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Abstract

The transfer matrix method is used to study the quantum phase transitions of the uniform and periodic anisotropic
XY quantum spin chain in a transverse field, which is defined by H = — %ZH u(oyor, +adhay. )+ hail. In zero
temperature, it is found that the quantum phase transition point corresponds to //J =1 + o, for uniform chain
(J, = J). For periodic chain, there is more than one phase transition point at some parameter region. In case the
couplings take two alternating values, with ratio y, the number of phase transition points are dependent on the
parameters (o and y) and the structure of the systems. These are different from that of quantum Ising chain in a
transverse field. The critical points and the conditions of their existence are obtained analytically for period-two and
three chains. The results are in good agreement with numerical results. The reasons of quantum phase transitions are
discussed. © 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

The zero temperature quantum critical phenomena and low temperature thermodynamical behaviors of
quantum spin chains have been a subject of very active research over several decades [1-3]. Among the most
frequently studied quantum spin chains, the quantum Ising chain [3] in a transverse field and quantum XY
chain [2] are the simplest models. The physical properties of quantum Ising and XY chains can be studied
by the famous Jordan—Wigner transformation [2,3], which transfers the spin operator to spinless Fermi
operator in the quadratic form and can be diagonalized analytically. The quantum critical phenomena of
the random quantum Ising and XY chains are studied by renormalization-group method [4] and numerical
method [5]. Recently, the quantum phase transition of the quasiperiodic quantum Ising [6-8] and XY
chains [9,10] have been extensively studied by the transfer matrix method and numerical method. The
quantum critical points are found for different kinds of quasiperiodic and aperiodic chains and the
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universality class of the chains are determined by the fluctuation of the sums of any number of consecutive
couplings of the chains at the critical points [8]. Also, the quantum Ising [11] and XY [12] chains are used to
test the density matrix renormalization group method proposed by White [13,14].

Another interesting quantum spin model is the anisotropic XY chain in a transverse field [15-22], which
makes QI and XY chains as special cases and was used to study the crossover from Ising to isotropic XY
behaviors. Perk et al. [17] discussed the thermodynamical properties of periodic isotropy XY chain in a
transverse field with Dzyaloshinskii-Moriya interaction. Satija and Chaves [23] studied the excitation
spectra of quasiperiodic anisotropic XY chains at some special parameter values and crossover from Ising
to XY behaviors. Recently, Derzhko et al. have studied the thermodynamical behaviors of periodic
nonuniform and random quantum XY chain in a transverse field [19-22]. But study on the relationship
between the thermodynamical and ground state behaviors is still lacking. It is well known [24] that the
properties of periodic spin systems can provide insight into the random spin system. Therefore, the study on
the properties of ground state, such as quantum phase transitions, of periodic anisotropic XY chain in a
transverse field is useful for the understanding of thermodynamical and dynamical behavior of periodic
nonuniform and random systems. However, to our knowledge, there is no such study up to now.

On the other hand, there are three ingredients in the periodic anisotropic XY chain in a transverse field.
These are the ratio y of two kinds of exchange interaction, anisotropic parameter o and ratio / of external
field to exchange interaction. This is different from that of QI, which has two ingredients (y and #4).
Therefore, if the periodic anisotropic XY chain can exhibit new phenomena that is also an interesting
problem. In this paper, our aim was to study the ground state properties of this model. The paper is
organized as following. In Section 2, we give the model and calculating methods. The analytical and
numerical results of uniform and periodic models are given in Sections 3 and 4. In Section 5, we present
discussion on the reasons for the quantum phase transitions and some conclusions.

