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Abstract

This paper deals with the approximation properties of a kind of rational spline with linear de-
nominator when the function being interpolated is C3 in an interpolating interval. Error estimate
expressions of interpolating functions are derived, convergence is established, the optimal error
coefficient, ci, is proved to be symmetric about the parameters of the rational interpolation and it
is bounded. Finally, the precise jump measurements of the second derivatives of the interpolating
function at the knots are given.
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1 Introduction

Spline interpolation is a useful and powerful tool in computer aided geometric design. Polyno-
mial splines are the kinds of splines which are widely applied in curve and surface design [1-3,9-
11,14,16,17,21]. Since the interpolating function is unique for the given interpolation data, local
modification of the interpolating curve or surface is impossible under the conditions that the interpo-
lating data are not changed. In recent years, the rational spline with parameters has received attention
in the literature [4-8,12,13,15,18-20]. For the given interpolating data, the change of the parameters
causes the change of the interpolating curves or surfaces, so that the interpolating curves or surfaces
may be modified to be the shape needed if suitable parameters exist. That is, the uniqueness of the
interpolating function for the given data is replaced by the uniqueness of the interpolating curve or
surface for the given data and the selected parameters.

There are rational cubic splines with linear, quadratic or cubic denominator [7,9,13]. Since there
are parameters in the interpolations, those splines are effectively used in the design and modification
of curves, such as region control and convexity control [6,7,13,15,18,19]. Also, because of the param-
eters, the approximation properties are difficult to study. Some results are given in [5] for simple
cases. When the function being interpolated, f(t), has continuous second-order derivative, the er-
ror estimations of those interpolations were derived in [5], and it was shown that, from the point of
view of the magnitude of the optimal error coefficient, the spline with linear denominator has better
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approximation to the function being interpolated than the rational interpolation with quadratic or
cubic denominator. A further question is that, when the function being interpolated is smoother than
C2, such as C3, how about the approximation of the interpolating function? And furthermore, the
interpolating function P (t) ∈ C1 for the parameters in the non-constrained case, what is the jump
measurement of P ′′(t) at the knots? Those questions will be answered in this paper.

The paper will deal with the approximation in the case that the function being interpolated, f(t),
has continuous third-order derivative in the interpolating interval. For this, the rational cubic spline
with linear denominator will be restated briefly in section 2. Section 3 studies the error estimation of
the interpolating functions, gives the optimal error coefficient ci which depends on the parameters in
the interpolating function, and proves that ci is symmetric about the parameters. Section 4 is about
the jump measurement of the second derivatives of the interpolating function at the knots.

2 Rational spline with linear denominator

A rational cubic spline with linear denominator was given in [7]. Let t0 < t1 < · · · < tn be the knot
spacing and {fi, di, i = 0, 1, . . . n} be a given set of data points, where fi, di are, respectively, the
function values and the derivative values at the knots of the function being interpolated, f(t). Define
the C1-continuous, piecewise rational interpolating function by

P (t)|[ti,ti+1]
=

pi(t)
qi(t)

, (1)

where

pi(t) = (1− θ)3αifi + θ(1− θ)2Vi + θ2(1− θ)Wi + θ3βifi+1,

qi(t) = (1− θ)αi + θβi,

θ = (t− ti)/hi,

hi = ti+1 − ti,

and

Vi = (2αi + βi)fi + αihidi, Wi = (αi + 2βi)fi+1 − βihidi+1, (2)

with αi, βi > 0. The function P (t) satisfies P (ti) = fi, P ′(ti) = di, i = 0, 1, · · · , n.
Obviously, when αi = βi, the interpolation defined by (1) is the standard cubic Hermite interpo-

lation.

