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Abstract

The static dipole polarizability of atoms with up to Z ¼ 20 electrons has been

determined by density functional theory using prototypical local, semi-local

and non-local approximations for the exchange-correlation energy. These

successive generations of approximations provide very similar results for �d;

suggesting that their success in predicting atomization energies of condensed

systems is mainly due to a better description of the atomic core region, while

the description of valence sp electrons is largely unchanged.

Density functional (DF) theory together with simple local
and semilocal approximations for the exchange correlation
energy Exc provides the basis for most of the computa-
tional studies of ground state properties of condensed
matter [1]. Semi-local approximations adding gradient
corrections to the popular local spin density approximation
(LSD) for Exc predict cohesive energies and ground state
geometries in fair agreement with experiments, as exten-
sively documented in the literature [2]. The description of
atomization energies, in particular, has improved drama-
tically in going from LSD to gradient corrected schemes,
and there are clear indications of a further systematic
(although quantitatively not very big) improvement in
going from semi-local to fully non local approximations
[3].
Despite the obvious success of these recent DF schemes,

it is nevertheless meaningful to investigate whether the
progress in atomization energies results from a better
description of the highest energy occupied states (those
directly involved in bonding), of the lowest energy atomic
states, or of both core and valence states.
A quantitative analysis of ground state properties other

than atomization energies and geometries is required to
answer these questions. We discuss here the static dipole
polarizability ð�dÞ of atoms, whose role is particularly
important since this property is very sensitive to the energy,
shape and symmetry of the electron states close to the
Fermi energy, and polarization of the electronic cloud is
the first elementary step towards the formation of a
chemical bond. The sensitivity of �d on the electronic
configuration is emphasized by the large variations of this
quantity along the periodic table, as shown in Fig. 1.
Moreover, the static polarizability is related to optical
properties by well known sum rules, and, for finite systems,

it provides a measure of the spatial extension of the
electron distribution [4].

We focus our attention on two recent approximations
for Exc : (1) the semi-local Perdew–Burke–Ernzerhof
approximation (PBE, see Ref. [2]), that is extensively
used for applications, and (2) the meta-GGA approxima-
tion of Ref. [3], that introduces an explicit dependence of
Exc on the local kinetic energy density of the occupied
Kohn–Sham electrons.

Polarizability is one of the first properties discussed in
basic physics courses, and has a clear and intuitive
definition. It is therefore surprising that dipole polariz-
ability is not accurately known even for atoms. Most
experimental determinations of polarizability rely on
optical spectroscopy data. This route is very convenient
for closed shell atoms, but far more challenging for open
shell systems, resulting in large uncertainties in the
experimental estimate of �d:

Similar difficulties affect computational schemes: the
polarizability of closed shell atoms has been determined
many times and by accurate methods, while open shell
atoms have been far less investigated. The majority of the
computational determinations of atomic polarizability
relied on quantum chemistry many-body methods, includ-
ing Hartree–Fock and post Hartree–Fock methods like
configuration interactions, coupled clusters, etc. Hartree–
Fock underestimates the polarizability of rare gas atoms,
and overestimates it for the other elements. Post Hartree–
Fock methods converge fairly rapidly to the (in principle
exact) solution in the case of closed shell light atoms, while
their accuracy degrades rapidly for open shell atoms or for
heavy elements. This same trend is observed also for the
computation of atomic polarizabilities.

Systematic determinations of polarizability for closed
shell atoms using DF methods have been pioneered by
Mahan [5], Stott and Zaremba [6], Zangwill and Soven [7].
Numerical results were obtained mainly for closed shell
atoms and ions, showing that LSD overestimates the
atomic polarizability of rare gases by �10%; and under-
estimates the polarizability of alkali-earth metals. To the
best of our knowledge, no systematic determination of �d