2. Model and formula

The anisotropic XY quantum chain spin in a transverse field is defined by the following Hamiltonian:
1 y -
H= —EZ[Jn(a;fa;fH + aolo,. ) + hal]. (D

Here, o*”% are the Pauli matrices, J, are the nearest neighbor interactions, 4 is a uniform external
transverse field and 0 <o <1 is a parameter characterizing the degree of anisotropy of the interactions in the
xy plane. The quantum Ising chain in a transverse field and anisotropic XY chain correspond to o = 0 and
h = 0, respectively. By using the Jordan—Wigner transformation [2], the Hamiltonian (1) can be written by
spinless fermion operator, which yields

H= Z [e] Apmem + %(cZBnmc; + h.c)], (@)

n,m

where ¢, and ¢} are the anticommuting fermion operators. In Eq. (2), we neglect the constant and boundary
terms. For the chain with N spins and periodic boundary condition, the two N x N matrices A and B are

— Iy —%Jl(l—i-ot) 0 —%JN(I-FO()
— (1 + ) —hy — L0+ - 0

A= 0 — (1 4 2) — I 0 3)

— L7y(1 4 ) 0 0 — hy
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and
0 —%Jl(l—oc) 0 %JN(l—O()
(1 —a) 0 —In(l—a) - 0
B= 0 (1 —w) 0 0 , “4)
— Lyl — o) 0 0 0
respectively.

Eq. (2) can be diagonalized by following the Bogoliubov transformation

M = %Z [(¢k,n + l/jk,n)cﬂ + (¢k,/1 - l/jk,n)cjz_]a
’7/1f = %Z x[(d)/c,n + lrbk,n)c;r + (d)k,n - lrbk,n)cn]' (5)
The Hamiltonian of the spin chain thus takes the following form:

N
H=> Agin — 5. (6)
k=1

The excitation energies A > 0 and the coeflicients {¢y ,, ¥, ,} of the Bogoliubov transformation (5) are
the generalized eigenvalues and eigenvectors of the following equations:

Ak!//k,n = —J,- 1({15/(’,,7 1 h(rbk,n - o{Jﬂ(z)k,rﬂrl’
Ak¢k,n = —afy— IWk,n -1 hlpk,n - Jn‘pk,n-o—l' (7)
Eq. (7) is equivalent to the following next nearest neighbor tight-binding equation:
A, =y 1Ty, o T th(L o, + (0 + T+ 2T,
+ Juh(1 + Of)‘//n-',-] + OCJn+1Jnlpn+2' ®)

Here we omit the subscripts k of A, and y, , for simplicity of the expressions.
Also, the A are the solutions of equation

det[(A — B)(A + B) — A°1] = 0, )

where I is the unit matrix of N x N.
Eq. (8) can be rewritten in following transfer matrix form:

" (4w A= =02 =R g b4 Jyydao "
n+2 o1y i1y oSy 1dn Jui1Jn n+l
g | Ve | _ 1 0 0 0 v,
n — -
lﬁn 0 1 0 O lpn —1
lpn —1 0 0 1 0 lpn -2
=M, (AH)¥, _ . (10)

Therefore, ¥y = M™M(A*)¥, with MYV (A?) = My(A*)My _ 1 ---M,;(A?).

In zero temperature, the quantum critical points correspond to parameter values that satisfy the
condition A4 = 0. Following Eq.(9), we can see that det[(A — B)(A+B)]=0 at A4 =0. Because of
(A+B)= (A —B)", it reduces det(A — B) = 0. This equation gives the relation of parameter values at
quantum critical points and was used to study the quantum critical points for random [25] and
quasiperiodic quantum Ising chains [6-8]. But this method is very complicated in our case because of
Eq. (8) involving the next nearest neighbor terms. The quantum critical points also correspond to the
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parameter values, making the modules of the four eigenvalues of matrix M) equal one. We will use this
method to find the critical values for uniform and periodic quantum chains.

3. Analytical results

3.1. Uniform case

For the uniform quantum spin chain, J, = J, Eq. (8) becomes

A, = o, o+ Th(L+ i, g+ [0+ (U 02) T, + Th(L+ o, + 0T, . (1n
The transfer matrix M™(A = 0) = MY with
_ x4 _ X2+(1402) _ x4 1
o o o
M — 1 0 0 0 (12)
0 1 0 0
0 0 1 0
and x = h/J.
The condition of the unimodularity of the eigenvalue of M™) corresponds to |4,| =1 with 4,
(r=1,2,3,4) being four eigenvalues of M. The eigenvalue equation of M is
b+ el +bi+1=0 (13)
with
1 24 (1402
b:w and C:w, (14)
o
respectively.
The solutions of Eq. (13) are
. yeEyi —4 —b+\/b? —4c+8
o34 =—"5—— Vi = ) (15)
2 2
then the condition of |4,| = 1 gives y = +2. That is
24c¢c= —2b or 24 c¢=2b. (16)
The first equation has no solution for a,J, s > 0. The solution of second equation is
h
c=1=)=1 . 17
X ( J>c + o 17

