The Price Model of Common Derivative Securities

Chen Shoudong Zhaozhenquan

Business School of

Jilin University, P.R.China, 130012

Abstract Considered the Random Differential Equation that state variables based on, the paper thinks that at least n+1 kinds of the price of exchangeable securities depend on PDE, its matrix and corresponding pricing express that some or all state variables meet.

Key words derivative securities, PDE, Ito

1 Introduction

When we discuss the Price Model of Derivative Securities, commonly we study the n state variables $\theta_i (1 \le i \le n)$, wich follow the continuous time $It\hat{o}$ extended model.^[1]

$$d\theta_i = m_i \theta_i dt + s_i \theta_i dW_i$$

We use the standard non-arbitrage method to give the Partial Differential Equation (PDE) that the price of the derivative securities $f(\cdot)$ satisfies, which only depends on the state variable $\theta_i (1 \le i \le n)$ and the time t,

$$\frac{\partial f}{\partial t} + \sum_{i=1}^{m} \theta_i \frac{\partial f}{\partial \theta_i} (m_i - \lambda_i s_i) + \frac{1}{2} \sum_{i,k=1}^{m} \rho_{ik} s_i s_k \theta_i \theta_k \frac{\partial^2 f}{\partial \theta_i \partial \theta_k} = rf$$

Among them, dW_i is the Wiener Process, parameter m_i and s_i are the expectation increasing ratio and fluctuating ratio of θ_i . r is the instant non-risk interest rate, ρ_{ik} is the correlation coefficient of dW_i and dW_k .

According to the PDE, after adding some definite boundary conditions, we can get the given derivative security.^[1]

In this discussion, the state variable θ_i which follows the $It\hat{o}$ process depends on dW_i . Let's start from the Random Differential Equation that the state variable follows, consider at least n securities, which prices rely on the PDE and their matrixes that some or all n state variables meet.

2 Models

Let the state variable $\theta^i (1 \le i \le n)$ follow the Random Differential Equation here:

$$\begin{cases} d\theta_t^1 = b^1(t,\theta_t)dt + \sum_{j=1}^n \sigma_{1j}(t,\theta_t)dW_t^j \\ \vdots \\ d\theta_t^{n1} = b^n(t,\theta_t)dt + \sum_{j=1}^n \sigma_{nj}(t,\theta_t)dW_t^j \end{cases}$$
(1)

Among them,

$$\boldsymbol{\theta}_{t} = (\boldsymbol{\theta}_{t}^{1}, \cdots, \boldsymbol{\theta}_{t}^{n})^{T}, \boldsymbol{\sigma}_{ij}(t, \boldsymbol{\theta}_{t}) = \operatorname{cov}(\boldsymbol{W}_{t}^{i}, \boldsymbol{W}_{t}^{j})$$

We write

$$b_{t} = (b^{1}(t,\theta_{t}),\cdots,b^{n}(t,\theta_{t}))^{T} = (b_{t}^{1},\cdots,b_{t}^{n})^{T}$$
$$W_{t} = (W^{1}(t),\cdots,W^{n}(t))^{T}, \Sigma = \begin{bmatrix} \sigma_{11} & \cdots & \sigma_{1n} \\ \vdots & \ddots & \vdots \\ \sigma_{n1} & \cdots & \sigma_{nn} \end{bmatrix} = (\sigma_{ij}(t,\theta))_{n \times n}$$

Define

$$dW = (dW_t^1, \cdots, dW_t^n)^T, d\theta(t) = (d\theta_t^1, \cdots, d\theta_t^n)^T$$

Then (1) can be expressed to

$$d\theta_t = b_t dt + \sum dW_t \tag{1}$$

,

Let $f(\cdot) \in C^2$ be any price of a exchangeable security, it depends on the state variable θ^j , according to the $It\hat{o}$ Theory, f follows the processes as below.

