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Theory of electrons with orbital degeneracy

You-Quan Li1,2 and Ulrich Eckern1
1Institut für Physik, Universita¨t Augsburg, D-86135 Augsburg, Germany

2Zhejiang Institute of Modern Physics, Zhejiang University, Hangzhou 310027, China
~Received 17 April 2000; revised manuscript received 7 July 2000!

The Hubbard model for electrons with orbital degeneracy is shown to have an underlying SUd(4) symmetry
of spin-orbital double. A hidden charge SUc(4) symmetry is exposed and an extended Lieb-Mattis transfor-
mation, which maps these two symmetries into each other, is given. On the basis of elementary degenerate
perturbative theory, it is shown that the system with strong repulsive coupling is equivalent to a SO(6)
Heisenberg magnet at half-filling and a SU(4) one at quarter-filling. The band is half-filled at all temperature
for m53U/2. The features of ground-state and low-lying excitations in one dimension are indicated according
to exact solutions.
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I. INTRODUCTION

There has been much interest in the study of correla
electrons in the presence of orbital degree of freedom1 be-
cause the orbital degree of freedom plays an important
in understanding the phenomena, such as metal-insu
transitions, high-temperature superconductivity, and colo
magnetoresistance. The orbital degree of freedom is rele
to many transitional-metal oxides.2–6 It may be also relevan
to someC60 materials7 and samples of artificial quantum do
arrays.8 For a theoretical understanding of the observed
usual properties, a SU(4) theory describing spin syste
with orbital degeneracy was proposed.9 There were also
numerical10 and perturbative11 studies of one-dimensiona
models for these systems. The ground-state phase diag
for the system with a symmetry breaking of SU(4
→SU(2)3SU(2) were discussed.11,12 Experimentally, the
phase separation13 was observed. Due to the rapid develo
ments in experiments where the metal ions have orbital
generacy in addition to spin degeneracy, a theoretical st
of such a system, by taking account of the kinetic ter
caused by nearest-neighbor hopping, becomes indispens

In this paper we study a Hubbard-type model for electro
with orbital degeneracy. In Sec. II, we show that the mo
has an underlying SU(4) symmetry of spin-orbital doub
The spin and orbital operators are related to the SU(4) g
erators, which will be helpful for further studies on the ma
netization. A hidden charge SU(4) structure is exposed
Sec. III. An extended Lieb-Mattis transformation, whic
maps those two SU(4) symmetries into each other, is a
presented. From a basic relation derived from particle-h
transformation, we show that the band is half-filled at
temperatures when the chemical potential equals 3U/2. In
Sec. IV, two kinds of ‘‘partially negativeU’’ models are
introduced and analyzed according to the strategy of Ref.
Three basic excitation modes are shown to exist in the s
orbital sector. In Sec. V, with the help of the partially attra
tive models, we study the repulsive largeU model on the
basis of elementary degenerate perturbative theory. I
shown that the effective Hamiltonian with strong repulsi
coupling at half-filling is equivalent to the Hamiltonian of
SO(6) Heisenberg model, and that at quarter-filling it
PRB 620163-1829/2000/62~23!/15493~6!/$15.00
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equivalent to the Hamiltonian of a SU(4) Heisenberg mo
els. In Sec. VI, several possibilities of SU(4) symmet
breaking are given. In Sec. VII, we summerize the ma
results and discuss the agreement with exact solutions in
dimension by describing the features of ground state
low-lying excitations.

II. UNDERLYING SU „4… SYMMETRY

We consider electrons with doubly orbital degenera
The spin components are denoted by up~↑! and down~↓!,
the orbital components by top and bottom. The four poss
states of electrons are

u1&5u
↑

&
u

, u2&5u
↓

&
u

,

u3&5u
u

&↑ , u4&5u
u

&↓ . ~1!