Now we check condition (17) by solving Eq. (11) directly. Because of the uniformity, we can assume the
solution of Eq. (11) is ,, = Ce" . Substituting into Eq. (11), we obtain

A% = J 20 cos(2k) + 2(1 4 o)x cos(k) + x> + (1 + o2)]. (18)

The A2 has minimal value at sin k = 0 for x > x; and minimal value at cosk = — x(1 + o) /4o for x<x;
with x; = 40./(1 4+ o). The minimal value of A% is
[(14 o) — x]J? for x> xj,

Ao =4 (1 — 22 Q/o — 0)(2/o + 0 (19)
4

for x<x;.
o
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2

From Eq. (19), we can see that A, is always large than zero for x<x;. For x > x|, the critical parameter
value of A2

fin = 0 is x = x, =14 o, which is large than x,. Therefore, the quantum critical point of
uniform spin chain corresponds to x = x,.

3.2. Period-two case

For the periodic quantum spin chain with J,, = J and J,,,1 = yJ, Eq. (8) can be rewritten as
Ay = 09I oy o + (L a)pThipy, _y + [0 + T30 + ) Way + (1 + )T, + 0 Yo, o,
Ay =0y W, 4 (L4 )iy, + [B* + T2+ 029 Wi,y + (1 + 0)p I, + 09Iy, 5. (20)
The transfer matrix MV(A = 0) = TV/? with

_ (+ox X241+ (A4ox 1 R e x C ) N € R ) 1
o o Yo Yo o o
T — 1 0 0 0 1 0 0 0
0 1 0 0 0 1 0 0
0 0 1 0 0 0 1 0
(topx®  Pi(4ory’) (@@ +)] _ (dogx (4o’ g (a)x
yo2 Yo yo2 Yo o2 o
_ (I4o)x (Y _ (I+o)x 1
= yor o * . (21)
0 0 0
0 1 0 0

The eigenvalues 4, 234 of matrix T satisfy Eq. (13) with

_ ol o)1 +9%) — (1 + o?)x?

b
Yo

(22)

and
Coxt = 20(1 49D + (0 + 97 + oty + oyt + 2077
- 7202 :

c

(23)

As in the uniform case, the conditions |4;234| = | satisfy Eq. (16). We obtain

h
Xe = <j> =@+ +ay) for 0<a, y<l,
h
Xo={7) =V0@@=nN1—ay) fora>y 24
from the two equations (16), respectively.

Similarly, we can obtain Eqs. (24) by solving Egs. (20) directly. Let ,, = Ce?* and ,,,, = Del® Dk,
we obtain from Egs. (20)

{ [opJ? cos(2k) + h2 + J*(2 + ) — A%|C + (1 + a)Jh(ye ~ * + ¢%)D = 0, 25)
(1 4+ o)Jh(e ~ % 4+ 9e*)C + [2apJ? cos(2k) + h* + J*(1 + o?y?) — A*]D = 0.
The nontrivial solutions of Eq. (25) satisfy
20pJ% cos(2k) 4+ h? + J*(o® + 9%) — A? (1 4+ a)Jh(ye ~ 1k 4 i) o 26)
(1 + o)Jh(e ~ 'k 4 yeic) 20pJ% cos(2k) + W + J>(1 + 0%y?) — A?
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That is

A* — AA* + B=0. (27)
Here

A = J*[day cos(2k) + 2x° + (1 + o2)(1 +97)] (28)
and

B = J*{[20ty cos(2k) + x** + [2ery cos(2k) 4+ x°|(1 + «*)(1 + 7?)