$$df = \frac{\partial f}{\partial t} dt + \sum_{i=1}^{n} \frac{\partial f}{\partial \theta^{i}} d\theta^{i} + \frac{1}{2} \sum_{i,j=1}^{n} \frac{\partial^{2} f}{\partial \theta^{i} \partial \theta^{j}} d\left\langle d\theta^{i}, d\theta^{j} \right\rangle$$
$$= \frac{\partial f}{\partial t} dt + \sum_{i=1}^{n} \frac{\partial f}{\partial \theta^{i}} [b_{t}^{i} dt + \sum_{j=1}^{n} \sigma_{ij} dW^{j}] + \frac{1}{2} \sum_{i,j=1}^{n} (\frac{\partial^{2} f}{\partial \theta^{i} \partial \theta^{j}} \sum_{k=1}^{n} \sigma_{ik} \sigma_{jk}) dt$$
$$= \left[\frac{\partial f}{\partial t} + \sum_{i=1}^{n} \frac{\partial f}{\partial \theta^{i}} b^{i} + \frac{1}{2} \sum_{i,j=1}^{n} (\frac{\partial^{2} f}{\partial \theta^{i} \partial \theta^{j}} \sum_{k=1}^{n} \sigma_{ik} \sigma_{jk}) dt + \sum_{i,j=1}^{n} \frac{\partial f}{\partial \theta^{i}} \sigma_{ij} dW_{t}^{j}\right]$$

We write

$$L = \frac{1}{2} \sum_{i,j=1}^{n} a_{ij}(t,\theta_i) \frac{\partial^2}{\partial \theta^i \partial \theta^j} + \sum_{i=1}^{n} b^i(t,\theta_i) \frac{\partial}{\partial \theta^i}$$

Among them,

$$a_{ij}(t,\theta_t) = \sum_{k=1}^n \sigma_{ik}(t,\theta_t) \sigma_{jk}(t,\theta_t)$$
$$g_j(t,\theta_t) = \sum_{i=1}^n \frac{\partial f}{\partial \theta^i} \sigma_{ij}$$

Then

$$df = \left(\frac{\partial f}{\partial t} + Lf\right)dt + \sum_{j=1}^{n} g_{j} dW_{t}^{j}$$
(2)

Because n exchangeable securities all depend on θ^i . We use f_j to express j prices of the exchangeable securities, then we can get the equation group:

$$df_{j} = \left(\frac{\partial f_{j}}{\partial t} + Lf_{j}\right)dt + \sum_{i=1}^{n} g_{ij}dW_{t}^{j}$$

$$\underline{\underline{\Delta}}\mu_{j}dt + \sum_{i=1}^{n} g_{ij}dW^{j}$$
(3)

Among them, $\mu_j = \frac{\partial f_j}{\partial t} + L f_j$

We write

$$\begin{bmatrix} \frac{1}{f_1} \frac{\partial f_1}{\partial \theta^1} & \cdots & \frac{1}{f_1} \frac{\partial f_1}{\partial \theta^n} \\ \vdots & & \vdots \\ \frac{1}{f_n} \frac{\partial f_n}{\partial \theta^1} & \cdots & \frac{1}{f_n} \frac{\partial f_n}{\partial \theta^n} \end{bmatrix} = \begin{bmatrix} \frac{\partial \ln f_1}{\partial \theta^1} & \cdots & \frac{\partial \ln f_1}{\partial \theta^n} \\ \vdots & & \vdots \\ \frac{\partial \ln f_n}{\partial \theta^1} & \cdots & \frac{\partial \ln f_n}{\partial \theta^n} \end{bmatrix}^{\Delta} = \Delta$$
$$(\frac{1}{f_1} \mu_1, \cdots, \frac{1}{f_n} \mu_n)^T \stackrel{\Delta}{=} \mu$$
$$(\frac{df_1}{f_1}, \cdots, \frac{df_n}{f_n})^T = (d \ln f_1, \cdots, d \ln f_n)^T \stackrel{\Delta}{=} d \ln F$$

Among them, $F = (f_1, \dots, f_n)^T$. Then the equation group (3) can be expressed in matrix, $d \ln F = \overline{\mu} dt + \Delta \sum dW_t$ (3)

