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The Hubbard model for electrons with orbital degeneracy is shown to have an underlyj(d) Symmetry
of spin-orbital double. A hidden charge §4) symmetry is exposed and an extended Lieb-Mattis transfor-
mation, which maps these two symmetries into each other, is given. On the basis of elementary degenerate
perturbative theory, it is shown that the system with strong repulsive coupling is equivalent to a SO(6)
Heisenberg magnet at half-filling and a SU(4) one at quarter-filling. The band is half-filled at all temperature
for u=3U/2. The features of ground-state and low-lying excitations in one dimension are indicated according
to exact solutions.

. INTRODUCTION equivalent to the Hamiltonian of a SU(4) Heisenberg mod-
els. In Sec. VI, several possibilities of SU(4) symmetry
There has been much interest in the study of correlatedreaking are given. In Sec. VII, we summerize the main
electrons in the presence of orbital degree of freedber  results and discuss the agreement with exact solutions in one
cause the orbital degree of freedom plays an important roldimension by describing the features of ground state and
in understanding the phenomena, such as metal-insulat@éw-lying excitations.
transitions, high-temperature superconductivity, and colossal
magnetoresistance. The orbital degree of freedom is relevant IIl. UNDERLYING SU (4) SYMMETRY
to many transitional-metal oxidés® It may be also relevant '
to someCgqo materialé and samples of artificial quantum dot ~ We consider electrons with doubly orbital degeneracy.
arrays® For a theoretical understanding of the observed unThe spin components are denoted by (@pand down(]),
usual properties, a SU(4) theory describing spin systemthe orbital components by top and bottom. The four possible
with orbital degeneracy was proposéd:here were also states of electrons are
numerical® and perturbative studies of one-dimensional
models for these systems. The ground-state phase diagrams 11)=| T ) |2)=| ! )
for the system with a symmetry breaking of SU(4) _ _
—SU(2)xSU(2) were discusseld:}? Experimentally, the
phase separatibhwas observed. Due to the rapid develop- _ _
ments in experiments where the metal ions have orbital de- 13)=| ), |4)=] ). (1)
generacy in addition to spin degeneracy, a theoretical study T l

of such a system, by taking account of the kinetic termsye se 1.2, 3, and 4 to label these states from now on. Let

caused by nearest-neighbor hopping, becomes indispensabify -onsjder the Hamiltonian of electrons with twofold orbital
In this paper we study a Hubbard-type model for eleCtron%egeneracy on a lattice

with orbital degeneracy. In Sec. Il, we show that the model
has an underlying SU(4) symmetry of spin-orbital double.
The spin and orbital operators are related to the SU(4) gen- H=—t > C;(X)Ca(x’)+ > UaNa(X)Ngr(X), (2)
erators, which will be helpful for further studies on the mag- <Xi‘(,> a<xa’

netization. A hidden charge SU(4) structure is exposed in ’

Sec. Ill. An extended Lieb-Mattis transformation, which wherex’s identify the lattice site, and,a’=1,2,3,4 specify
maps those two SU(4) symmetries into each other, is alsthe spin and orbital as defined in the above. T]éx) cre-
presented. From a basic relation derived from particle-holates a fermion of stat@) located atx site andn,(x) is the
transformation, we show that the band is half-filled at allcorresponding number operator. Equati@ is the Hamil-
temperatures when the chemical potential equ&l$23 In  tonian for four-component systems, and there were various
Sec. IV, two kinds of “partially negatived)” models are  discussions on a multicomponent Hubbard model in one
introduced and analyzed according to the strategy of Ref. 14limensiont>'® We remark that the four-component Hamil-
Three basic excitation modes are shown to exist in the spirtonian can also describe either a spin-3/2 sysfem a toy
orbital sector. In Sec. V, with the help of the partially attrac- model of proton and neutron system with on-site strong in-
tive models, we study the repulsive largemodel on the teraction. In the terminology of group theory, the former
basis of elementary degenerate perturbative theory. It iforms a high-dimensionghere it is four dimensionalrep-
shown that the effective Hamiltonian with strong repulsiveresentation oA, Lie algebra, while the later forms the fun-
coupling at half-filling is equivalent to the Hamiltonian of a damental representation Bf, Lie algebra. The physics that
SO(6) Heisenberg model, and that at quarter-filling it iSEq. (2) describes will be precise only when the representa-
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tion space for the internal degree of freedom is specified. Ipusly when observing the underlying §4) symmetry. The
refers to the spin and orbital in our present discussion. charge SY(4) symmetry is not only valid for the Hamil-
We can verify that the Hamiltonia2) with U,o»=U  tonian(2) at high-energy scale>U but also valid for a kind