has been reported for the other elements. A non local
recipe (self-interaction corrections to LSD, SIC) was
implemented in Ref. [8], providing a systematic improve-
ment in the evaluation of �d; but, at the same time,
manifesting fundamental and computational problems
related to the SIC approximation. The application of� e-mail: c.cucinotta@unimo.it
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more recent exchange-correlation approximations to the
investigation of atomic polarizability has been very limited.
Two representative studies are reported in Ref. [9] and Ref.
[10], both based on the exchange-correlation potential of
Ref. [11]. The lack of explicit computations is probably
partly due to the difficulty of implementing efficient
computational schemes suitable for the most promising
but also most complex approximations, sometimes relying
on implicit exchange-correlation functionals, or on orbital
dependent potentials.
The most accurate determinations of atomic polariz-

ability by density functional methods have been performed
using the Sternheimer approach [12], representing Kohn–
Sham (KS) orbitals and their derivatives with respect to the
external field on a radial logarithmic mesh centered on the
atomic nucleus [5–6]. The resulting equations and their
computational implementation are simple and elegant for
closed shell spherical atoms. However, they become
cumbersome for open shell atoms, and the representation
of orbitals as radial functions times a single spherical
harmonic implies that the unperturbed density is spheri-
cally symmetric. The method can be extended to non-
spherical atoms, but its simplicity and computational
efficiency are, to a large extent, lost.
An additional difficulty is represented by the fact that the

Sternheimer approach requires the analytic determination
of the second functional derivative of the exchange-
correlation energy. This task is trivial for LDA, but it
becomes increasingly difficult by including corrections of
increasing sophistication. This problem becomes even more
relevant in applying the Sternheimer approach to higher
order response functions. The difficulty is not limited to the
algebraic determination of the functional derivatives, but
often includes numerical problems due to singularities in
the exchange-correlation potential and of its functional
derivatives.
To overcome these difficulties, we implemented a

program for the numerical minimization of the Kohn–
Sham functional not relying on the analytic computation of
any functional derivative of the exchange-correlation
energy with respect to the density. The static dipole
polarizability is computed from the dipole moment

developed upon applying an an external field of the
appropriate symmetry to the atom. The method is easily
generalized to deal with perturbation of different symmetry
(quadrupole, octupole, etc.) or to perturbations coupled to
the spin density instead than to the electron density.
Moreover, the computation of non-linear response coeffi-
cients could be performed by repeated computations of the
induced moment as a function of the applied field.

The method relies on the direct minimization of the
Kohn–Sham functional for KS orbitals represented on a
logarithmic grid for the radial coordinate, and on a discrete
mesh for the ð�; ’Þ angular variables. The selection of the
angular grid is performed in order to optimize the
integration over the angular coordinates, as discussed in
Ref. [13]. The computations presented below have been
performed for grids of 2001 points for the radial
coordinate, and 32 directions in the ½0 � � � ��
�½0 � ’ � 2�� domain. The angular mesh, together with
appropriate weights, allows the exact numerical integration
of all spherical harmonics Ylm with up to l ¼ 9 (see Ref.
[14]). The combination of radial and of an angular grid
allows to describe non spherical density distributions,
either due to the perturbation or to a broken symmetry
ground state.

The core of the minimization algorithm is an efficient
determination of the KS functional for any given set of N
occupied orbitals

E½f�ig; i ¼ 1;N�
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(atomic units are used throughout the paper). In the
equation above, Z is the nuclear charge of the atom, Exc½��
is the exchange correlation energy, and VHðrÞ is the Hartree
potential

VHðrÞ ¼

ð
�ðr0Þ

jr� r0j
dr0: ð2Þ

The Hartree potential and the associated energy are
computed by projecting �ðrÞ on spherical harmonics, and
computing the separate ðl;mÞ components of VH by radial
integration. Also the Laplacian is computed by projecting
the orbitals on their spherical harmonics components, and
combining numerical derivatives with respect to the radial
coordinate with analytic derivatives with respect to angular
coordinates. Integrals are evaluated using standard algo-
rithms for the radial coordinate, and a two-dimensional
Gauss formula for the angular coordinates.