3 Expressing The PDE With Matrix

In the equation group (3), there are n exchangeable securities and n Wiener processes. Using these securities, we can construct a instant non-risk portfolio π . Let χ_i be the investment proportion on f_i , we write

$$\pi = \sum_{i=1}^{n} x_i f_i \qquad \sum_{i=1}^{n} x_i = 1$$

Its yield is

$$\frac{d\pi}{\pi} = \sum_{i=1}^{n} x_i \frac{df_i}{f_i} = \sum_{i=1}^{n} x_i d \ln f_i = x^T d \ln F$$
$$= \sum_{i=1}^{n} x_i \overline{\mu}_i dt + \sum_{i=1}^{n} x_i (\sum_{i=1}^{n} \sum_{k=1}^{n} \Delta_{ik} \sum_{kj}) dW^j$$
$$= x^T \overline{\mu} dt + x^T \Delta \sum dW_t$$

Theory 1 if $|\Delta| \neq 0$, then linear equation group

$$\begin{bmatrix} 1\\0\\\vdots\\0 \end{bmatrix} = \begin{bmatrix} 1 & 1 & \cdots & 1\\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & &$$

can have nonzero solution.

Using the solution, we can construct the portfolio π , it can include no noises, and the income of the portfolio π is :

$$\frac{d\pi}{\pi} = \sum_{i=1}^{n} x_i \,\overline{\mu}_i \, dt = x^T \,\overline{\mu} \, dt$$

If there are no arbitrary opportunities, the income of the portfolio must be the non-risk interest r, we write

$$d\pi / \pi = r dt$$

Thus

$$\begin{cases} \sum_{i=1}^{n} x_i \ \overline{\mu_i} = r \\ \sum_{j=1}^{n} x_j \sum_{k=1}^{n} \Delta_{ik} \sum_{kj} = 0 \end{cases} \Leftrightarrow \begin{cases} \sum_{i=1}^{n} x_i (\overline{\mu_i} - r) = 0 \\ \sum_{j=1}^{n} x_j \sum_{j,k=1}^{n} \Delta_{ik} \sum_{kj} = 0 \end{cases}$$
(5)

(5) can be expressed in matrix

$$\begin{cases} X^{T}(\overline{\mu} - r\mathbf{1}) = 0\\ \Delta \sum X^{T} = 0 \end{cases}$$
(5)

of them, $1 = (1, \dots, 1)^T$

Theory 2 If $|\Delta| \neq 0$, then there exist $\lambda_1, \dots, \lambda_n$, that

$$\overline{\mu}_{i} - r = \sum_{j=1}^{n} \lambda_{j} \sum_{k=1}^{n} \Delta_{ik} \sum_{kj}$$
(6)

Prove: We write δ_j to express the j line of $\Delta \Sigma$, then n+1 vector groups of n dimensions $\sigma_1, \dots, \sigma_n, \overline{\mu} - r1$ are linear correlative. Because $|\Delta| \neq 0$, we know that $\overline{\mu} - r1$ is the linear combination of $\sigma_1, \dots, \sigma_n$, and $\overline{\mu} - r1$ can be linearly expressed by $\sigma_1, \dots, \sigma_n$. We write the expressed coefficient $\lambda_1, \dots, \lambda_n$, then (6) come into existence. We write $\Lambda = (\lambda_1, \dots, \lambda_n)^T$, (6) can be expressed in matrix

$$\overline{\mu} - r\mathbf{1} = \Delta \sum \Lambda \tag{7}$$

we put the defining equation of $\overline{\mu}$ into (7),

$$\left(\frac{\mu_1}{f_1}\cdots\frac{\mu_n}{f_n}\right)^T - r\mathbf{1} = \Delta \sum \Lambda$$

We write

$$\tilde{F}^{-1} = diag \left[\frac{1}{f_1 \cdots 1} f_n \right] \qquad \tilde{F} = diag \left[f_1 \cdots f_n \right]$$

The equation above can be expressed to \sim^{-1}

$$\mu^T F - r\mathbf{1} = \Delta \sum \Lambda \tag{8}$$

We write it into ponderance form,

$$\frac{\mu_l}{f_l} - r = \sum_{j=1}^n \left(\sum_{j,k=1}^n \Delta_{lk} \sum_{kj} \right) \lambda_j$$

