从微结构角度分析温度对水泥土强度形成的影响¹

胡昕¹,洪宝宁¹,闵紫超² ¹河海大学岩土工程研究所,江苏南京 210098) ²江苏新筑预应力工程有限公司,江苏南京 (210003) E-mail: <u>moyuan@126.com</u>

摘 要:为研究温度变化对水泥土强度形成的影响,将两种水泥土样分别在 25±2℃、10±2℃ 0±2℃的温度下进行养护,随后测试各龄期试样的无侧限抗压强度,并拍摄不同龄期各试样 的微结构图片,提取并分析微结构特征参数。研究表明:龄期(1~4 天内)较短时,水泥 土无侧限抗压强度对温度变化不敏感,在 7~40 天内,提高养护温度,水泥土无侧限抗压强 度显著增大;随着龄期的增长,水泥土微结构量化参数均发生了显著变化,且具有一定的规 律性;养护温度高于 10℃时,水泥土内部的水泥易于水化;粉土土粒之间缺少结构性联结 和相对较低的孔隙比造成了水泥粉土强度相对较低。

关键词:水泥土;微结构;温度变化;强度形成

中图分类号: TU411.92

1. 引言

水泥土材料来源广泛、价格低廉,物理力学性能远优于原状土,目前广泛应用于河道护 坡、水池护壁、基坑支护及路基的改良和加固建筑工程的复合地基等各类工程中,取得了良 好的技术经济效益。水泥土是依靠机械力搅拌或射流冲切,把软土与水泥浆(或粉)混拌在 一起形成的。水泥加入软土后,软土和水泥之间发生复杂的物理化学作用,水泥土所表现出 来的各种物理力学特性,都是其内在成分和微结构改变所致,故微结构对土的性质的变化起 着决定性的作用。

水泥土强度形成的影响因素众多,主要分为以下几类:①拟加固原状软土的土质和特性; ②水泥等固化料的成分、种类和掺合量;③养护环境条件和龄期;④拟加固原状土的含水量、 渗透性和施工工艺方式及水泥浆液的水灰比^[1]。目前,针对水泥掺入比、养护龄期、水泥自 身特性、原状土含水量及渗透性等影响因素的研究,国内外学者已开展了大量工作,并取得 了许多有价值的结论。有关温度变化对水泥土加固效果影响的研究,仅赵峥嵘等^[2]通过室内 水泥土在不同温度条件下的单轴抗压强度试验,从宏观上研究了温度、龄期与水泥土单轴抗 压强度三者之间的关系。而考虑微结构演化的水泥土强度形成研究一般均在固定影响因素的 条件下进行,主要从以下三个角度出发:①运用扫描电镜(SEM)、电子探针、透射电镜等 手段对水泥土的微结构进行直接关系,并结合宏观力学参数的变化对水泥土的固化机理进行 分析,如李俊才^[3]、王清^[4]、王文军^[5]等,这类方法往往制样技术复杂,费用昂贵,且不能 连续观测水泥土强度形成过程中微结构的变化;②运用压汞法、电阻率法间接测试水泥土微 结构的变化,如顾明芬等^{[6][7]},这类方法往往结构要素物理意义不明确,无法真实反映水泥 土强度形成过程中微结构的演化规律;③运用连续介质力学的方法,建立水泥土结构模型, 如黄新等^{[8][9]},这类方法对水泥土结构要素进行了过多简化,往往不能模拟水泥土强度形成 过程及其受温度、水等因素的影响。

由于上述研究不能从微结构演化角度分析温度及土性对水泥土强度形成的影响,本文运 用自主开发的微结构光学测试系统对不同养护温度下的两类水泥土的强度形成过程中微结

¹本课题得到国家自然科学基金项目(No. 50279008)和江苏省交通科学研究计划项目(No. 04Y017)的资助。

构的变化进行了全程跟踪观测,拍摄了相应的图片,提取了对应的微结构量化参数,根据微 结构量化参数的变化分析了水泥土的强度形成机理,并探讨了温度及土性变化对水泥土强度 形成的影响。

表 1 素土的基本物理力学参数 Tab.1 Basic physical mechanics parameters of plain soils								
类别	天然含水率	干 密 度	密 度	液限	塑限	渗透 系数	压缩模量	
	%	g/cm ³	g/cm ³	%	%	cm/s	MPa ⁻¹	
粉土	27.8	1.52	1.94	22.2	16.7	5.6×10 ⁻⁵	14.8	
粘土	36.7	1.31	1.81	47.2	28.3	1.1×10 ⁻⁷	2.55	
表2 水泥的主要技术指标测试值								