We use 1, 2, 3, and 4 to label these states from now on.
us consider the Hamiltonian of electrons with twofold orbi
degeneracy on a lattice

H52t (
a

^x,x8&

Ca
†~x!Ca~x8!1 (

a,a8
x

Uaa8na~x!na8~x!, ~2!

wherex’s identify the lattice site, anda,a851,2,3,4 specify
the spin and orbital as defined in the above. TheCa

†(x) cre-
ates a fermion of stateua& located atx site andna(x) is the
corresponding number operator. Equation~2! is the Hamil-
tonian for four-component systems, and there were vari
discussions on a multicomponent Hubbard model in o
dimension.15,16 We remark that the four-component Ham
tonian can also describe either a spin-3/2 system17 or a toy
model of proton and neutron system with on-site strong
teraction. In the terminology of group theory, the form
forms a high-dimensional~here it is four dimensional! rep-
resentation ofA1 Lie algebra, while the later forms the fun
damental representation ofD2 Lie algebra. The physics tha
Eq. ~2! describes will be precise only when the represen
15 493 ©2000 The American Physical Society
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tion space for the internal degree of freedom is specified
refers to the spin and orbital in our present discussion.

We can verify that the Hamiltonian~2! with Uaa85U
commutes with following 15 operators,

Om5
1

2 (
x

@Cm
† ~x!Cm~x!2Cm11

† ~x!Cm11~x!#,

Eam
5(

x
Cm

† ~x!Cm11~x!,

E2am
5~Eam

!†, m51,2,3, ~3!

and additionally,Ea11a2
5@Ea1

,Ea2
#, Ea21a3

5@Ea2
,Ea3

#,

Ea11a21a3
5@Ea11a2

,Ea3
#, E2a12a2

5(Ea11a2
)†,

E2a22a3
5(Ea21a3

)†, and E2a12a22a3
5(Ea11a21a3

)†,

heream’s stand for the simple roots ofA3 Lie algebra. These
operators precisely obey the commutation relations ofA3 Lie
algebra.18 The Hamiltonian~2! with Uaa85U is invariant
under any global SU(4) rotation. We denote this underly
symmetry of spin-orbital double by SUd(4). There are sev-
eral equivalent ways to write out the generators of the
algebra. We adopt the Chevalley basis because phy
quantities can be conveniently evaluated in this basis.
cause theA3 Lie algebra is of rank three, i.e., three gene
tors in its Cartan subalgebra, there are three conserved q
tum numbers that label the eigenstates. In terms of th
Om’s that commute to each other, thez components of both
total spinStot

z and total orbitalTtot
z are given by

Stot
z 5O11O3 ,

Ttot
z 5O112O21O3 . ~4!

They are useful for evaluating magnetizations once
ground state in the presence of magnetic field is solved.

III. HIDDEN CHARGE SU „4… SYMMETRY

In addition to the above symmetry, one may easily th
of the U(1) charge invariance.19 Moreover, there exists a
larger hidden symmetry in the present model on a bipar
lattice, we call charge SUc(4) symmetry. Their Chevalley
bases are given by

Qm5
1

2 (
x

@Cm
† ~x!Cm~x!1Cm11

† ~x!Cm11~x!21#,

Fa1
5(

x
ei p•xC1

†~x!C2
†~x!,

Fa2
5(

x
ei p•xC2~x!C3~x!,

Fa3
5(

x
ei p•xC3

†~x!C4
†~x!, m51,2,3, ~5!

wherep5(p,p, . . . ), and theQm’s are generators of Car
tan subalgebra of theA3 Lie algebra. The other generato
are given by standard relations that we demonstrated pr
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ously when observing the underlying SUd(4) symmetry. The
charge SUc(4) symmetry is not only valid for the Hamil
tonian~2! at high-energy scalet@U but also valid for a kind
of on-site coupling that we are going to show. Consider
U135U2452U, while Uab5U for the other subscripts, an
taking account of the chemical potential term in the Ham
tonian, we obtain

@H8,Fam
#5~21!m~2m2U !Fam

,

H85H2m(
x,a

na~x!. ~6!

The commutators betweenH8 andQm’s always vanish. Ap-
parently, the model has a charge SUc(4) symmetry when
m5U/2. The mentioned requirement for the sign of the o
site coupling constants is unnecessary for the traditio
Hubbard model, which has a hidden charge SU(
symmetry20 because there is only one constant for coupl
of spin up and spin down.

Equation~6! implies that the raising operatorsFam
of the

charge SUc(4) create some pair of electrons to a given sta
Precisely,Fa1

or Fa3
creates a double occupancy of sp

singlet, however,F2a2
creates a double occupancy of sp

triplet. These operators provide mappings between state
distinct sectors of different electron numbers.