commutes with following 15 operators, of on-site coupling that we are going to show. Considering
1 U,3=U,,=—U, while U,,=U for the other subscripts, and
O == ctixiC(x)—=CL . (x)C )1, taking account of the chemical potential term in the Hamil-
=3 2 [CH)Cm(X) = Cpr1(¥)Crm1(X)] o e obtaim

[H' Fo ]=(-1"2u—U)F,,

Eo, =2 Ch(X)Cria(X),
E . =(E,)", m=123, &) H'=H=n2 n(x). ®)

and additionally,EalMZ:[Eal,Eaz], Ea2+a3=[Eaz,Ea3], The commutators betwedt’ andQ,,'s always vanish. Ap-

Ea1+a2+a3:[Ea1+az’Eas]’ Efalfazz(Eale)T, parently, the model has a charge $4) symmetry when

E —(E )i, and E —(E )t pn=U/2. The mentioned requirement for the sign of the on-
2T %3 aptagl ¥ T apmag Amaptagtag) o site coupling constants is unnecessary for the traditional

herea,,’s stand for the simple roots &; Lie algebra. These |y pbbard model. which has a hidden charge SU(2)

operators precisely obey the commutation relationapfie symmetry?° because there is only one constant for coupling

algebra’® The Hamiltonian(2) with U,, =U is invariant ¢ spin up and spin down.

under any global SU(4) rotation. We denote this underlying Equation(6) implies that the raising operators, of the

symmetry of spin-orbital dquble by S(4). There are sev- . charge S(4) create some pair of electrons to a given state.
eral equivalent ways to write out the generators of the Li ; .
reC|ser,FD(1 or F,, creates a double occupancy of spin

algebra. We adopt the Chevalley basis because physical )
quantities can be conveniently evaluated in this basis. Besinglet, howeverf_, creates a double occupancy of spin
cause thed; Lie algebra is of rank three, i.e., three genera-triplet. These operators provide mappings between states in
tors in its Cartan subalgebra, there are three conserved quatlistinct sectors of different electron numbers.

tum numbers that label the eigenstates. In terms of these There exists an extended Lieb-Mattis transformation:
O,,'s that commute to each other, taeomponents of both

total spinSy, and total orbitalT, are given by Ci(x)—~€e™*Cl(x), =24,
Siot= 01+ O3, Ci(x)—Cj(x), j=13, (7)
TZ,=0,+20,+0;. (4) which maps Sk(4) into SU,(4) and vice versa. The appli-

cation of particle-hole transformation gives rise to a basic
They are useful for evaluating magnetizations once theelation'® for bipartite lattice:
ground state in the presence of magnetic field is solved.
E(N,,U)=E(L—N,,U)+3(N-2L)U, (8)

I1l. HHDDEN CHARGE 4) SYMMETRY . . .
c CESU (4 S wherelL is the total number of lattice sites amtlthe total

In addition to the above symmetry, one may easily thinknumber of electrons. Using this relation we can derive a
of the U(1) charge invariancé. Moreover, there exists a relation for the thermal average:
larger hidden symmetry in the present model on a bipartite A A
lattice, we call charge SW4) symmetry. Their Chevalley (N), 7=4L—(N)3y_ 7> 9
bases are given by R
whereN=2, ,n,(x). As a result, the band is half-filled at all
1 temperature whep=3U/2.
Q=5 2 [Cr)Cm(¥) +Crrs1(X)Crm2(0) ~ 11,
IV. PARTIALLY ATTRACTIVE MODELS