	1 aU.2 h	viani tec	minea	i cintena test	uata of cent	ent	
重水量	凝结时间(h)		安	胶砂强度	胶砂强度抗折/抗压		
而水重 (%)	初凝	终凝	定 性	3d	7d	28d	
25.2	2	3.5	合 格	4.17/22.4	5.32/29.9	6.42/38.76	

(a) 粘土

(b) 粉土

图 1 未加固素土的微结构图 Fig.2 Photomicrograph of unreinforced soils

2. 材料和方法

2.1 材料基本性质

本研究素土(粘土和粉土)取自连盐高速公路盐城段某取土坑,在进行水泥土试验之前, 为了解素土的基本物理力学性质,对其进行了一系列的常规试验:含水率试验、密度试验、 液塑限试验、渗透试验、颗粒级配试验和压缩试验。两种素土的基本物理力学性质见表1。 加固前的 SEM 显微结构图像如图2所示,可见未经加固的素土结构单元体的排列定向性十分 差,结构单元体均匀分布于土中,排列紧密程度较差。水泥为双猴牌水泥:32.5P·O,其主 要技术指标见表2。

2.2 试验方法

试验在制样时,先将试验土料过2mm筛,然后加水调整至天然含水量,并拌合均匀,放

置24小时后,取土料15%的干水泥掺入量,按水灰比1:2制成水泥浆,土料和水泥浆人工拌和 均匀,制成 Ø 3.91 cm×8 cm的半圆柱状试样。为了全面准确地反映不同温度条件下水泥土微 结构随龄期增长的变化规律,每个土样洗取并标定微结构观测特征点若干,利用微结构光学 测试系统拍摄各特征点的初始结构图片,然后将试样分别放置于温度为25±2℃、10±2℃、 0±2℃的环境下进行养护。在前14天每天对指定观测点拍摄一次微结构图片,随后每隔2~5 天拍摄一次,到40天时停止拍摄。图2为25℃养护温度下水泥粘土同一观测点部分龄期的微 结构图片系列,从图可以看出,随着龄期的增长水泥粘土的结构变得致密,孔隙明显减少。 对采集的微结构照片序列运用岩土所微结构实验室自行编制的Geoimage软件进行研究分 析,提取土样微结构形态参数,部分结果见表3所示。

3. 结果分析和讨论

水泥土的结构是由水泥胶结性水化物充分包裹胶结土颗粒和胶结性水化物或膨胀性水 化物填充土颗粒间的孔隙而构成^{[8][9][10]}。所以水泥土强度的增长主要来自于土体颗粒之间联 结的增强和土体密实度的增大。为直观而具体地分析水泥土强度形成机理以及温度和土性对 其的影响,下文将从宏观力学参数-无侧限抗压强度的演化规律和微结构量化参数演化特性 两个角度着手分析。

3.1 温度对水泥土强度形成影响分析

图 3 给出了一定温度下龄期与无侧限抗压强度的变化曲线。从图中可以看出,各龄期水 泥粘土的无侧限抗压强度均高于水泥粉土的无侧限抗压强度,这主要是粉土土粒之间缺少结 构性联结和相对较低的孔隙比造成的,本次试验粉土孔隙比为 0.769,粘土孔隙比为 1.076, 在水泥水化过程中,水泥凝胶体将使孔隙的连通率降低,水泥水化所需的水分迁移趋缓,使 得水泥水化速度减缓,导致同龄期的水泥粉土强度低于水泥粘土的强度:各养护温度下两类 水泥土的无侧限抗压强度均随龄期的延长而增加,60 天即能达到较高值,随龄期的增大强 度还会有所增加,然后趋于定值。

26天

图 4 给出了一定龄期下温度与无侧限抗压强度的变化曲线。从图中可以看出,在龄期较 短情况下(1~5天内),水泥土无侧限抗压强度对温度变化不敏感,但在7~40天龄期内, 提高养护温度,水泥土无侧限抗压强度显著增大:1天龄期的水泥土无侧限抗压强度随温度 变化的幅度几乎为零,此时的曲线平坦;然而随着龄期的慢慢加长,水泥土无侧限抗压强度 与温度变化的关系曲线开始增大。

3.2 从微结构演化角度分析水泥土强度形成

上节从宏观上分析了温度及土性对水泥土强度形成的影响。考虑到水泥土力学性能的改善是通过其内部微结构变化实现的,即其内部水泥不断水化,生成的胶结物不断向颗粒及颗粒集聚体之间的孔隙延伸,使水泥土骨架更加稳定。本节将借助于微结构试验获得的微结构量化参数,从微结构量化参数的变化分析探讨温度及土性对水泥土强度形成的影响。