There exists an extended Lieb-Mattis transformation:

Ci~x!°ei p•xCi
†~x!, i 52,4,

Cj~x!°Cj~x!, j 51,3, ~7!

which maps SUc(4) into SUd(4) and vice versa. The appli
cation of particle-hole transformation gives rise to a ba
relation16 for bipartite lattice:

E~Na ,U !5E~L2Na ,U !13~N22L !U, ~8!

whereL is the total number of lattice sites andN the total
number of electrons. Using this relation we can derive
relation for the thermal average:

^N̂&m,T54L2^N̂&3U2m,T , ~9!

whereN̂5Sx,ana(x). As a result, the band is half-filled at a
temperature whenm53U/2.

IV. PARTIALLY ATTRACTIVE MODELS

The magnitude and sign of the on-site coupling may v
from system to system. For isotropic pure attractive coupl
Uab5U,0, the unperturbed ground state hasN/4 of the
sites occupied by ‘‘quaternarys.’’ The ground state is deg
erate whenN/4,L because the energy 3NU/2 is indepen-
dent of which sites are occupied. As a generalization o
Cooper pair, the quaternary might have abundant phys
meanings. It can form a SU(4) singlet forUab5U. It can
also form either two pairs being spin singlet but orbital tri
let or that being spin triplet but orbital singlet, or form
‘‘resonance’’ state being alternations of them depending
the symmetries remaining in a generalUab . For example, a
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triplet-pairing supper conductivity model was discussed21 by
a particular choice ofUab .

We have particular interests in two kinds of partially a
tractive on-site couplings:~i! U135U2452U, while Uab
5U for the others and~ii ! U125U235U1352U, while
U145U245U345U. HereU,0 for both cases. Let us con
sider these two cases, respectively.

In case~i!, the local favorite states in energy are a quat
nary and four types of pairs. The quaternary is an insta
neous state that may separate into two pairs randomly
cause there is no difference in energy between them.
hoping terms in the Hamiltonian split the degeneracy to fo
a band of charge-density wave states where the quater
and pairs move from site to site. As is known in the abse
of orbital degree of freedom14 that the spin-density excitatio
turns over a spin to break a pair at a costuUu in energy. The
spin-orbital-density excitation, however, turns over eithe
spin or a orbital, which results in three basic processes
addition to the process of breaking a pair at the costuUu in
energy, one process transmits a favorite pair into an unfa
ite pair at the cost 2uUu in energy. The process of breaking
quaternary into a trinity and a single costsuUu. Breaking a
quaternary into two unfavorite pairs will cost 4uUu, which is
not a basic process because it can be represented by
processes of the second type. All the other complicated
cesses can always be represented as a composition of
three basic processes. Thus we believe that there are
elementary quasiparticles involved in the excitations in
spin-orbital sector.

For the case~ii !, the favorite states in energy are tw
types of trinitys and three types of pairs. The charge-den
wave states arising from the hopping terms are of the mo
ment of the trinitys and pairs from site to site. The sp
orbital-density excitation that turns over either a spin or
orbital involves three basic processes that costuUu, 2uUu, and
zero in energy. Therefore, there are three elementary qu
particles, in which a gapless mode is expected to exist.

With the help of the above discussions we are now in
position to employ elementary degenerate perturba
theory for more quantitative formulations. It is sufficient f
calculating the low-temperature properties to consider
lowest band only. For those two types of partially attract
on-site couplings that were discussed previously, all e
trons remain in either the favorite pairs, trinitys, or quat
nary in the lowest band. Because it breaks pairs, trinitys
quaternary, the perturbation part~the hopping term! has van-
ishing first-order matrix elements. Thus it must be calcula
to second order by considering the virtual transitions into
next band. After some algebra one gets,

~«2«0!ag5(
g8

^guHt
2ug8&ag8 ,

ag5
^guHtuc&

«2«0
, ~10!

where ug& denotes various degenerate states of the un
turbed ground states, i.e.,HUug&5«0ug&. Ht stands for the
hopping term andHU for the interaction term of Eq.~2!.
-
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After the similar calculation as in Ref. 14, we obtain th
effective Hamiltonians that will be helpful for studying th
repulsive model.