3 Error estimation of the interpolation

This section deals with the error estimation of the interpolation when the function being interpolated
f(t) ∈ C3[t0, tn]. Since the interpolation is local, without loss of generality it is necessary only to
consider the error in the subinterval [ti, ti+1]. It is easy to show that the interpolation is exactly held
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for the polynomial function being interpolated in which the degree is no more than two. Let P (t) be
the rational interpolating function of f(t) in [ti, ti+1] defined by (1). Using the Peano-Kernel Theorem
[21] gives the following

R[f ] = f(t)− P (t) =
1
2

∫ ti+1

ti

f (3)(τ)Rt[(t− τ)2+] dτ, (3)

where

Rt[(t− τ)2+] =





(t− τ)2 − 1
(1−θ)αi+βiθ

{θ2(1− θ)[(2βi + αi)(ti+1 − τ)2 − 2βihi(ti+1 − τ)]

+θ3βi(ti+1 − τ)2}, ti < τ < t;

− 1
(1−θ)αi+βiθ

{θ2(1− θ)[(2βi + αi)(ti+1 − τ)2 − 2βihi(ti+1 − τ)]

+θ3βi(ti+1 − τ)2}, t < τ < ti+1.

=

{
r(τ, t), ti < τ < t;
s(τ, t), t < τ < ti+1.

The function Rt[(t − τ)2+] is called the kernel of the integral (3). To derive the error estimate
representation, |R[f ]|, the properties of the kernel functions r(τ, t) and s(τ, t) need to be studied first,
and then the values

∫ t
ti
|r(τ, t)|dτ and

∫ ti+1
t |s(τ, t)|dτ will be calculated. To stating clearly, the proof

process includes two parts: Part 1 is about the calculation of the value
∫ t
ti
|r(τ, t)|dτ , Part 2 is about

the calculation of the value
∫ ti+1
t |s(τ, t)|dτ . Combining Part 1 and Part 2 will complete the proof.

Part 1. Study the properties of the function r(τ, t). Consider r(τ, t), τ ∈ [ti, t] as a function of τ ,
r(τ, t) is a quadratic polynomial of variable τ . According to the construction of the kernel functions
r(τ, t) in using the Peano-Kernel Theorem, for all θ ∈ [0, 1]

r(ti, t) = 0.

By simple computation,

r(t, t) =
θ2(1− θ)2((αi + βi)θ − αi)h2

i

(1− θ)αi + θβi
.

Let

(αi + βi)θ − αi = 0

be considered as an equation in θ; its root in (0,1) is

θ∗ =
αi

αi + βi
. (4)

It is easy to show that, when θ ≤ θ∗, r(t, t) ≤ 0 and when θ ≥ θ∗, r(t, t) ≥ 0. To see the sign of r(τ, t)
in [ti, t], rewrite r(τ, t) as

r(τ, t) =
1

(1− θ)αi + θβi
[((1− θ)2(1 + θ)αi + θ(1− θ)2βi)(t− τ)2

−2θ2(1− θ)2hi(αi + βi)(t− τ) + θ2(1− θ)2h2
i ((αi + βi)θ − αi)],

3

http://www.paper.edu.cn  



then it can be found that the second root of r(τ, t) is

τ∗ = t− hiθ((θ − 1)αi + θβi)
(1 + θ)αi + θβi

besides the root ti, and when θ > θ∗, ti < τ∗ < t, when θ < θ∗, τ∗ > t. Thus, when θ < θ∗, r(τ, t) < 0
for all τ ∈ [ti, t], so

∫ t

ti

|r(τ, t)|dτ =
∫ t

ti

(−r(τ, t))dτ =
θ3(1− θ)2((2− θ)αi − θβi)h3

i

3((1− θ)αi + βiθ)
. (5)

When θ > θ∗, the values of r(τ, t) varies from negative to positive on the two sides of τ∗, so

∫ t

ti

|r(τ, t)|dτ =
∫ τ∗

ti

(−r(τ, t))dτ +
∫ t

τ∗
r(τ, t)dτ

=
θ3(1− θ)2[((2− θ)αi − θβi)((1 + θ)αi + θβi)2 + 2((2 + θ)αi + θβi)((θ − 1)αi + θβi)2]h3

i

3((1− θ)αi + βiθ)((1 + θ)αi + θβi)2
. (6)

Part 2. Study the properties of the function s(τ, t). Consider s(τ, t), τ ∈ [t, ti+1] as a function of
τ . Similar as discussed for r(τ, t),

s(ti+1, t) = 0

and
s(t, t) = r(t, t),

and by a similar analysis as in part 1, one can see that when θ ≤ θ∗, s(t, t) ≤ 0 and when θ ≥
θ∗, s(t, t) ≥ 0. Rewriting s(τ, t) as

s(τ, t) =
−(ti+1 − τ)

