量,并对这些元素成分进行模糊聚类分析, 得到有关这些耀州瓷釉原料分类的信息,这些信息 可为研究古耀州瓷的渊源关系提供依据。

1 样品的选取和制备

从耀州窑博物馆选取古耀州瓷釉样品 17 个,釉 色有黑、白、月白、绿、酱、茶叶末、米黄色等,烧造年 代跨越唐、五代、宋、金。另选耀州窑博物馆附近粘 土矿样品 4 个。这些样品都具有一定的代表性,其 代号、年代、窑址、名称、釉色列于表 1。

表 1 耀州瓷瓷釉样品和耀州窑博物馆附近粘土矿样品 Table 1 Samples of Yaozhou porcelain glazes and clay minerals

	*	*	0		
样品代号	年代	窑址	样品名称	釉色	
Y24g	唐代	耀州窑	黑瓷瓷釉	黑	
Y25g	唐代	耀州窑	黑瓷瓷釉	黑	
Y26g	唐代	耀州窑	茶叶末瓷釉	棕黑	
Y27g	唐代	耀州窑	白瓷瓷釉	米黄	
Y31g	唐代	耀州窑	外表面青釉内	00	
			黑釉,取黑釉	***	
Y36g	唐代	耀州窑	黑瓷瓷釉	黑	
Y45g	唐代	耀州窑	青瓷瓷釉	淡青	

基金项目: 国家自然科学基金(10175053, 10205013); 河南省教育厅自然科学研究基金(2003140024)

作者简介: 李国霞(1952-)女, 1976 年毕业于郑州大学 半导体专业, 教授 郑州大学物理工程学院, 450052, E-mail; liguoxia@zau. edu. en (C)1994-2019 China Academic Journal Electronic Publishing House. All rights reserved. http://www.enki.net

收稿日期: 2003-08-19; 修回日期: 2003-12-09

 $(\mu_{g/g})$

(续表 1)								
样品代号	骨年代	窑址	样品名称	釉色				
Y51g	五 代 晩 至宋初	耀州窑	青瓷瓷釉	青				
Y53g	宋代	耀州窑	青瓷瓷釉	豆绿				
Y54g	宋代	耀州窑	青瓷瓷釉	青				
Y55g	宋代	耀州窑	青瓷瓷釉	灰青				
Y61g	宋代	耀州窑	兔毫瓷釉	棕黑				
Y63g	宋代	耀州窑	酱色瓷瓷釉	酱色				
Y66g	金代	耀州窑	月白瓷瓷釉	淡粉青				
Y67g	金代	耀州窑	月白瓷瓷釉	淡粉青				
Y75bg	唐代	耀州窑	三彩,蓝釉	蓝				
Y76bg	唐代	耀州窑	三彩陶,蓝釉	蓝				
YZG		耀州 窑 博 物 馆附近	紫坩料					
YG		耀州 窑 博 物 馆附近	坩料					
YL		耀州 窑 博 物 馆附近	黄土					
YQG		耀州窑 博 物 馆附近	鸽青料					

2 中子活化分析实验

将样品的胎和釉分开,将一定量的样品粉末和

标样一同放入中国原子能科学研究院的重水反应堆 中辐照 8 小时,中子注入量为 $(3 \sim 7) \times 10^{13} \, \text{m}^{-2}$ 。 s^{-1} , 辐照的样品冷却 7~8 天后, 进行第 1 次 γ 射线 强度测量, 冷却 $15 \sim 20$ 天后进行第 2 次 γ 射线强度 测量。用中国科学院高能物理研究所的高纯锗多道 γ 谱仪测量 γ 射线强度, 用高能物理研究所提供的 混标和活化分析程序对 γ射线能谱进行核素识别、 对峰面积求和、扣除干扰以及各种校正,最后与高能 物理研究所标准物质比较给出样品高干探测极限的 各元素的含量。NAA 数据的置信水平为 90%,单位 为 $\mu_{g/g}$ 。即多数元素的 NAA 数据误差为 $\pm 10\%$ 。 用中子活化分析法测得每个样品的 29 种元素含量 见表2所示。其中,稀十元素8种,包括La、Ce、Nd、 Sm、Eu、Tb、Yb、Lu: 其它元素 21 种: Na、Sc、Cr、Fe、Co、 Ni Zn, As, Se, Rb, Sr, Zr, Mo, Sb, Cs, Ba, Hf, Ta, W, Th, U。在这些元素中,As、Mo、W的半衰期较短,在第1 次测量中得到这些元素含量的极限值。因为样品中 Ni 的含量极少,所以其含量也是极限值。Na、Fe 是 常量元素、其余为微量元素。