+ (@ + 91 + o9 — (1 + 0)*(2y cos(2k) + 1 + y*)x?}. (29)
The solutions of Eq. (27) are
A2 = YA+ 42 — 4B). (30)

In order to find solutions of A% = 0, we need to consider 4> only. The minimal points of A% are
sin(2k) =0, cos(2k)=1 for x> x,,

| 24— 21 — (1 — 72
(I 4+ o)™ x* —a*(1 — o) (1 — %) 1= 2| for vz x>,

cos(2k) = 2%[

402 x2
sin(2k) =0, cos(2k)= —1 for x<x;. (€28
Here
N2 2 .
g a1 = 0’1 =’ +7) .
Va9 + (1 — 21— = 21 +7)
and
1 —a)*(1+9)(1 —
. a1l —a)(1+9’(1 =) | &)
V421 =92 4+ (1 — P21 4+9) = 201 — )
After a long calculation, we obtain
2(1 + o)y + ) =¥,
J for x> xq,
Ay + /A3 — 4B,
1 — o) [x2 — a1 — )1 + 7)* — x2
A1211in _J)( o) [x o 4002)2) o1 4 9) b ]J2 for x1 > x> xa, (34)
(1 — (e —p) = XF 4
J for x<x,
Ay + /A3 — 4B,
with
Ay =27 + (1 + o)1 + %) 4] (35)
and
Bio = JHI £20) + [ £ 209)(1 + o2)(1 +77) + (8 + 7)1 + 079 — (1 +2)* (1 +79)°x7}, (36)
respectively.

It can be proven that A%, >0 for x; > x > x,. Therefore, the critical values corresponding to A* = 0 are

Xe, = (h)J)., = /(@ + ) +oay)>x; for any 0<a,y<1 and x., = (1/J)., = /(@ — (1 —ay)<xy for

o > y. That is, there is one critical point for 0 <o <7y and two critical points for y<a<1.
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3.3. Period-three cases

For the period-three quantum spin chain with J3, = J3,.1 = J, J3,00 = 3J, Eq. (8) can be rewritten as
Ay = oIy, o+ (Lt aphps, o+ [0+ TP+ )W, + (L )T, + 0, o,
Ay = 0I5, g+ (L )Tl + U+ P+ oW+ (U ), + oS P,
A3, = o, + (L4 )Ty, + 7 4 T2 (U4 ) W00 + (U4 09T, 5 + 03/ s, (37)

We use the transfer matrix method to determine the quantum critical points of systems. The transfer
matrix MYV (A4 = 0) = T/ with

_ (+o)x o X242y +1 _ (I4ox 1 _ (+o)x X4l _ (+4o)x 1
o o yo v oy Yo Yo
r—| 0 0 0 1 0 o 0
0 1 0 0 0 1 0 0
0 0 1 0 0 0 1 0
- “Za)x - szrfﬂz - (H:)Tx -7 Ty T Tiz Ta
1 0 0 0 | Ta T Tos T (38)
0 1 0 0 T517 T3 T3 Th
0 0 1 0 Ty Ta Tyz T
with
o Ox2x2+2+ 02 +029?)  (1+a)’x (14 a)x
11 — 'V(Xz '}70(3 '))Of k)
7, o L2497 1 0)’x? (140’ x2(x% + o2 +7%)
2o yo? y yo? 7o ’
T A+ax(E+1+e2?)  (1I+a’x (14oa)x
B o? ™ R
T :x2+ 1 + o?y? _(1 + o)’x?
14 . PR
T _(1+oc)2x2_x2—|—1—&-oc2
21 — 062'}) O{')) B
T — (1 4+ o)x(x? + o> + 7?) B (1+oa)x
22 — VOCZ a'}) bl
1+ a)’x2 1+ o)x
Tz3i%—1, T24:( ),
1+ o)x X2 +92 + a2
T31=—( a), T32=—+,
14+ a)x
T33:—7y( . ), Ty = —y
Ty =1, Ty =Ty = Ty = 0. (39)

The eigenvalues 4,34 of matrix T satisfy Eq. (13) with

1
b= 063—7}2(%3 + a3pxd — 2ayx — a*pdx — oy — 20tyx) (40)
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and

1
c== 2(x6 — dax* — 2o%x* + 4oc2y2x2 + oc2y4x2 + do?x% + %y + yz). 41)
oy

Same as in the uniform case, the conditions |41234] =1 give Eq. (16). Now, the two equations of
Egs. (16) become

x(x? =20 — ) +9(1 + o) =0 (42)
and
x(x* = 2a — ay?) —y(1 + o) = 0. (43)

Eqgs. (42) and (43) have only real root for a<o.(y) and three real roots for 1 > o > a.(y) with o.(y) is only
real root of

22472 =277 —2/C+ 212+ — 277
27y?