V. EFFECTIVE MODELS OF STRONG REPULSIVE
COUPLING

We now study the repulsive modelUab5U.0. First we
consider the half-filled band (N52L). For the ground state
in this case, every site is doubly occupied by electrons. T
excitation of charge-density waves brings about inevitabl
triple occupancy of site at a cost ofuUu in energy at least. By
making a particle-hole canonical transformation:

Ci~x!°Ci
†~x!, i 52,4,

Cj~x!°Cj~x!, j 51,3,

the Hamiltonian becomes

H̃5t (
a

^x,x8&

~21!aCa
†~x!Ca~x8!

1U (
a,a8

x

~21!a1a8na~x!na8~x!1(
x,a

Va@na~x!1 1
2 #,

~11!

whereVa5@123(21)a#U/2. Clearly, the repulsive on-site
coupling becomes the partially attractive case~i!, which we
already discussed. In the unperturbed states, the sites o
nally occupied by

u
↓ u

&
u ↓

become empty, whereas those occupied by

u
↑ u

&
u ↑

are replaced by

u
↑ ↓ u u

& .
u u ↑ ↓

The other four kinds of double occupancies exchanged t
positions. The degenerate perturbation theory can now
used in the same way as was done in the partially attrac
models that we considered before. After reversing the
nonical transformation, we obtain the effective Hamiltoni
as follows

Heff5
t2

uUu (
^x,x8&

@h~x,x8!2 3
4 #,

h~x,x8!5(
mn

gmnOm~x!On~x8!1 (
aPD

Ea~x!E2a~x8!,

~12!

whereD denotes the set of roots of theA3 Lie algebra,Ea(x)
and Om(x) are generators of the Lie algebra given
Eam

(x)5Cm
† (x)Cm11(x), and Om(x)5Cm

† (x)Cm(x)
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2Cm11
† (x)Cm11(x), with m51,2,3. These operators genera

the whole states from the highest weight state

u
↑ ↓

&
u u

as shown in Fig. 1, where thex in Ea(x) is omitted. Those
states form the vector representation ofA3 ~isomorphic to
D3! Lie algebra. Whence it is aSO(6) Heisenberg model.

As to the case of quarter-filling (N5L) with repulsive
on-site coupling, the ground state has one electron on e
site. The excitation of charge-density waves brings ab
double occupancy of sites indispensably and costs energ
uUu at least. It is again interesting to make a canonical tra
formation

C4~x!°C4
†~x!, Cl~x!°Cl~x!, l 51,2,3.

Consequently, the sites at first occupied by

u
u

&↓
are now empty whereas the other sites are doubly occup
i.e., by either

u
↑ u

&,
u ↓ u

↓ u

&
u ↓ ,

or

u
u u

& .↑ ↓
The repulsive on-site coupling becomes the partially attr
tive case~ii ! which we discussed previously. Again, the d
generate perturbation theory can be applied as before.
effective Hamiltonian is obtained as a SU(4) Heisenb

FIG. 1. The weight diagram of the representation ofSO ~6!.
ch
ut
of

s-

d,

-

he
g

model. The local states form the spinor representation ofA3
Lie algebra, and their relations in the weight diagram we
given9 by

u
↑

&
u

→
E2a1

u
↓

&
u

→
E2a2

u
u

&↑

→
E2a3

u
u

&↓ .

The evaluation of correlation function in the strong-coupli
limit will be considerably simple by means of the corr
sponding effective Hamiltonians.

VI. SYMMETRY BREAKING

The underlying SUd(4) symmetry is fulfilled for the iso-
tropic on-side couplingUaa85U. There is no phase separa
tion between spin wave and orbital wave at the SU(4) po
A complete separation is expected to occur after the an
tropic on-side couplings in the spin-orbital configuration a
introduced. Since the ‘‘diagonal’’ couplingUaa has no
physical contribution due to fermionic wave function vanis
ing when two electrons at the same site have the same SU
state ~i.e., a5a8!, we can introduce six parametersvab(a
,b) to break down the SU(4) symmetry, i.e.,Uaa85U
1vaa8 .