(1− θ)αi + θβi
[(θ2(1− θ)αi + θ2(2− θ)βi)(ti+1 − τ)− 2θ2(1− θ)βihi],

and denoting

τ∗ = ti+1 − 2θ2(1− θ)βihi

θ2(1− θ)αi + θ2(2− θ)βi
,

it is easy to show that when θ ≤ θ∗, s(τ, t) varies from negative to positive on the two sides of τ∗, and
when θ ≥ θ∗, s(τ, t) remains positive in (t, ti+1), where θ∗ is defined by (4). Thus, when θ ≤ θ∗

∫ ti+1

t
|s(τ, t)|dτ =

∫ τ∗

t
(−s(τ, t))dτ +

∫ ti+1

τ∗
s(τ, t)dτ

=
θ2(1− θ)3[(1− θ)3(αi + βi)3 + 3(θ − 1)αiβ

2
i + 3((1 + θ)β3

i )]h3
i

3((1− θ)αi + βiθ)((1− θ)αi + (2− θ)βi)2
, (7)

and when θ ≥ θ∗

∫ ti+1

t
|s(τ, t)|dτ =

θ2(1− θ)3((1 + θ)βi − (1− θ)αi)h3
i

3((1− θ)αi + βiθ)
. (8)
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Thus, combining (5) and (7), it can be shown that, when θ ≤ θ∗,

|f(t)− P (t)| ≤ ‖f (3)‖
2

∫ ti+1

ti

|Rt[(t− τ)2+]|dτ = ‖f (3)‖h3
i w1(αi, βi, θ),

where

w1(αi, βi, θ) =
θ2(1− θ)2[(1− θ)2α3

i + (1− θ)(3− θ)α2
i βi + θ(2− θ)αiβ

2
i + (4− 4θ − θ2)β3]

6((1− θ)αi + βiθ)((1− θ)αi + (2− θ)βi)2
(9)

and when θ ≥ θ∗, combining (6) and (8) gives

|f(t)− P (t)| ≤ ‖f (3)‖
2

∫ ti+1

ti

|Rt[(t− τ)2+]|dτ = ‖f (3)‖h3
i w2(αi, βi, θ),

where

w2(αi, βi, θ) =
θ2(1− θ)2[(−θ2 + 6θ − 1)α3

i + (1− θ2)α2
i βi + θ(2 + θ)αiβ

2
i + θ2β3]

6((1− θ)αi + βiθ)((1 + θ)αi + θβi)2
. (10)

Based on the analysis above, the theorem on the error estimation of the interpolating function is
obtained as follows

THEOREM 3.1 For f(t) ∈ C3[t0, tn], let P (t) be the rational interpolating function of f(t) in
[ti, ti+1] defined by (1). For the positive parameters αi and βi, the error of the interpolating function
P (t) satisfies

|f(t)− P (t)| ≤ ‖f (3)(t)‖h3
i ci

with

ci = max
0≤θ≤1

w(αi, βi, θ), (11)

w(αi, βi, θ) =

{
w1(αi, βi, θ), 0 ≤ θ ≤ θ∗;
w2(αi, βi, θ), θ∗ ≤ θ ≤ 1;

where, w1(αi, βi, θ) and w2(αi, βi, θ) are defined by (9) and (10), respectively.

In the special case, let αi = βi, then the interpolation defined by (1) is the standard cubic Hermite
interpolation. In this case the functions w1(αi, βi, θ) and w2(αi, βi, θ) become

w1(θ) = 4θ2(1− θ)3/(3(3− 2θ)2), 0 ≤ θ ≤ 1
2
;

w2(θ) = 4θ3(1− θ)2/(3(1 + 2θ)2),
1
2
≤ θ ≤ 1

respectively. Since

max{ max
0≤θ≤ 1

2

w1(θ), max
1
2
≤θ≤1

w2(θ)} = 1/96
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it follows that the error coefficient

ci = 1/96, (12)

which is the well-known result for the standard cubic Hermite interpolation.