表 2 古耀州瓷釉胎29种元素中子活化分析结果

Table 2 The results of neutron activation analysis on 29 elements

元 素 样品编号 La Sm W U Na As Mo Ce Nd Eu Tb Yb Īπ Hf Ta YL 38.3 5.91 2.18 5.94 9390 14.2 14.2 68.4 23.3 1.14 0.902 2.3 0.406 5.46 0.893 YZG 35.2 4.25 2.25 7.37 420 2.63 2.6375.1 7.45 0.968 1.11 8.82 1.32 28.9 1.65 YG 259 16.1 7,0946 6,99 1180 4.2 4.2 384 112 2.68 2.07 8.11 1.22 7.49 1.45 YQG 378 39.4 8.93 5.84 630 3.9743 3.747 294 202 6.64 4.51 13.4 2.04 19.1 1.89 Y24G 38.6 5.16 3.28 2.68 4830 6.86 2.0176.5 20.8 1.48 1.23 2.84 0.388 6.74 1.27 3.57 3.34 2.2 75.2 16.5 1.45 0.383 Y25G 38 5.57 5530 14.2 1.39 2.6 7.15 1.24 2.93 63. 2 20.12.77 1.63 5180 10.41.7 15.2 1.1 0.941 2.83 0.419 6.79 Y26G 1.1 Y27G 37.9 4.4 3.26 6.73 1590 2.2 2.11 72 6.3 0.977 0.983 3.72 0.486 10.5 3.34 3.37 2.09 74.3 Y31G 37.5 4.91 3.5 4880 2.19 16.1 1.32 1.25 2.55 0.452 7.66 1.48 Y36G 33.7 4 97 3.79 2.64 6150 2.11 2.13 69.9 17.9 1.45 1.02 2.43 0.399 6.53 1.13 Y45G 32.9 4.75 2.62 3.29 1980 2.07 1.97 73.6 21.5 0.438 1.07 3.26 0.531 5.18 1.53 Y51G 34.1 4.28 2,69 4.95 2620 6.53 2.05 72.2 5.36 1.04 1.04 3.3 0.575 4.63 2.42 Y53G 32 3.94 2.64 3.34 5300 2.64 2 66.3 5.38 0.706 0.853 2.91 0.42 4.46 2.29 Y54G 30.4 3.75 2.58 3.41 2220 2.24 1.95 60.3 5.15 0.884 0.723 2.60.391 4.35 2.24 Y55G 34.3 3.88 2.71 3.62 3190 2.57 1.92 67.8 5.11 0.795 0.859 2.720.462 4.75 2.11 101 1.7 48.8 6.08 4.25 6.16 4900 2.4 19.2 0.526 8.12 1.46 Y61G 11.9 1.23 3.39 49.7 4,48 3.36 3120 2.82 2.41 103 2.28 0.559 7.54 Y63G 6.5 17.5 1.26 3.3 1.33 Y66G 34.1 3.99 2.71 3.76 3170 2.31 1.96 69.8 5.13 0.763 0.883 2.88 0.441 4.58 2.53 Y67G 31.7 3.69 2.73 2.86 2090 2.29 1.97 65 5.14 1 0.808 2.73 0.396 4 2.3 Y75BG 34.5 5.43 3.7 4.15 5350 12.6 5.82 60.8 8.85 0.782 0.781 2.9 0.511 8.35 1.43 Y76BG 44.4 5.63 4.87 4.96 3270 21.3 4.57 80.9 21.1 1.72 0.984 3.06 0.566 8.26 1.8

(C)1994-2019 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net

2

(续表2)