Tab.3 Outcome table of microstructural quantitative analysis									
龄期	颗粒面 积比例	孔隙面 积比例	颗粒定 向度	颗粒分 布分维	孔隙定 向度	孔隙分 布分维	欧拉数	颗粒圆度	
天	%	%	_	_	_	_	_	_	
1	69.6	30.4	1.44	0.92	1.63	0.41	0.39	0.35	
7	74.6	25.4	1.47	0.79	1.61	0.50	0.47	0.50	
14	81.2	18.8	1.67	0.55	1.64	0.65	0.60	0.73	
26	88.1	11.9	1.64	0.37	1.51	0.82	0.73	0.89	
40	91.1	8.9	1.74	0.30	1.62	0.87	0.82	0.93	

表3 微结构定量分析成果表

3.2.1 颗粒面积比例演化特性分析

图 5 给出了不同温度水泥土颗粒面积比例随龄期的变化曲线。从图中可以看出:

随着龄期的增大,水泥土的颗粒面积比例逐步增大,内部的孔隙、微裂缝等缺陷逐步减 小,水泥土密实度增大。这主要与以下两个过程有关:①随着时间的推移,水泥不断水化, 其生成物逐步向颗粒集聚体间的孔隙延伸,形成颗粒集聚体间的胶结物,导致土体内部的孔 隙、微裂缝等缺陷减小,骨架稳定性增强,水泥土强度形成;②胶结性水化物或膨胀性水化 物填充土颗粒间的孔隙,以及水泥水化从周边不断吸收水分,导致土体失水收缩,水泥土密 实度增大。在龄期小于3天时,颗粒面积比例缓慢增大,且各养护温度下的水泥土颗粒面积 比例相差不大,说明该阶段水泥土内部水泥的水化速度缓慢,且温度对其影响不大;当龄期 在 3~35 天之间时,水泥土颗粒面积比例增大速度加快,但0℃养护的水泥土颗粒面积比例 增大速度仍相对较小,说明该阶段水泥水化速度加快,且温度较低时水化速度缓慢;当龄期 超过 35 天后,除 0℃养护的水泥土外,其余水泥土颗粒面积比例均增大速度均减小,说明 水泥水化速度趋缓,同时水泥土强度逐步趋于定值。

图 3 一定温度下龄期与无侧限抗压强度的变化曲线 Fig.3 Relation curve between age and uniaxial compressive strength under certain temperature

图 4 一定龄期下温度与无侧限抗压强度的变化曲线 Fig.4 Relation curve between temperature and uniaxial compressive strength under certain age

3.2.2 颗粒分布分维演化特性分析

颗粒分布分维反映了水泥土颗粒在平面的分布情况。一般来说,颗粒分布分维越大,说 明土中颗粒分布分散,颗粒的凌乱化程度越大,颗粒集团化程度越低,土体密度越大。图 6 给出了不同温度水泥土颗粒分布分维随龄期的变化曲线。从图中可以看出:

随着龄期的增加,水泥土的颗粒分布分维总体趋于减小,表明水泥土颗粒集团化程度提高,孔隙连通率减小,使得部分孔隙孤立,水泥土的受力性能得到不断改善,这一发展趋势与水泥土颗粒面积比例的演化规律一致。龄期在 0~5 天时,颗粒分布分维缓慢减小,各养护温度下的水泥土的颗粒分布分维相差不大,在 1.80~1.95 之间变化;当龄期在 5~30 天之间时,颗粒分布分维的增大速度最快,当龄期达到 30 天后,颗粒分布分维变化趋缓,说明水泥水化主要发生在 10~30 天之间。相同养护条件下的水泥粉土的颗粒分布分维均大于水泥粘土的颗粒分布分维,说明水泥粘土的颗粒分布相对紧凑,且颗粒之间的粘性联结相对较多,黏聚力较大。养护温度超过 10℃后,水泥土分布分维相差不大,且变化趋势基本一致,而养护温度低于 10℃时,水泥土分布分维相对较小,且减小速度缓慢,说明养护温度高于10℃时,水泥土内部的水泥易于水化。

3.2.3 欧拉数演化特性分析

欧拉数反映了土体内部颗粒之间的联结的好坏,较高的欧拉数意味着土体结构骨架稳定 性较好,在外界压力的作用之下不易产生变形破坏。图7给出了不同温度水泥土欧拉数随龄 期的变化曲线,从图中可以看出:

随着龄期的增加,水泥土的欧拉数总体趋于增大,说明水泥水化生成物增加了土体内部 颗粒之间的联结,从而使得水泥土骨架稳定性增强,强度提高。各养护温度下水泥土的欧拉 数均大于水泥粉土的欧拉数,同时水泥粘土欧拉数在40天内的增长幅度均高于水泥粉土的 增长幅度,说明水泥粘土内部的水泥更易水化。养护温度对水泥土欧拉数的变化有显著影响。 温度 0℃时,水泥土的欧拉数增大速度明显小于其他温度条件下的水泥土的欧拉数增大速 度,但当温度超过 20℃以后,水泥土的欧拉数增大速度再次减缓,说明存在一个最佳养护 温度—在该温度下养护,水泥土内部的水泥更易于水化。

3.2.4 颗粒圆度演化特性分析

颗粒圆度反映了土体颗粒接近于圆的程度,其值越大,颗粒形状越接近圆形。由于水泥 土内部的水泥在水化的过程中,生成物沿着颗粒及颗粒集聚体的外缘生长,使颗粒的等效直 径不断变大,导致水泥土颗粒圆度增大。因此水泥土颗粒圆度随龄期增长的变化情况反映了 内部水泥的水化情况。图8给出了不同温度水泥土颗粒圆度随龄期的变化曲线,从图可以看 出:

图 5 不同温度颗粒面积比例随龄期变化曲线 Fig.5 Relation between share of particle area and ages under different curing temperatures

图 6 不同温度颗粒分布分维随龄期变化曲线 Fig.6 Relation between particles' distributing fractal dimension and ages under different curing temperatures

中国科技论文在线

随着龄期的增加,水泥的水化,颗粒集聚体的圆度呈上升趋势,说明颗粒长短轴差值趋 于减小,颗粒形状趋向于饱满,而这种颗粒集聚体所构成的水泥土骨架抵抗外加荷载的能力 增强。水泥粉土颗粒的初始圆度大于水泥粘土的初始圆度,同时随着龄期的增加,水泥土圆 度的增长幅度明显小于水泥粘土的圆度增长幅度,再次验证了同等养护条件下同龄期水泥粘 土内部的水泥水化更为剧烈。

图 7 不同温度欧拉数随龄期变化曲线 Fig.7 Relation between Euler number and ages under different curing temperatures

图 8 不同温度颗粒圆度随龄期变化曲线 Fig.7 Relation between particles' circularity and ages under different curing temperatures

3.2.5 孔隙定向度演化特性分析

孔隙定向度反映了土体孔隙排列的有序化程度。定向度越小,孔隙排列的有序性越好, 越大,孔隙排列的有序性越差。图9给出了不同温度水泥土孔隙定向度随龄期的变化曲线, 从图可以看出:

各组水泥土的初始定向度均大于0.55,孔隙排列初始状态较为混乱,随着龄期的增加, 孔隙定向度并无明显变化规律,总体呈上下抖动状,说明水泥水化的其生成物延伸方向的任 意性导致水泥土孔隙长轴不断变换,孔隙定向性不断调整,但总体上并无明显规律性。

图 9 不同温度孔隙定向度随龄期变化曲线 Fig.9 Relation between pores' directional entropy and ages under different curing temperatures

4. 结语

通过对不同养护温度下两类水泥土内部微结构随龄期变化进行观测分析对进行观测,从 水泥土微结构变化角度分析了温度及土性对水泥土强度形成的影响,主要得到了以下几点结 论:

①各养护温度下水泥土的无侧限抗压强度均随龄期的延长而增加,强度形成有明显的阶段性: 0~3 天增大速度较小,且对养护温度变化不敏感; 3~10 天增大速度最大,10~60 天增速减缓,然后强度趋于定值。

中国科技论文在线

②随着龄期的增长,水泥土微结构量化参数均发生了显著变化,且具有一定的规律性。 同时水泥土内部水泥的水化与微结构量化参数的变化有显著的相关性,即水泥土微结构量化 参数的变化反映了水泥水化的程度。

③0~3 天内各养护温度下水泥土的微结构量化参数无显著变化,说明该阶段养护温度 对水泥土无显著影响,土颗粒的隔离作用延缓了水泥的水化。龄期超过3天后,养护温度对 微结构量化参数的变化有较为显著的影响。

④养护温度超过10℃后,水泥土微结构量化参数变化相差不大,且变化趋势基本一致, 而养护温度低于10℃时,水泥土微结构量化参数则与前者有显著差别,且变化速度缓慢, 说明养护温度高于10℃时,水泥土内部的水泥易于水化。

⑤粉土土粒之间缺少结构性联结和相对较低的孔隙比造成了水泥粉土强度相对较低。

参考文献

[1] Sergeyev Y M, Grabowska-Olszewska B, Osipov V I, etal. The classification of microstructures of clay soils[J]. Journal of Microscopy, 1980, 120(12): 237- 260.

