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Abstract    Considered the Random Differential Equation that state variables based on, the paper 

thinks that at least n+1 kinds of the price of exchangeable securities depend on PDE，its matrix and 

corresponding pricing express that some or all state variables meet. 
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1 Introduction 

When we discuss the Price Model of Derivative Securities, commonly we study the  state 

variables , wich follow the continuous time 

n
(θ i i n1≤ ≤ ) Ito$  extended model.[1] 
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We use the standard non-arbitrage method to give the Partial Differential Equation (PDE) that the price 

of the derivative securities  satisfies, which only depends on the state variable  

and the time t , 
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Among them，dW  is the Wiener Process, parameter  and  are the expectation increasing ratio 

and fluctuating ratio of 
i mi si

θ i . r  is the instant non-risk interest rate, ρ ik  is the correlation coefficient 

of  and . idW kdW
According to the PDE, after adding some definite boundary conditions, we can get the given derivative 

security.[1] 

In this discussion, the state variable θ i  which follows the Ito$  process depends on . Let’s start 

from the Random Differential Equation that the state variable follows, consider at least  securities, 

which prices rely on the PDE and their matrixes that some or all  state variables meet. 
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Let the state variable  follow the Random Differential Equation here: ( nii ≤≤1θ )
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Then（1）can be expressed to 

                                              (1) ttt dWdtbd ∑+=θ
Let  be any price of a exchangeable security, it depends on the state variable , 

according to the 
( )f ⋅ ∈ 2C jθ

Ito$  Theory, follows the processes as below. f
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Because  exchangeable securities all depend on  . We use  to express n θ i f j j prices of the 

exchangeable securities, then we can get the equation group: 
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Among them, .Then the equation group（3）can be expressed in matrix, T
nffF ),,( 1 L=

                  tdWdtFd ∑∆+= µln                       (3) 

3  Expressing The PDE With Matrix 
In the equation group (3), there are  exchangeable securities and  Wiener processes. Using 

these securities, we can construct a instant non-risk portfolio 

n n
π . Let  be the investment 

proportion on , we write 
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can have nonzero solution. 

Using the solution, we can construct the portfolio π , it can include no noises, and the income of 

the portfolio π  is： 

dtxdtxd T
i

n

i
i

____

1
µµ

π
π

== ∑
=

 

If there are no arbitrary opportunities, the income of the portfolio must be the non-risk interest r , we 

write  
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(5) can be expressed in matrix 
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Put  into the above equation 1µ
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It can be expressed in matrix 
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Thus we have  

Theory 3  exchangeable securities that depends on the state variables and the time satisfies the 

PDE (10), among them,  
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We can see from the equation (9) that the PDE that any derivative security depended on  object 

securities satisfies is similar to 9.10) in structure, only changing the increasing ratio of each object 

s curities’  from  to 
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while the fluctuation ratio is unchangeable and maintain the original covariance of  

, , the price equation of the derivative securities can still be used, and still be the non-risk interest 

discount of expecting profit. Then as to the equation  
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