The starting point for the numerical minimization of the
KS functional is provided by the unperturbed orbitals for
the occupied electron states obtained from a standard
program for spherical atoms. These orbitals are iteratively
refined by the repeated minimization of the energy on a
subspace spanned by a small number of occupied orbitals
and of Slater functions fsiðrÞ; i ¼ 1; kg

siðrÞ ¼ Arn exp ð��rÞYlmð�; ’Þ ð3Þ

Fig. 1. Comparison of experimental and computed values of the static

dipole polarizability for atoms with up to Z ¼ 20:
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with n � l; and k usually taken up to 10. The integer n and
the inverse length � are chosen at random within the range:
l � n � 5; 0:1 � � � 2Z: The subset of occupied orbitals to
be optimized at each step is selected on the basis of
symmetry considerations. In other words, assuming for
simplicity that we refine occupied orbitals one at a time, the
updated orbital �new

i ðrÞ is expressed as a linear combina-
tion

�new
i ðrÞ ¼ A�old

i ðrÞ þ
Xk
j¼1

BjsjðrÞ ð4Þ

The coefficients A and fBjg are selected in order to
minimize the KS functional, and the search for the
minimum is guided by approximate first and second
derivatives of the energy with respect to these linear
coefficients computed by finite differences. The scheme

does not require the computation of any functional
derivative of the exchange correlation energy. Since the
computation of the energy is relatively inexpensive even
with complex exchange correlation approximations, the
required derivatives are evaluated at a modest computa-
tional cost.

The basic optimization sequence described above is

repeated many times with different random choices of n

and �: This procedure provides quickly a fairly accurate

estimate of polarizability. Moreover, the implementation

effort is very limited even for complex exchange-correlation

approximations, since only the energy has to be evaluated.

Achieving high accuracy, however, sometimes requires a

sizable effort. This might not be a major problem, because

the accuracy of the experimental data is often limited to a

few percent, and this level of accuracy is reached by the

computation within a fairly short iteration time.
In many respects, our algorithm is a simplified version of

the method described in Ref. [15].
Polarizability is determined by the computed induced

dipole moment. An alternative route is provided by the

field dependence of the total energy. Both routes have

advantages and disadvantages: the total energy is a

variational quantity, whose determination is in principle

more accurate than that of the dipole moment. However, at

low applied field the energy change is only a very low

fraction of the total energy, whose precise determination is

hampered by numerical round-off. On the other hand, the

dipole moment of the unperturbed ground state is zero for

the atoms considered here, and the determination of the

induced dipole is not affected by any uncertainty on the

zero field value. In our experience, the estimate based on

the induced dipole converges more quickly to the final

value.
The results obtained by LSD, PBE and MGGA

approximations for atoms with Z � 20 are shown in

Table I. In the case of non-spherical atoms, the static

dipole response is characterized by two distinct values,

corresponding to the m ¼ 0 and m ¼ �1 configurations. In

Table I we report the largest of these two values,

corresponding to the absolute minimum of the atomic

energy in the presence of a dipole external field of non-

vanishing amplitude. The computed values are compared

to experimental values when available, and to high level

quantum chemistry computations for the other atoms.
Our LSD results for rare gas atoms and for alkali-earth

metals agree well with the data from previous computa-

Table I. Comparison of measured and computed linear dipole polarizability of atoms (in a30). Reference values are from Ref.
[16]. The error in percent is given in parentheses.

El. �ref �LDA �PBE �MGGA El. �ref �LDA �PBE �MGGA El. �ref �LDA �PBE �MGGA

H 4.5 6.01 5.38 4.89 N 7.63 8.17 8.11 8.74 Al 82.32 96.9 84.6 91.8

(33.6) (19.6) (8.7) (7.1) (6.4) (14.5) (17.7) (2.7) (11.5)

He 1.384 1.661 1.583 1.610 O 5.2 5.45 5.52 P 24.52 27.9 27.6 27.5

(20.0) (14.4) (16.3) (4.9) (6.3) (13.9) (12.5) (12.0)