Fo,= E e”’"‘CI(x)CE(x), The magnitude and sign of the on-site coupling may vary
X from system to system. For isotropic pure attractive coupling
U,p,=U<O0, the unperturbed ground state h&# of the
F, = E €™ XC,(X)Ca(X), sites occupied by “quaternarys.” The ground state is degen-
2 X erate whenN/4<L because the energyN3J/2 is indepen-
dent of which sites are occupied. As a generalization of a
Cooper pair, the quaternary might have abundant physical
meanings. It can form a SU(4) singlet for,,=U. It can
also form either two pairs being spin singlet but orbital trip-
wheresw=(,, ...), and theQ,,’s are generators of Car- let or that being spin triplet but orbital singlet, or form a
tan subalgebra of thé; Lie algebra. The other generators “resonance” state being alternations of them depending on
are given by standard relations that we demonstrated previhe symmetries remaining in a genetdl,. For example, a

F.,=2> €™ Cix)Cl(x), m=123, (5)
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triplet-pairing supper conductivity model was discugddry  After the similar calculation as in Ref. 14, we obtain the
a particular choice ob . effective Hamiltonians that will be helpful for studying the

We have particular interests in two kinds of partially at- repulsive model.
tractive on-site couplingsfi) U,3=U,,=—U, while Uy,
=U for the others andii) U;,=Uy3=U3=—U, while V. EFFECTIVE MODELS OF STRONG REPULSIVE
U,=U,=U3,=U. HereU<O0 for both cases. Let us con- COUPLING
sider these two cases, respectively. ) )

In case(i), the local favorite states in energy are a quater- W& now study the repulsive model,,=U>0. First we
nary and four types of pairs. The quaternary is an instantaeonsider the half-filled band\(=2L). For the ground state
neous state that may separate into two pairs randomly bd? this case, every site is doubly occupied by electrons. The
cause there is no difference in energy between them. Th%)_(Cltatlon of charge-densny waves t_)rlngs about inevitably a
hoping terms in the Hamiltonian split the degeneracy to fornifiPle occupancy of site at a cost (b] in energy at least. By
a band of charge-density wave states where the quaternaf§j2king a particle-hole canonical transformation:
and pairs move from site to site. As is known in the absence Cx)—>Cl(x), i=24
of orbital degree of freedotithat the spin-density excitation : en T
turns over a spin to break a pair at a cti$tin energy. The .
spin-orbital-density excitation, howeveﬁﬂtturns over either a Ci=Cix), j=13,
spin or a orbital, which results in three basic processes. lthe Hamiltonian becomes
addition to the process of breaking a pair at the ¢gtin
energy, one process transmits a favorite pair into an unfavor-ry _ _1yaet ,
ite pair at the cost[2J| in energy. The process of breaking a H=t za: (= 1PCa0CaX)
quaternary into a trinity and a single costy. Breaking a (xx")
quaternary into two unfavorite pairs will cost4|, which is /
not a basic process because it can be represented by two +U E (—1)a+2 na(x)na,(x)+2 V[ny(x)+ 3],

processes of the second type. All the other complicated pro- a<a’ x.a

cesses can always be represented as a composition of those )

three basic processes. Thus we believe that there are three (11
elementary quasiparticles involved in the excitations in theyhereV,=[1—3(—1)2]U/2. Clearly, the repulsive on-site
spin-orbital sector. coupling becomes the partially attractive caie which we

For the case(ii), the favorite states in energy are two glready discussed. In the unperturbed states, the sites origi-
types of trinitys and three types of pairs. The charge-densityally occupied by
wave states arising from the hopping terms are of the move-
ment of the trinitys and pairs from site to site. The spin- 1 —
orbital-density excitation that turns over either a spin or an | — )
orbital involves three basic processes that §dst2|U|, and
zero in energy. Therefore, there are three elementary quadtecome empty, whereas those occupied by
particles, in which a gapless mode is expected to exist.