In Table 1, we give some values of «. as a function of y.
For 0 <a<o.(y), the only real root x of Eq. (43) is

x:\/—g+\/23+\/—%—\/23>0. (45)

Here 4 = (¢/2)* + (p/3)’ and ¢ = y(1 + %), p = — «(2 + 7%). And the real root of Eq. (42) is — x<0.
For o.(y)<a<1, let x123 (y123) are three roots of Eq. (42) (Eq. (43)). Then

2(y) = : (44)

X] = —y2:23\/;0030>0,
X2 = — 23\ﬂcos(0+23n)<0,
47
x3= — y3 = 23y/rcos 0+? >0 (46)

with r = 1/ — (p/3)* and 0 = (1/3) arccos( — ¢/2r). Three quantum phase transition points correspond to
X¢ = X3, X, = X1 and x., = yy, respectively. In Table 2, we give the three x, for a.(y) <a<1 with y = 0.5.
Therefore, there is one quantum critical point for 0 <a<a.(y) and three critical points for o.(y)<a<1,
respectively.

Table 1
The o, of the period-three chain for different y

y o
0.10 0.2037084603266
0.20 0.3239706080471
0.30 0.4258317020335
0.40 0.5180601963376
0.50 0.6044018928382
0.60 0.6869330838122
0.70 0.7669701609132
0.80 0.8454178497614
0.90 0.9229309755193

1.00 0.9999999949418
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Table 2

The three critical values of the period-three chain for different 1 > o > a.(y). The y = 0.5 and o, = 0.6044018928382

o Xe, Xey Xes

0.65 0.5487657865523 0.8376612082019 1.3864269947543
0.70 0.5111362486349 0.9187635160204 1.4298997646553
0.75 0.4917743315936 0.9813530328152 1.4731273644088
0.80 0.4823448144253 1.0337815566612 1.5161263710866
0.85 0.4797171990038 1.0791954390936 1.5589126380973
0.90 0.4823240292046 1.1191771519804 1.6015011811850
0.95 0.4892677729025 1.1546383475330 1.6439061204355
1.00 0.4999999999999 1.1861406616346 1.6861406616345

4. Numerical results

Now, we turn to study the order parameters M, , . = {GS|e**|GS »|GS) being the ground state of
spin chain. However, even in the ordered state, the order parameters M, , = {GS|c*|GS) cannot be
obtained due to the invariance of the Hamiltonian when ¢} (¢7) is changed to — o, (—¢)). On the
contrary, the M. = (GS|o?|GS ) and the correlation functions C;” = (GS|o”677,|GS) can be obtained.
Same as that of Ref. [6], we use the long range correlation function Cj (L is half of the length of spin chain)
and M. as the order parameters.

Following the method used by Lieb et al. [2], we get the following results:

G, Giz - Girq
Cr=| : : : : 47)
Gro Gri - Grr4i
and
1
M. = _Nzn: G (48)
with
Gij= — Y Vb (49)
x

Here ¢ ; and¢, ; are eigenfunctions of Eq. (7).

The numerical results are shown in Figs. 1 and 2 for uniform and period-two chains, respectively. The
results are obtained by finding the eigenvalues and eigenvectors of matrix (A + B)(A — B) for finite length
spin chain with periodic boundary condition numerically. In Fig. 1, we plot C; and M. of uniform chain
with 100 spins as functions of x = i/J for different o, respectively. The results obtained from a longer chain
are almost the same. From Fig. 1, we can see that it undergoes a phase transition at the critical value where
the correlation function Cj vanishes and the M. is nonanalytic. The numerical results for the critical value
fits the analytical result (17) very well.