Li 164.0 147.7 139.1 134.8 Ne 2.663 3.04 3.05 3.03 Ar 11.08 12.0 11.91 11.74

(�9.9) (�15.2) (�17.8) (14.1) (14.4) (13.6) (8.6) (7.6) (5.9)

Be 37.298 43.8 42.2 42.5 Na 159.2 147.2 157.3 171.0 K 292.8 251.8 275.9 308.9

(17.6) (13.0) (14.0) (�7.6) (�1.2) (7.4) (�14.0) (�5.8) (5.4)

B 26.84 30.1 29.7 34.2 Mg 75.0 71.9 73.1 81.0 Ca 169.0 150.6 159.4 163.5

(12.2) (10.7) (27.3) (�4.1) (�2.58) (8.0) (�10.9) (�5.7) (�3.2)

Fig. 2. Radial dependence of the induced dipole electron density for two

open shell spherical atoms.
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tions of comparable accuracy [8]. In the case of open shell
atoms (for which no systematic investigation has been
published) we observe that our LSD estimate for �d

underestimates the experimental values in the case of alkali
metals, and overestimates the values predicted by high level
correlated quantum chemistry computations for the other
elements.
For PBE and MGGA, our results provide the first

systematic analysis of atomic polarizability. It is apparent
from the data reported in Table I that semi-local (PBE) and
non-local (MGGA) approximations provide �d values very
close to those given by LSD. Besides being quantitatively
small, the variations observed in going from LSD to the
more recent recipes do not represent a systematic
improvement in comparison with the reference data
reported in Table I. This disappointing observation is
confirmed by the analysis of the induced charge density (see
Fig. 2) showing that the static dipole response of atoms
computed by PBE and MGGA is everywhere very close to
that given by LSD.
In conclusion, we have implemented a simple scheme to

estimate the static dipole polarizability of atoms using only
repeated evaluations of the Kohn–Sham functional. The
scheme is particularly convenient for semi-local and non-
local DF approximations relying on complex or implicit
definition of Exc as a function of the electron density and
KS orbitals.
The static polarizability is computed from the dipole

moment induced by an external electric field of the
appropriate symmetry. Kohn–Sham orbitals are repre-
sented on a logarithmic mesh for the radial coordinate, and
on a discrete mesh in the ð�; ’Þ variables, corresponding to
32 distinct directions originating from the atomic nucleus.
The scheme allows the atom to acquire a non-spherical
density distribution, either because of the perturbing field
and/or because of a broken symmetry ground state.
The computational scheme has been tested by compar-

ison of our LSD data for rare gases and alkali-earth metals
with the results of previous computations.
Comparison of the computational results with reference

data provided by experiments of by correlated quantum
chemistry computations shows that, in most cases, LSD
over-estimates the atomic polarizability, but errors of the
opposite sign are observed for alkali and alkali-earth
metals.
Prototypical semi-local and non-local approximations

provide values of �d very similar to those of LSD. The
analysis of the radial dependence of the induced charge
confirms that neither PBE nor MGGA represent a

significant or systematic improvement on LSD for what
concerns the response of valence electrons of sp symmetry.

These observations suggest that (as already pointed out
in the literature) the significant improvement in the
atomization energies achieved by PBE and MGGA is due
mainly to a better estimation of atomic energies, that
depends crucially on the description of core states. The
description of sp valence electrons, instead, is largely
unchanged. Although LSD approximates fairly well the
exchange correlation energy of these states, errors are
obviously still present, and manifest themselves in the
observed deviations of �d:

Besides these disappointing results, there is also a
positive side. The systematic trends displayed by the
deviation of the DF results from reference data might
provide a sensitive diagnostic tool to identify specific
problems of old and new approximations in describing
different atomic configurations. A fully quantitative
assessment of the quality of Exc approximations is
unfortunately hampered by the fact that the available
experimental data are few, scattered and not always very
accurate. Our study provides a motivation for a systematic
experimental investigation of atomic polarizabilities.
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