With the help of the above discussions we are now in the | T )
position to employ elementary degenerate perturbation — 1
theory for more quantitative formulations. It is sufficient for
calculating the low-temperature properties to consider th
lowest band only. For those two types of partially attractive T
on-site couplings that were discussed previously, all elec- | ).
trons remain in either the favorite pairs, trinitys, or quater- - — 1
nary in the lowest band. Because it breaks pairs, trinitys, ofrhg gther four kinds of double occupancies exchanged their
quaternary, the perturbation pattie hopping termhas van-  ogitions. The degenerate perturbation theory can now be
ishing first-order matrix elements. Thus it must be calculateq,saq in the same way as was done in the partially attractive
to second order by considering the virtual transitions into thgy,qels that we considered before. After reversing the ca-

are replaced by

next band. After some algebra one gets, nonical transformation, we obtain the effective Hamiltonian
as follows
(e —c0)ag= 2 (glHfla")ay Hym i S [h(xx')~ 3]
3 oy 2, [Nl
o= GHd9) 10 hxx)=3 gMOR0N(X)+ B ELXE (X)),
E—E&p ae
(12

where |g) denotes various degenerate states of the unpewhereA denotes the set of roots of tidg Lie algebrak ,(x)
turbed ground states, i.edy|g)=eo|g). H; stands for the and O, (x) are generators of the Lie algebra given by
hopping term andH; for the interaction term of Eq(2). Eam(x)zc*m(x)cmﬂ(x), and Om(x)=Cﬁ](x)Cm(x)
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Tl model. The local states form the spinor representatiof;of
| > Lie algebra, and their relations in the weight diagram were
- = giver® by
l E—o; E E
T Ty l ] J—
- I R I
B >
E—Otl - T E_as E*as —
— | | ).
e T

The evaluation of correlation function in the strong-coupling
-1 \ / -1 limit will be considerably simple by means of the corre-
E_,, E_ sponding effective Hamiltonians.

— Qi
T
-} VI. SYMMETRY BREAKING
l E The underlying SE(4) symmetry is fulfilled for the iso-
T2 tropic on-side couplind) ,,»=U. There is no phase separa-
| - = S tion between spin wave and orbital wave at the SU(4) point.

A complete separation is expected to occur after the aniso-
T tropic on-side couplings in the spin-orbital configuration are
introduced. Since the ‘“diagonal” couplindgJ,, has no
physical contribution due to fermionic wave function vanish-

N , ing when two electrons at the same site have the same SU(4)
~Crn1(Crni2(¥), with m=1,2,3. These operators generategaie (j.e., a=a’), we can introduce six parameterg,(a

FIG. 1. The weight diagram of the representatiorSa (6).

the whole states from the highest weight state <b) to break down the SU(4) symmetry, i.éJ,, =U
T l + Uaa’ -
| ) It is not difficult to find the possible symmetry breakings

— — by calculating the commutation relations between the Hamil-
tonian and the SU(4) generators. There are two ways to
break the SU(4) down to the SU(3J(1). Forvi,=v13
=U23,014= V24~ V34 (or 012:0132014'?2320242034)1 the

As to the case of quarter-fillingN=L) with repulsive residue _symmetry  SU(3JU(1) is generated by

on-site coupling, the ground state has one electron on eaéhol'OZ’Eial’Ei(“l*“z) B0y O3} _ (O_r by
site. The excitation of charge-density waves brings about©1:02:03.E+ 4, Ex(a,+apExq,}). This is a two-
double occupancy of sites indispensably and costs energy plrameter hierarchy. For a three-parameter hierarchy,
|U| at least. It is again interesting to make a canonical trans=v3=v14=v4, the residue symmetry is SU(X)SU(2)

as shown in Fig. 1, where thein E(x) is omitted. Those
states form the vector representationAf (isomorphic to
D3) Lie algebra. Whence it is 80(6) Heisenberg model.