By the definitions given for w1(αi, βi, θ) and w2(αi, βi, θ), it can easily be shown that

w1(αi, βi, θ) = w2(βi, αi, 1− θ),

Thus, there is the following theorem

THEOREM 3.2 The optimal error constant ci in Theorem 3.1 is symmetric about the parameters
αi and βi, namely

max
0≤θ≤1

w1(αi, βi, θ) = max
0≤θ≤1

w2(βi, αi, 1− θ). (13)

Since w1(αi, βi, θ) and w2(αi, βi, θ) are continuous functions of the variate θ in the interval [0, 1],
so the coefficient ci is bounded. In fact, there is the following boundary theorem about the optimal
error constant ci.

THEOREM 3.3 For any given positive parameters αi and βi, the error optimal constants
ci in Theorem 3.1 are bounded with

1
96
≤ ci ≤ 2

81
.

Proof From Theorem 3.1 and Theorem 3.2, if

1
96
≤ max

0≤θ≤1
w1(αi, βi, θ) ≤ 2

81
. (14)

then Theorem 3.3 holds.
Let αi = λiβi, then (9) becomes

w1(αi, βi, θ) =
θ2(1− θ)2[(1− θ)2λ3

i + (1− θ)(3− θ)λ2
i + θ(2− θ)λi + (4− 4θ − θ2)]

6((1− θ)λi + θ)((1− θ)λi + (2− θ))2
. (15)

Denote

w∗(λi, θ) =
[(1− θ)2λ3

i + (1− θ)(3− θ)λ2
i + θ(2− θ)λi + (4− 4θ − θ2)]

((1− θ)λi + θ)((1− θ)λi + (2− θ))2
, (16)

then

dw∗(λi, θ)
dλi

=
λ3

i (1− θ)3 + λ2
i (1− θ)2(6− 3θ)− λi(1− θ)(21θ2 − 36θ + 12)− (9θ3 − 6θ2 − 12θ + 8)

((1− θ)λi + θ)2((1− θ)λi + (2− θ))3
,
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and

dw∗(λi, θ)
dλi

= 0

gives

λ3
i (1− θ)3 + λ2

i (1− θ)2(6− 3θ)− λi(1− θ)(21θ2 − 36θ + 12)− (9θ3 − 6θ2 − 12θ + 8) = 0. (17)

Denote δ = λi(1− θ), then (17) becomes

δ3 + δ2(6− 3θ)− δ(21θ2 − 36θ + 12)− (9θ3 − 6θ2 − 12θ + 8) = 0. (18)

Consider (18) as the equation in the variable δ, δ ∈ (0, +∞); the roots of (18) are

δ1 = 2− 3θ, δ2 = (2
√

3 + 3)θ − (2
√

3 + 4), δ3 = (3− 2
√

3)θ + (2
√

3− 4).

Since δ = λi(1− θ) > 0 , and for any θ ∈ [0, 1], δ2 < 0 and δ3 < 0, so the roots δ2 and δ3 are omitted.
Thus, for the relative fixed θ ∈ [0, 1], equation (18) has only one root δ1 = 2− 3θ in (0,+∞), then

λi =
2− 3θ

1− θ
(19)

is the only critical point of (16) in (0, +∞). Substitute (19) into (15), the right side of (15) can be
simplified to

w1(αi, βi, θ) =
θ2(3− 4θ)

24
,

and it is easy to find that

max
0≤θ≤1

w1(αi, βi, θ) = max
0≤θ≤1

θ2(3− 4θ)
24

=
1
96

. (20)

On the other hand, consider the two cases λi → +∞ and λi → 0. First, consider λi → +∞: from (16)
and (15),

lim
λi→+∞

w1(αi, βi, θ) =
θ2(1− θ)4

6(1− θ)3
=

θ2(1− θ)
6

, (21)

and it is easy to show that

max
0≤θ≤1

θ2(1− θ)
6

=
2
81

. (22)

Then, consider λi → 0: from (16) and (15),

lim
λi→0

w1(αi, βi, θ) =
θ(1− θ)2(4− 4θ − θ2)

6(θ − 2)2
. (23)
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Denote the right side of (23) by g(θ), i.e.

g(θ) =
θ(1− θ)2(4− 4θ − θ2)

6(θ − 2)2
,

then

dg(θ)
dθ

=
(1− θ)(3θ4 − 3θ3 − 30θ2 + 36θ − 8)

6(θ − 2)3
.