Put μ_1 into the above equation

$$\frac{1}{f_t} \left[\frac{\partial f_t}{\partial t} + L f_t \right] - r = \sum_{j=1}^n \sum_{j,k=1}^n \Delta_{lk} \sum_{kj} \lambda_j$$

The equation goes as

$$\frac{1}{f_l} \left[\frac{\partial f_l}{\partial t} + \sum_{i=1}^n b_i \frac{\partial f_l}{\partial \theta^i} + \frac{1}{2} \sum_{i,j=1}^n a_{ij} \frac{\partial^2 f_l}{\partial \theta^i \partial \theta^j} \right] - r = \sum_{j,k=1}^n \Delta_{lk} \sum_{kj} \lambda_j$$

That is

$$\frac{1}{f_l} \left[\frac{\partial f_l}{\partial t} + \sum_{i=1}^n b_i \frac{\partial f_l}{\partial \theta^i} + \frac{1}{2} \sum_{i,j=1}^n \frac{\partial^2 f_l}{\partial \theta^i \partial \theta^j} \sum_{m=1}^n \sigma_{im} \sigma_{mj} \right] - r = \sum_{j,k=1}^n \frac{1}{f_l} \frac{\partial f_l}{\partial \theta^k} \sigma_{kj} \lambda_j$$

It can be evolved to

$$\frac{\partial f_l}{\partial t} + \sum_{i=1}^n (b_i - \sum_{j=1}^n \sigma_{ij}\lambda_j) \frac{\partial f_l}{\partial \theta^i} + \frac{1}{2} \sum_{i,j=1}^n (\sum_{m=1}^n \sigma_{im}\sigma_{jm}) \frac{\partial^2 f_l}{\partial \theta^i \partial \theta^j} = rf_l \qquad (9)$$

It can be expressed in matrix

$$\frac{\partial F}{\partial t} + \left(b - \sum \Lambda\right) \frac{\partial F}{\partial \theta} + \frac{1}{2} I^T \sum \left(\nabla^2 F\right) \sum = rF$$
(10)

Thus we have

Theory 3 n exchangeable securities that depends on the state variables and the time t satisfies the PDE (10), among them,

$$\nabla^2 F = \left(\frac{\partial^2 f_l}{\partial \theta^i \partial \theta^j}\right)$$

We can see from the equation (9) that the PDE that any derivative security depended on n object securities satisfies is similar to (9.10) in structure, only changing the increasing ratio of each object securities' θ_i from b_i to $\begin{pmatrix} b_i - \sum_{j=1}^n \sigma_{ij}\lambda_j \end{pmatrix}$, it demonstrates that if we change b_i to $\begin{pmatrix} b_i - \sum_{j=1}^n \sigma_{ij}\lambda_j \end{pmatrix}$, while the fluctuation ratio is unchangeable and maintain the original covariance of θ_i , θ_k , the price equation of the derivative securities can still be used, and still be the non-risk interest discount of expecting profit. Then as to the equation

$$d\theta = (b - \sum \Lambda)dt + \sum dW$$

It can define any price u_i of exchangeable security of the derivative security F, thus

$$u_{i} = \hat{\mathrm{E}}\left[e^{-\int_{t}^{T} b_{i}(s)ds}\Psi_{i}\left(\theta_{T}^{i}\right)|\theta_{T}^{i}=\theta\right]$$

and it's the solution in the boundary condition of $V_i(T,\theta) = \Psi_i(\theta)$

Among them, \hat{E} is the expectation of changing the expected increasing ratio of b_i to the

$$\left(b_i-\sum_{j=1}^n\sigma_{ij}\lambda_j\right).$$

Reference

[1] Hull , J.C. , 《Options , Futures , and Other Derivatives》, Third , Practice Hall. N.J. 1997

[2]Luenberger, D.G., «Investment Science», Oxford University Press, 1998.

[3]Lamberton , R.&Lapeyre , B. , 《Introdution to Stochastic Calculus Applied to Finance》, Chapman&Hull.1996

[4]Milne, F., 《Finance Theory and Asset Pricing》, Clarendon Press .Oxford 1995.