杆品编号	Th	Se	Sc	Cr	Fe	Ni	Со	Zn	Rb	Sr	Zr	Sb	Cs	Ba
YL	10.9	1.25	10.8	60.8	29500	54.2	11.8	5.05	88.3	80.4	120	1.65	6.5	537
YZG	26.4	17.5	21.6	39.7	33600	70.9	1. 08	6.28	74.3	106	1060	1.61	8.63	49.1
YG	27.1	1.73	22.6	51.5	7580	69.7	5	6.4	81.1	478	156	0.171	11.1	155
YQG	43.6	10.7	20	304	1 1900	66.6	2.11	6.96	70.3	101	1050	0.165	5.89	48.6
Y24G	13.7	1.19	15.2	74	36000	68.5	14.1	5.77	92.6	282	136	1.38	6.36	432
Y25G	13.7	1.27	15	77	38100	73.6	14.4	6.11	1 12	283	491	1.64	7.62	570
Y26G	12.2	3.62	13	73.8	33200	91	13.4	89.4	100	116	181	2.34	6.95	568
Y27G	27.8	1.26	14.6	66.7	7930	61.4	2.09	4.74	97.4	391	436	0.787	11.2	225
Y31G	15.2	1.22	14.2	75.2	31000	68.3	10.5	5.62	99.5	390	566	0.55	8.95	478
Y36G	12.4	1.24	13.9	80.2	36300	71.5	14.3	5.84	97	273	454	0.125	5.65	479
Y45G	22.6	2.41	4.25	15.9	10500	43.9	1. 9	3.7	106	468	98.6	0.0798	8.62	879
Y51G	31.4	1.14	4.3	13	12100	45.2	6.82	4.29	122	356	307	1.18	7.86	600
¥53G	29.7	1.14	4.19	13.7	1 1600	15.3	2.9	4.1	126	360	110	0.81	15.9	579
Y54G	28.6	1.09	3.88	11.1	13000	44	4.45	4.16	140	233	101	0. 768	9.34	585
¥55G	27.2	1.08	5.21	18.7	13100	44.7	2.86	3.85	122	532	108	0.519	15.2	525
Y61G	15.8	2.13	16.6	46	29900	73.6	12	6.05	106	244	493	1.91	11	436
Y63G	16.9	2.9	16.8	36.2	31000	74.2	15.6	6.13	128	228	154	1.81	10.4	508
Y66G	32.3	1.08	3.9	6.63	9480	40.9	1.62	3.75	147	272	340	0.517	10.1	573
Y67G	29.4	1.09	3.52	10.2	8210	40.5	2.42	3.77	130	341	249	0.752	8.93	505
Y75BG	14.3	2.18	10	54.2	22700	75.8	3.34	13.1	53.6	121	436	451	7.38	170
Y76BG	15	1.8	11.8	51.9	17800	69.4	3.19	10	44.4	105	144	236	6.32	168

3 模糊聚类分析结果

模糊聚类分析是根据模糊数学理论^[3],用模糊 矩阵的方法建立概念、发现规律、建立模型的一种方 法。用模糊聚类分析方法将样品分成若干类,每个 样品属于且仅属于其中的一类。把用中子活化分析 测得的每个耀州瓷瓷釉样品和耀州窑博物馆附近粘 土矿样品的 29 种元素的含量,用模糊聚类分析法进 行归类分析,得到如图 1 所示的动态模糊聚类分析 图。当 λ= 0.846 时,样品分为以下 13 类;

第1类:这一类是唐、宋时期耀州窑黑釉瓷的典型代表。包括了从Y36g到Y63g的6个样品。这6 个瓷釉样品的颜色都比较深,其中Y36g、Y24g、Y25g 是唐代的3个黑瓷釉样品,这3个样品间的关系非 常密切,它们的原料产地、成分、配方相同,当 λ = 0.883时聚为同类,可知成分非常简单,估计由一种 矿料组成。Y31g是唐代的外表面青釉内表面黑釉 样品的黑釉,与唐代黑釉样品关系密切,当 λ =0.861 时与唐代黑釉聚为同类。该样品可能是在唐代黑釉 的基础上略加改进而配成的釉料,Y61g是宋代兔毫 瓷釉样品,Y63g,是宋代酱色瓷釉样品,这两个样品 与黑釉瓷关系密切,可能在釉料配方上与黑釉略有 不同,在λ=0.846 时以上6 个样品聚为同类,它们 的原料产地、成分、配方比较接近。

第 2 类: Y26g, 这一类只有 1 个样品, 是唐代的 茶叶末瓷釉样品, 它和第一类深色瓷釉的原料明显 不同, 茶叶末瓷釉的成分可能比第 1 类瓷釉复杂。 当 λ=0.770 时, 它与第 1 类聚为同类。