Let

dg(θ)
dθ

= 0,

then

θ = 1,

or

3θ4 − 3θ3 − 30θ2 + 36θ − 8 = 0. (24)

The roots of equation (24) are

θ1 =
1−√33

4
+

1
12

√
450 + 30

√
33, θ2 =

1−√33
4

− 1
12

√
450 + 30

√
33,

θ3 =
1 +

√
33

4
+

1
12

√
450− 30

√
33, θ4 =

1 +
√

33
4

− 1
12

√
450− 30

√
33,

and only θ1 and θ4 are in (0,1). Thus, when λi → 0, it can be shown that

max
0≤θ≤1

w1(αi, βi, θ) = max
0≤θ≤1

=
θ(1− θ)2(4− 4θ − θ2)

6(θ − 2)2
= 0.0246913 · · · . (25)

Combining (20),(22) and (25), completes the proof .

From the definition of the functions w1(αi, βi, θ) and w2(αi, βi, θ), it is easy to find the optimal
error constant ci by (11). Table 1 gives some ci for the given parameters αi and βi, and shows the
symmetric property.
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Table 1. Values of ci for some values of parameters αi, βi .
i αi βi θ ci

1 100.0 100.0 0.5000 0.0104
2 1.0 1.0 0.5000 0.0104
3 100.0 1.0 0.6600 0.0240
4 1.0 100.0 0.3400 0.0240
5 10.0 5.0 0.5510 0.0116
6 5.0 10.0 0.4490 0.0116
7 8.0 6.0 0.5230 0.0160
8 6.0 8.0 0.4770 0.0160
9 1.1 0.9 0.5160 0.0105

10 0.9 1.1 0.4840 0.0105
11 0.3 0.2 0.5320 0.0108
12 0.2 0.3 0.4680 0.0108

From Theorem 3.3, the convergence theorem is obtained as follows

THEOREM 3.4 If f(t) ∈ C3[t0, tn] and P (t) is the rational interpolant function of f(t) in [t0, tn]
defined by (1), for the positive parameters αi, βi, i = 0, 1, 2, · · · , n−1, P (t) converges to f(t) in [t0, tn],
namely

lim
h→0

P (t) = f(t),

where, h = maxi hi

4 Jump in the second derivatives

From the definition of the interpolation, the interpolating function P (t) ∈ C1[t0, tn], so the second
derivative P ′′(t) has a jump at the knots. For the jump measurement, the following theorem can be
proved.

THEOREM 4.1 Let f(t) ∈ C3[t0, tn] and let P (t) be the rational interpolating function of f(t) in
[t0, tn] defined by (1). If the knots are equally spaced, namely, h = tn−t0

n , for the positive parameters
αi and βi, the jump measurement of the second derivative at the knot ti satisfies

|P ′′(ti+)− P ′′(ti−)| ≤ ‖f (3)(t)‖hc̄i,

where

c̄i = W (αi−1, βi−1, αi, βi)

and

W (αi−1, βi−1, αi, βi) =
4α3

i−1 + 3αi−1β
2
i−1 + β3

i−1

3(βi−1(2αi−1 + βi−1)2)
+

α3
i + 3α2

i βi + 4β3
i

3(αi(αi + 2βi)2)
.
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Proof. Since

P ′′(t) = (h2
i ((1− θ)αi + θβi)3)−1 ·Q(θ),

where

Q(θ) = ((1− θ)αi + θβi)2(6(1− θ)αifi + (6θ − 4)Vi + (2− 6θ)Wi

+6θβifi+1)− 2(βi − αi)((1− θ)αi + θβi)(−3(1− θ)2αifi

+(1− 4θ + 3θ2)Vi + (2θ − 3θ2)Wi + 3θ2βifi+1) + 2(βi − αi)2 ·
((1− θ)3αifi + θ(1− θ)2Vi + θ2(1− θ)Wi + θ3βifi+1),

then

P ′′(ti+)− P ′′(ti−) =
2
h2

[−(1 +
2αi−1

βi−1
))fi−1 + (

2αi−1

βi−1
− 2βi

αi
)fi + (1 +

2βi

αi
)fi+1]

−2
h

[
αi−1

βi−1
di−1 + (2 +

αi−1

βi−1
+

βi

αi
)di +

βi

αi
di+1]. (26)

When f(t) ∈ C3[t0, tn], for any i ∈ {1, 2, · · · , n − 1}, denote ri(f) = P ′′(ti+) − P ′′(ti−). Using the
Peano-Kernel Theorem gives

ri(f) = P ′′(ti+)− P ′′(ti−) =
1
2!