formation XU(1) generated by{O,;,E., ,03,E.,,, 0z} Whenvy,
N =v,3 andv,,=v34, the residue symmetry becomes SU(2)
Ca(X)=>Cy(x),  C(X)—=>Ci(x), 1=1,23. XU(1)xU(1) with {O3,E.,,,01,03} as its generators.
Consequently, the sites at first occupied by This is obviously a four-parameter hierarchy. Furthermore, if

either v,#v413 OF vosFv3, the previous SU(2XU(1)
— X U(1) will be broken to theJ (1)xU(1)XxU(1) generated
B by {O;,0,,05}.
As the SU(4) Lie algebra is of rank @here are three
are now empty whereas the other sites are doubly occupiegenerators in its Cartan subalgebtiae Zeemann-like inter-

i.e., by either actions with external fields reads
T — I —
| ) ), Hy=> hyOm(X),
- l - l X,m
or wherem=1,2,3. In general, it breaks the symmetry down to
o the minimum residue symmetiy (1)< U(1)xXU(1). How-
| ). ever, ifh,=h3;=0, it regains a SU(ZXU(1)XU(1) gener-
T ated by {O;,0,,05,E+,,}. Similarly another SU(2)

The repulsive on-site coupling becomes the partially attrac U (1)< U(1) generated byO,,E.., 0,05} regains for
tive case(ii) which we discussed previously. Again, the de-h;=h,=0.

generate perturbation theory can be applied as before. The Since it is the SU(4) singlet, the ground state is invariant
effective Hamiltonian is obtained as a SU(4) Heisenbergunder any SU(4) rotations. Except for the singlet-excitation
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and the pure charge-excitation states, which are still invariatdnd no holes is a SU(4) singlet, accordingly, both spin and
under SU(4) rotation, the other multiplet-excitation statesorbital are in “antiferromagnetic” states. The features of
vary. For the system with=4n, there is always an axis in |ow-lying excitations are studied by considering the contri-
flavor space along which the multiplet-excitation states aréutions of holes and complex 2 strings. An important conse-

invariant under a rotation of72 quence is that the excitations in charge sector and flavor
sector are separated. In charge sector the elementary modes
VII. DISCUSSIONS are holon and antiholofparticle, and the real excitations

. . are gapless particle-holon and gapful holon-holon excitations
We have shown both the underlying and hidden symmeg. There are three typéim agreement with the above gen-

tries of a Hubbard model with orbital degeneracy. We de'eral analyses in any dimensjoaf flavorons as the elemen-

rived the effective Hamiltonian in strong repulsive coupling i, excitation modes in flavor sector. namelv. two quadru-
for both half-filled and quarter-filled band. The band is half- ple}t/s carrying spin-1/2 and orb,ita|-1/2 4 that qform

filled at all temperature if the chemical potential_i@&. It is_ respectively, the fundamental representation and the conju-
shown that there are three elementary modes involved in th&ate representation of $4): a hexaplet carrying either
excitations in the spin-orbital sector. ’

did v the di X in the ab di spin-1 or orbital-1 that forms a six-dimensional representa-
_ We did not specify the dimensions in the above discusyjon moregver. These flavorons compound to constitute real
sions on the symmetries of the system and its low

frective Hamiltoni tis | . ‘excitations. The details of one-dimensional model are given
temperature effective Hamiltonians. It is interesting to con+, another pape??

sider a one-dimensional c&édecause the exact solution in We also analyzed the possible symmetry breakings

or;]e dlmen5||on. alwaysb prot\)/ ides dntc))nperturbat:(ve fEaturescaused either by extending the model to anisotropic on-side
The exact solution can be obtained by means of Bethe-Yang,, ,jing or by introducing an external field. Our analyses

ansatz similar to Ref. 23 if states with site occupation ofjaseq on the Hamiltonian structure will be helpful for further
more than two are excludédl Although the multicomponent i< ssions on the phase diagram by means of numerical
generalizations of Hubbard model in one dimension Weredensity-matrix renormalization group.

explored by several authdrs®in various aspects, the rela-
tionship between the enlarged internal degree of freedom and
concrete physics was not clearly exhibited. It is convenient
to take a thermodynamics limit to the Bethe ansatz equation Y.Q.L. acknowledges the support of AvH-Stiftung,
by introducing density distributions of the quasimomentum NSFC-19975040, and EYF98 of China Education Ministry.
and that of three rapidities for the spin-orbital doubleBeneficial discussions with M. Ma and F. C. Zhang are also
[we call SU(4) flavol. The ground state being of real roots acknowledged.
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