In Fig. 2, we plot C} and M. of the period-two chain with 128 spins as functions of x = A /J for different
a, respectively. The results obtained from a longer chain are almost the same. From Fig. 2, we can see that it
undergoes a phase transition at the critical value for o<y and two phase transitions for o > y. Also, the
numerical results for the critical values fit analytical results (24) very well.
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X=h/J
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(b) 00 10 20 2
X=h/J

Fig. 1. The correlation function Cj (a) and order parameter A (b) of uniform chain as functions of x = /1/J for different o.. The solid,
dotted and dashed lines correspond to o = 0, 0.5, and 0.9, respectively. The length of chain is 100.

In Fig. 3, we plot Cy and M. of the period-three chain with 120 spins as functions of x = //J for different
o, respectively. From Fig. 3, we can see that it undergoes a phase transition at the critical value for
0<a<a.(y) and three phase transitions for a.(y) <o < 1. Also, the numerical results of the critical values are
in good agreement with the analytical results.
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0.0 1.0 2.0
(b) X=h/J

Fig. 2. The correlation function Cj (a) and order parameter M. (b) of period-two chain as functions of x = h/J for different a. The
solid, dotted, short dashed, long dashed and dot-dashed lines correspond to o = 0, 0.3, 0.5, 0.7 and 0.9, respectively. The length of
chain is 128 and the y = 0.5.

5. Conclusion and discussion

For the uniform chain, the quantum phase transition at x, = 1 4 « is similar as that of quantum Ising
chain in a transverse field. That is, there are long range orders (LRO) between ¢* and ¢” when //J < x. and
the LRO of ¢* and ¢” disappear when //J > x,.
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1.0

2.0
X=h/J

Fig. 3. The correlation function C} (a) and order parameter M. (b) of the period-three chain as functions of x = //J for different a.
The solid, dotted, short dashed, long dashed and dot-dashed lines correspond to o = 0, 0.3, 0.5, 0.7 and 0.9, respectively. The length of
chain is 120 and the y = 0.5.

For the period-two chain, there is phase transition at #/J = x,, for any 0<a,y<1. For y— 1, the periodic
chain becomes a uniform chain and the x,, = x, and x,, become an imaginary number. Therefore, the
quantum phase transition of the period-two chain at x,, is similar as that of the uniform chain and quantum

Ising chain.
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In order to understand the reason of quantum phase transition of the periodic chain at x,.,, we consider
the case of y—0. When y = 0, the chain breaks into groups of two-spin clusters. The Hamiltonian of two-
spin system is

J C o h ;
H= — E(a“faf + a0y 0y) — E(Gl + %) (50)
In the space spanned by {|T1>,|T]>,[11>,1{ !>}, the Hamiltonian is
—h 0 0 L))
0 0 _—_ 0
H= , 21 +2) (51)
0 —5(1 4+ o) 0 0
—3(1 —a) 0 0 h

The cigenvalues of Hamiltonian (51) are

2
Ao = i%(l +o) and Jyq= 44/ +JT(1 — )’ (52)

The ground state of two-spin system is

J /
— E(l + o) for jl< ﬁ,

J? 5 h
—\[ 12 + (1 =) for 2> N (53)

The wave function is

1 1
0, —, —, 0 54
( V2 V2 ) Y
for h/J </ and

J=n \/4h? + J2(1 — a)® — 2h

A i > > A

with 4 = \/ 852 + 2J2(1 — 0)* — di\[4h> + JX(1 — a)?, for h/J > \/a, respectively.

Therefore, the ground state expected value of ¢° of two-spin cluster is

i 1 0 for < /a

6. = (501 +03) ) = —s (56)
L[4hy\/4h? 4+ J>(1 — «)” — 8h*0  for §> L

From Eq. (56), we can find that the effective ground state spin of two-spin cluster consisted of two spins
connected by interaction J that undergoes a transition at //J = \/& for y = 0. In Fig. 4, we plot the
effective ground state spin of two-spin cluster as functions of 2/J for different «. For y >0, the critical
value (h/J), at which the effective ground state spin of two-spin cluster undergoes a sharp transition
will change with y. Therefore, the cluster effect is important for o > y and the phase transition at 1/J = x,, is
due to the change of effective spin of two-spin cluster. When o<y, the cluster effect is unimportant and
there is only one transition point corresponding to /1/J = x,,. These are confirmed by numerical results
(see Fig. 2).