[2] 李俊才,赵泽三,高国瑞.水泥土的微结构特征及分析[J]. 成都理工学院学报,2000,27(4):388-393.(LI Jun-cai, ZHAO Ze-san, GAO Guo-rui. Analysis and microstructure characters of cement-soil[J]. Chinese Journal of Chengdu University of Technology, 2000, 27(4):388-393.(in China)).

[3] Dudoignon P, Pantet A, Carrara L, etal. Macro-micro measurement of particle arrangement in sheared kaolinitic matrices[J]. Geotechnique, 2001, (6): 493-499.

[4] 王清,陈慧娥,蔡可易.水泥土微观结构特征的定量评价[J].岩土力学2003, 24(S1):12-16.(WANG Qing, CHEN Hui-e, CAI Ke-vi, Quantitative evaluation of microstructure features of soil contained some

cement[J].Chinese Journal of Rock and Soil Mechanics,2003,24(S1):12-16.(in China)).

[5] 顾明芬.水泥土强度及其微观结构的试验性研究[J].山西建筑, 2004, 30(19):59-60.(GU Ming-fen. Testing research of unconfined compressive strength and microcosmic structure in cement soil[J]. Chinese Journal of Shanxi Architecture, 2004, 30(19): 59-60.(in China)).

[6] 顾明芬,刘松玉,洪振舜,等.水泥土结构特性的定量化研究[J].岩土力学,2005,26(11):1862-1865,1868.(GU Ming-fen, LIU Song-yu, HONG Zhen-shun, etal. Qantifying research on structural characteristics of cemented soils[J].Chinese Journal of Rock and Soil Mechanics,2005,26(11):1862-1865,1868.(in China)).

[7] 王文军,朱向荣,方鹏飞.纳米硅粉水泥土固化机理研究[J].浙江大学学报(工学

版),2005,39(1):148-153.(WANG Wen-jun, ZHU Xiang-rong, FANG Peng-fei. Analysis on reinforcement mechanism of nanometer silica fume reinforced cemented clay. Chinese Journal of Zhejiang University(Engineering Science),2005,39(1):148-153.(in China)).

[8] 宁建国,黄新.固化土结构形成及强度形成机理试验[J]. 北京航空航天大学学报, 2006,32(1):97-102.(NING Jian-guo, HUANG Xing. Experiment on structural formation and mechanism of strength increa sing of stabilized soil[J]. Chinese Journal of Beijing University of Aeronautics and Astronautics, 2006.32(1):97-102. (in China)).

[9] 黄新,宁建国,郭 晔,等.水泥含量对固化土结构形成的影响研究[J]. 岩土工程学报,2006,28(4):436-441.(HUANG Xing, NING Jian-guo,GUO Ye, etal. Effect of cement content on the structural formation of stabilized soil[J]. Chinese Journal of Geotechnical Engineering,2006,28(4):436-441.(in China)).

Analysis on Effects of Temperature Fluctuation on Strength Formation of cement-stabilized soils in Micro-structural Terms

Hu Xin¹, Hong Baoning¹, Min Zichao²

¹Research Institute of Geotechnical Engineering, Hohai university, Nanjing, China (210098) ²The Xinzhu Pre-stress Engineering Corporation of Jiangsu Province, Nanjing, China (210003)

Abstract

In order to study effects of temperature fluctuation on gaining in strength, two distinct samples of cement-stabilized soils are conserved under $25\pm2^{\circ}C,10\pm2^{\circ}C,0\pm2^{\circ}C$, whereafter their uniaxial compressive strength are mensurated, their photomicrographs of different ages are shot and characteristic parameters of microstructures are pick-uped and analyzed. The study's findings indicate: when the stadium (within $1\sim4$ day) is shorter, the uniaxial compressive strength of cement-stabilized soils doesn't vary markedly accompanying with temperature variety, while $7\sim40$ day, advancing protected temperatures influences on their strength exaltation; accompanying with stadia increasing characteristic parameters of microstructures are all varying markedly and have certain regulation; when the curing temperature is over $10^{\circ}C$, the cement internal in cement-stabilized soils is easy to hydrate; because silt have no structural coupling between grains and have lower hole ratio, the cement-stabilized silt's strength is oppositely lower.

Keywords: cement-stabilized soils; microstructure; temperature fluctuation; gaining in strength

作者简介:胡昕(1979-),男,新疆阿勒泰人,博士研究生,主要从事岩土体微结构理论和试验研究工作。