第 3 类: YL 是耀州窑博物馆附近的黄土。与其 它粘土矿相比,它与深色瓷釉样品的关系稍微接近 一些。

第4类:这一类包括3个瓷釉样品,是宋代、金 代青釉瓷的代表。其中Y54g是宋代的青瓷釉样品; Y67g、Y66g是金代的月白瓷釉样品。这3个样品之 间的关系密切,在 $\lambda=0.866$ 时聚为同类,它们的原 料产地、成分、配方很接近,金代完全沿用了宋代的 青瓷釉料。

第5类:Y51g 是五代晚或宋代初期的青瓷釉样 品,它与宋、金时期的青瓷釉料有所不同,但关系较 近,当λ=0.829时与宋、金青瓷归为同类。

略加改进而配成的釉料, Y61g 是宋代兔毫 第 6 类: Y53g 与 Y55g 为宋代青瓷釉, 这两个青 Y63g 是宋代酱色瓷釉样品, 这两个样品。瓷与第 4 类的宋, 金青瓷釉明显不同, 这说明宋代青。 瓷釉的产地、成分、配方作过明显的变动,这种变动 可能使宋代耀州青瓷更趋成熟。当λ=0.807 时,它 与第4类归为同类。

第 7 类: Y45g, 唐代青瓷, 它与唐代黑瓷关系甚远, 与五代、宋、金青瓷也明显不同, 当 λ=0.766 时 与宋、金青瓷归为同类。

第8类: Y27g 是唐代的白瓷瓷釉。与第4、5、6、 7 类之间的关系甚远。白瓷很特殊,它的釉料在产 地、成分、配方方面与唐代黑瓷、青瓷完全不同。

唐代黑瓷瓷釉

唐代黑瓷瓷釉

唐代黑瓷瓷釉

宋代兔臺瓷釉

宋代酱色瓷釉

宋代青瓷瓷釉

金代月白瓷釉

金代月白瓷釉

宋代青瓷瓷釉

宋代青瓷瓷釉

唐代青瓷瓷釉

唐代白瓷瓷釉

唐代三彩蓝釉

唐代三彩蓝釉

耀窑博物馆附近坩

耀窑博物馆附近鸽青

耀窑博物馆附近紫坩

唐代茶叶末瓷釉

耀窑博物馆附近黄土

五代晚至宋初青瓷釉

唐代外青内黑取黑釉

第9、10类: Y75bg、Y76bg, 每类各有1个样品。

Y36g

Y24g

Y25g

Y31g

Y61g

Y63g

Y26g

Y54g

Y67g

Y66g

Y51g

Y53g

¥55g

Y45g

Y27g

Y75bg

Y76bg

YG

YQG

YZG

YL

它们是唐代的三彩陶蓝釉样品,尽管都是三彩陶,但 这两类样品之间的关系比较疏远,它们与耀州瓷釉 样品的关系疏远。

第11、12、13 类: YG、YQG、YZG, 每类各有1个样 品。其中 YG 是耀州窑博物馆附近的粘土矿坩料, YQG 是耀州窑博物馆附近的粘土矿鸽青料, YZG 是 耀州窑博物馆附近的粘土矿紫坩料。这3类样品之 间的关系疏远, 表明这三类样品的岩石矿物不同, 成 矿背景不同。基本上可以判定, 古耀州窑的釉料不 同于这三种矿料。

图 1 古耀州瓷瓷釉和耀州窑博物馆附近粘土矿的动态模糊聚类分析图

Fig. 1 The fuzzy cluster analysis for Yaozhou porcelain glazes and clay mineral samples

从以上分析可以看出,唐代耀州瓷黑釉的原料 产地非常集中,浅色瓷釉的原料产地分散。宋代青 瓷釉和金代月白瓷釉的原料产地接近。唐代的三彩 釉原料亮地稍分散些。Academic Journal Electronic Publi

4 结论

根据古耀州瓷釉模糊聚类分析的结果,分析得

見料 6 地 稍 分 散 些 A cademic Journal Electronic Publishing House, Alt Fight's teserved. Titp://www.cnki.net