(55)
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Fig. 4. The effective ground state spin of two-spin cluster as functions of //J for different o. The solid, dotted, short dashed, long
dashed and dot-dashed lines correspond to o = 0.1, 0.3, 0.5, 0.7 and 0.9, respectively.

For the case of period-three chain, the chain breaks into group of three-spin clusters when y = 0. The
Hamiltonian of three-spin system is

J o oy h, . . .,
H= — 5[(O'TO'§ + 050%) + ooy 0y + 0303)] — E(G‘l + 03 + 03). (57)
In the space spanned by {[TTT>,ITLLD (L TLD. L LITOLLLDITTIITLTD. LT T}
— 3h —Jo _ 0 —Jo_ 0 0 0 0
—Jo _ h — Joy 0 0 0 0 0
0 —Joy h —Joy 0 0 0 0
1| —Ja_ 0 —Jo, h 0 0 0 0
H—— (58)
2 0 0 0 0 3h —Jo _ 0 —Jo _
0 0 0 0 —Jo _ —h —Jo, 0
0 0 0 0 0 — Jog —h —Joy
0 0 0 0 —Jo_ 0 —Joy —h
with a4 = 1 +a. The lowest eigenvalue of Hamiltonian (58) is one of the roots of
E? —ﬁE2 _ e + (1 + ) E _3p +§h(1 + )2 J? —1(1 —a)’hJ> =0 (59)
2 4 8 4 4
for small /1/J and one of the roots of
h 5 3 3 1
E +§E2 — [5 P+ (1 + ocz)Jz]E+§h3 — 1+ )2 J? +40 - a)*hJ? = 0. (60)

for large i/J and there is a transition at a critical xq.
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Fig. 5. The effective ground state spin of three-spin cluster as functions of //J for different o.. The solid, dotted, short dashed, long-
dashed and dot-dashed lines correspond to o = 0.1, 0.3, 0.5, 0.7 and 0.9, respectively.

Let E, and E _ denote the lowest roots of Egs. (59) and (60), respectively. The eigenfunctions are
(0,0,0,0,a _b_,b_,c_b_,b_) (61)
for x<xg and
(ayb,by,ciby,b,,0,0,0,0) (62)

for x > xo. Here ay = 2(1 — a)J /(F3h —2E )by, ¢y =2(1+a)J/(£h —2E4 )by, and b = (a% + & +
2) ~ . Therefore, the effective ground state spin of three-spin cluster is

{ o =31 —4a* b* ) for x<xo,

7Y ea=ldah — 1) for x> x.

2 (63)
Fig. 5 shows us the &. as functions of /2/J. For y > 0 and a > o.(y), the effective ground state spin is o for
small /1/J and as //J increases it undergoes a transition at #/J = x,, which is similar to that in the uniform
chain. For x., <h/J<x.,, M. =0,. At h/J = x.,, the effective ground state spin of three-spin cluster
undergoes a transition. The transition at #/J = x,, is similar to that at x,,. For 0 <a<a.(y), the situation is
different. The critical value associated with the transition of the effective ground state spin of three-spin
cluster is lower than the critical value corresponding to the transitions so that all effective spin ¢; tends to
be parallel to the external field. Therefore, the transitions at x,., and x., disappear and there is only one
transition at x.,. These are confirmed by numerical results (see Figs. 3a and b).

In conclusion, the transfer matrix method is used to study the quantum phase transitions of the uniform
and periodic anisotropic XY quantum spin chain in a transverse field. It is found that there is only one
quantum transition point for uniform chain at zero temperature. For periodic chain, there are more than
one quantum phase transition point at some parameter region. The number of phase transition points
depend on the parameters (¢ and y) and structure of the systems. They are quite different from that of QI
model, in which there is only one quantum phase transition point for all systems with periodic,
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quasiperiodic and random structures. The critical values and the conditions of their existence are obtained
analytically for period-two and three chains. The results are in good agreement with numerical results.
These quantum phase transitions can be understood by considering the effects of clusters, resulting from
competition between the property of period (y) and anisotropy (), and can be used to study the quantum
transitions in random models. Also, we find that the transfer matrix method is very effective for the studies

of these models and may be use to other more complex models.
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