∫ ti+1

ti−1

f (3)(τ)rt[(t− τ)2+] dτ, (27)

where

rt[(t− τ)2+] =





2
h2 ((2αi−1

βi−1
− 2βi

αi
)(ti − τ)2 + (1 + 2βi

αi
)(ti+1 − τ)2)

− 2
h(2(2 + αi−1

βi−1
+ βi

αi
)(ti − τ) + 2βi

αi
(ti+1 − τ)), ti−1 < τ < ti;

2
h2 (1 + 2βi

αi
)(ti+1 − τ)2 − 4βi

hαi
(ti+1 − τ), ti < τ < ti+1;

=





2
h2 (1 + 2αi−1

βi−1
)(ti − τ)2 − 4

h(1 + αi−1

βi−1
)(ti − τ) + 2, ti−1 < τ < ti;

2
h2 (1 + 2βi

αi
)(ti+1 − τ)2 − 4βi

hαi
(ti+1 − τ), ti < τ < ti+1;

=

{
m(τ), ti−1 < τ < ti;
n(τ), ti < τ < ti+1.

Consider

2
h2

(1 +
2αi−1

βi−1
)(ti − τ)2 − 4

h
(1 +

αi−1

βi−1
)(ti − τ) + 2 = 0 (28)

as a quadratic equation in τ . The root of (28) in (ti−1, ti) is

t∗ = ti − hβi−1

2αi−1 + βi−1
.
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Thus, when ti−1 ≤ τ ≤ t∗, m(τ) ≤ 0 and t∗ ≤ τ ≤ ti,m(τ) ≥ 0, so

∫ ti

ti−1

|m(τ)|dτ =
∫ t∗

ti−1

(−m(τ))dτ +
∫ ti

t∗
m(τ)dτ =

2(4α3
i−1 + 3αi−1β

2
i−1 + β3

i−1)h
3βi−1(2αi−1 + βi−1)2

. (29)

Similarly, n(τ) = 0 has a root t∗ in (ti, ti+1) and

t∗ = ti+1 − 2βih

αi + 2βi
.

It is easy to show that when ti ≤ τ ≤ t∗, n(τ) ≥ 0 and t∗ ≤ τ ≤ ti+1, n(τ) ≤ 0, so

∫ ti+1

ti

|n(τ)|dτ =
∫ t∗

ti

n(τ)dτ +
∫ ti+1

t∗
(−n(τ))dτ =

2(α3
i + 3α2

i βi + 4β3
i )h

3αi(αi + 2βi)2
. (30)

Combining (27),(29) and (30), it can be derived that

|P ′′(ti+)− P ′′(ti−)| ≤ 1
2!
‖f (3)‖[2(4α3

i−1 + 3αi−1β
2
i−1 + β3

i−1)h
3βi−1(2αi−1 + βi−1)2

+
2(α3

i + 3α2
i βi + 4β3

i )h
3αi(αi + 2βi)2

]. (31)

The proof is complete.
From (31), for the standard cubic Hermite interpolation,

|P ′′(ti+)− P ′′(ti−)| ≤ 16
27
‖f (3)‖h. (32)

This result was given in [22].

5 Remarks

(1). Some optimal error constants ci for the given parameters αi and βi are given in Table 1.
It shows that ci are not only symmetric about the the parameters αi and βi, but change very little,
although αi and βi vary widely, it is consilient with Theorem 3.3 and Theorem 3.4. It also shows that
the interpolation is stable about the parameters.

(2). The standard cubic Hermite interpolation is the special case of the rational spline defined by
(1) when αi = βi; (12) and (32) confirm this relationship.
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