(1) 唐代黑釉、青釉、白釉之间的关系: 唐代黑 瓷釉产地集中, 矿料成分单纯, 很可能由一种矿石构 成, 这种黑釉瓷很可能是唐代耀州窑早期就有的、基 本的产品。青釉瓷是在黑釉瓷的基础上研制出来 的, 青釉与黑釉明显不同、青釉原料的成分要复杂 些, 原料产地分散些。白瓷的釉料与黑瓷、青瓷釉料 关系甚远, 它的产地、岩矿成分和配方与黑釉、青釉 明显不同。在唐代黑瓷、青瓷、白瓷之中, 白瓷独树 一帜。

(2) 唐代、五代、宋代青釉之间的关系: 五代晚 至宋初的产品只有一个, 是青釉瓷, 从在模糊聚类分 析图上所处位置看, 它既有别于唐代青瓷, 又有别于 宋代青瓷, 而是处于由唐代向宋代的过渡阶段, 唐代 青瓷釉料成分复杂, 是青瓷发展的初级阶段, 产地分 散; 宋代青瓷釉料产地较为集中, 配方比较稳定, 是 青瓷发展比较成熟的阶段。五代青瓷具有承前启后 的作用。

(3) 宋、金时代的瓷器:宋代的兔毫釉、酱色釉 与唐代黑瓷关系密切,可能是在唐代黑瓷基础上发展起来的,金代月白釉完全继承了宋代青瓷釉,就是 说原料的产地、成分和配方与宋代相似。唐代茶叶 末釉作了较大的改进,是一个显著的创新。

(4) 唐三彩蓝釉与所有其它各类瓷釉关系甚远。唐三彩蓝釉样品的原料产地分散,它们和其它 耀州瓷釉样品的原料来源明显不同。

由于选取的样品数量较少,可靠性自然较差。所 以,以上分析结果难免偏颇,望有关学者给予指正。 参考文献:

 [1] 禚振西,杜葆仁.唐代黄堡窑址[M].北京:文物出版社 1990. 1~28.
 ZHUO Zhen - xi, DU Bao - ren. Tang Dynasty Huangbao Kiln sites.

Beijing: Cultural Relic Press 1990. 1~28.

[2] 禚振西,杜葆仁.五代黄堡窑址[M].北京:文物出版社,1993.
 1~15.
 ZHUO Zhen - xi, DU Bao - ren, The Five Dynasties Huangbao Kiln

ZHUO Zhen – xi, DU Bao – ren, The Five Dynasties Huanghao Kilr Sites, Beijing; Cultural Relic Press, 1993. 1~15.

[3] 禚振西,杜葆仁.宋代耀州窑址[M].北京:文物出版社,1998.
 1~26.
 ZHUO Zhen - xi, DU Bao - ren. Song Dynasty Yaozhou Kiln Sites. Bei-

jing Cultural Relic Press 1998. 1 ~ 26.

[4] 王芬,陈士萍,孙宏巍.五代耀窑青瓷的研究.'99 古陶瓷科学技 术国际讨论会论文集[C].上海:上海科学技术文献出版社, 1999.55~62.

WANG Fen. CHEN Shi – ping, SUN Hong – wei. Research on Yaozhou Celadon in the Five Dynasties Period in Proceedings of 1999 International Symposium on Ancient Ceramics[C]. Shanghai Science and Technology Press, 1999, 55 – 62.

- [5] 李士,秦广雍.现代实验技术在考古学中的应用[M].北京:科学技术出版社,1991.1.
 LI Shi, QIN Guang yong. Application of modern experiment technology in archeology[C]. Beijing: Science and Technology Press, 1991.1.
- [6] 高正耀, 王杰, 陈松华, 等. 用中子活化分析研究古汝瓷起源[J].
 原子能科学技术, 1996 31 (4), 360~364.
 GAO Zheng yao, WANG Jie, CHEN Song hua, et al. At Engry Sci Technol, 1996, 31 (4): 360 364.
- [7] 高正耀, 王杰 陈松华, 等. 古钧瓷和现代钧瓷的模糊聚类分析
 [J]. 核技术, 1997, 20 (9): 561~567.
 GAO Zheng yao, WANG Jie CHEN Song hua *et al.* Nucl Tech, 1997, 20 (9): 561~567.