It is not difficult to find the possible symmetry breaking
by calculating the commutation relations between the Ham
tonian and the SU(4) generators. There are two ways
break the SU(4) down to the SU(3)3U(1). For v125v13
5v23,v145v245v34 ~or v125v135v14,v235v245v34), the
residue symmetry SU(3)3U(1) is generated by
$O1 ,O2 ,E6a1

,E6(a11a2) ,E6a2
,O3% ~or by

$O1 ,O2 ,O3 ,E6a2
,E6(a21a3)E6a3

%!. This is a two-

parameter hierarchy. For a three-parameter hierarchy,v13
5v235v145v24, the residue symmetry is SU(2)3SU(2)
3U(1) generated by$O1 ,E6a1

,O3 ,E6a3
,O2%. When v12

5v13 and v245v34, the residue symmetry becomes SU(
3U(1)3U(1) with $O2 ,E6a2

,O1 ,O3% as its generators
This is obviously a four-parameter hierarchy. Furthermore
either v12Þv13 or v24Þv34 the previous SU(2)3U(1)
3U(1) will be broken to theU(1)3U(1)3U(1) generated
by $O1 ,O2 ,O3%.

As the SU(4) Lie algebra is of rank 3~there are three
generators in its Cartan subalgebra! the Zeemann-like inter-
actions with external fields reads

HZ5(
x,m

hmOm~x!,

wherem51,2,3. In general, it breaks the symmetry down
the minimum residue symmetryU(1)3U(1)3U(1). How-
ever, if h25h350, it regains a SU(2)3U(1)3U(1) gener-
ated by $O1 ,O2 ,O3 ,E6a3

%. Similarly another SU(2)

3U(1)3U(1) generated by$O1 ,E6a1
O2 ,O3% regains for

h15h250.
Since it is the SU(4) singlet, the ground state is invaria

under any SU(4) rotations. Except for the singlet-excitat
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and the pure charge-excitation states, which are still invar
under SU(4) rotation, the other multiplet-excitation sta
vary. For the system withN54n, there is always an axis in
flavor space along which the multiplet-excitation states
invariant under a rotation of 2p.

VII. DISCUSSIONS

We have shown both the underlying and hidden symm
tries of a Hubbard model with orbital degeneracy. We d
rived the effective Hamiltonian in strong repulsive coupli
for both half-filled and quarter-filled band. The band is ha
filled at all temperature if the chemical potential is 3U/2. It is
shown that there are three elementary modes involved in
excitations in the spin-orbital sector.

We did not specify the dimensions in the above disc
sions on the symmetries of the system and its lo
temperature effective Hamiltonians. It is interesting to co
sider a one-dimensional case22 because the exact solution
one dimension always provides nonperturbative featu
The exact solution can be obtained by means of Bethe-Y
ansatz similar to Ref. 23 if states with site occupation
more than two are excluded.24 Although the multicomponen
generalizations of Hubbard model in one dimension w
explored by several authors15,16 in various aspects, the rela
tionship between the enlarged internal degree of freedom
concrete physics was not clearly exhibited. It is conveni
to take a thermodynamics limit to the Bethe ansatz equa
by introducing density distributions of the quasimomentumk
and that of three rapidities for the spin-orbital doub
@we call SU(4) flavor#. The ground state being of real roo
et
.
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and no holes is a SU(4) singlet, accordingly, both spin a
orbital are in ‘‘antiferromagnetic’’ states. The features
low-lying excitations are studied by considering the con
butions of holes and complex 2 strings. An important con
quence is that the excitations in charge sector and fla
sector are separated. In charge sector the elementary m
are holon and antiholon~particle!, and the real excitations
are gapless particle-holon and gapful holon-holon excitati
etc. There are three types~in agreement with the above gen
eral analyses in any dimension! of flavorons as the elemen
tary excitation modes in flavor sector, namely, two quad
plets carrying spin-1/2 and orbital-1/2 that form
respectively, the fundamental representation and the co
gate representation of SU(4); a hexaplet carrying either
spin-1 or orbital-1 that forms a six-dimensional represen
tion moreover. These flavorons compound to constitute
excitations. The details of one-dimensional model are giv
in another paper.22

We also analyzed the possible symmetry breakin
caused either by extending the model to anisotropic on-s
coupling or by introducing an external field. Our analys
based on the Hamiltonian structure will be helpful for furth
discussions on the phase diagram by means of nume
density-matrix renormalization group.
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