Initial analysis of origin relations between glaze raw materials of past age Yaozhou Kilns

LI Guo – xia¹, GAO Zheng – yao¹, ZHAO Wei – juan¹, LI Rong – wu², XIE Jian – zhong¹, GUO Min¹, FENG Song – lin³, ZHUO Zhen – xi⁴, FAN Dong – yu³,

ZHANG Ying³, CHAI Zhi - fang³

(1. Faailty of Physical Engineering, Zhengzhou University, Zhengzhou 450052, China;

2. Department of Physics, Bajing Normal University, Beijing 100875, China;

3. Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100080, China;

4. Archaeology Research Institute, Shanxi Province, Xi' an 710000, China)

Abstract: Yaozhou kiln is one of the famous ancient kilns. In order to seek for the origin relations between glaze raw materials of Yaozhou kilns of past ages, the content of 29 elements in ancient Yaozhou porcelain glaze samples are measured by neutron activation analysis (NAA), the NAA data are statistically treated by fuzzy cluster method. The results indicate that the sources of raw materials of the black glazes in Tang Dynasty are very concentrated, and the mineral compositions are simple. The sources of raw materials of green glazes and the white glazes are scattered. The green glazes in Wu dynasty form a connecting link between the preceding and following. The batch formula of the green glazes in Song Dynasty is stable. The sources of raw materials of lunar whits glazes in Jin Dynasty are similar with the green glazes in Song dynasty. The sources of raw material of the Tang three color are scattered, and obviously not the same as other samples. **Key words:** Ancient Yaozhou kiln; Raw material of glaze; Trace element; Origin relation

°文 摘[。]

激光烧蚀 MC - ICP - MS 铅同位素分析作为罗马制币的指纹

为了证明激光烧蚀 MC - ICP - MS 铅同位素分析考古艺术品一罗马银币的可应用性,选择 14 枚取自英国大英博物馆的银币样品,并已知其制造地来源。其中,7 枚为公元 196 年罗马制造,另7 枚为公元 197 年 LAODICEA 制造。用激光烧蚀 MC - ICP - MS 同位素分析,并用传统方法和化学分析方法两者进行佐证。

样品从硬币上钻取,不需要经过化学处理。从罗马和 IAODICEA 和 DENA RII 的钻取物,用标准程序固定 于树脂中,并用一个新的波长 266nm 来研究,NdYAG 激光烧蚀系统连接到一个 VGP54 元素 MC [–] ICP [–] MS 进 行分析。分析样品表面被烧蚀剥离开,直到多余的树脂被移去,而金属被暴露在这个激光器中。用一个光栅 采样器剥离去薄薄的一层(仪器条件:光栅空间 100 $^{\mu}$ m,扫描速度 100 $^{\mu}$ m.S,每通过 5 $^{\mu}$ m 变化 Z,功率 35 %,频 率 10Hz,点的大小 $^{\mu}$ m),然后测量。NBS981标准溶液给出下列数值和重复性:对 100 $^{\mu}$ g/g PB 溶液添加 10 $^{\mu}$ g/g Tl,并持续摇动一整天,测得²⁰⁶Pb/²⁰⁴Pb=16.333 ±0.007%2σ;²⁰⁷Pb/²⁰⁴Pb=15.481±0.01%2σ;²⁰⁸Pb/²⁰⁴Pb= 36.688 ±0.019%2σ;²⁰⁷Pb/²⁰⁶Pb=0.91498 ±0.007%2σ;²⁰⁸Pb/²⁰⁶Pb=2.1667 ±0.0018%2σ(U=11)。这个数据 与从等离子体分析的结果一致。在测量中用 Tl 溶液提供恒定的监测。通过测定 NBS981标准溶液的重复性 提供了测量仪器的稳定性和精度的依据。

对样品多种分析给出的平均重复性为: 207 Pb/ 206 Pb= $\pm 0.015\%2\sigma$; 208 Pb/ 206 Pb= $\pm 0.023\%2\sigma$ 。这证明,本方法的精度至少是热电离分析法的两倍(热电离分析法的精度为 $\pm 0.04\%2\sigma$ 和 $\pm 0.07\%2\sigma$)。结果表明,用激光烧蚀 MC - ICP - MS 铅同位素分析可以清楚地区分在罗马制造的罗马 DENARII 和在 LAODICEA 制造的老风格硬币。因此,激光烧蚀 MC - ICP - MS 铅同位素分析被认为有潜力作为一种研究古代钱币和任何其它系列考古学上非铁金属样的一种技术。

钱俊龙 摘编自<archaeometry>2003,45(4):591-597