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Abstract 

The thermodynamics of a stationary axisymmetric Einstein-Maxwell dilaton-axion (EMDA) 
black hole is investigated using general statistical physics methods. It is shown that entropy and 
energy have the same form as for the Kerr-Newman charged black hole, but temperature, heat 
capacity and chemical potential have a different form. However, it is shown that the Bardeen- 
Carter-Hawking laws of black hole thermodynamics are valid for the stationary axisymmetric 
EMDA black hole. The black hole possesses second-order phase transitions as does the Kerr- 
Newman black hole because its heat capacity diverges but both the Helmholtz free energy and 
entropy are continuous at some value of J and Q. Another interesting result is that the action I 
can be expressed as I = S +  ~ r h  J for general stationary black holes in which the external 
material contribution to mass and angular momentum vanishes. When J = 0, i.e., for static black 
holes, the result reduces to I = S. 

PACS: 04.60.+n; 97.60.Lf; 04.65.+e; ll.17.+y 

1. Introduct ion 

Recently a lot of interest has arosen in obtaining classical di la ton-axion black hole 

solutions in string theory and investigating their properties [1-4]. In particular attention 

was focused on the thermodynamics of these black holes. The thermodynamics of a 

static U(1) 2 dilaton black hole [1] was studied by R. Kallosh, T. Ortin and A. Peet [3]. 

The entropy of a scalar field in the background of a static dilatonic black hole, obtained 

by D. Garfinkle, G.T. Horowitz and A. Stromiger [1], was investigated by A. Ghosh and 
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P. Mitra [4]. The objective of this paper is to investigate thermodynamics of the 

stationary axisymmetric EMDA black hole [2] and to see how the results differ from the 
Kerr-Newman black hole as a result of different horizons and singularities as compared 
to the Kerr-Newman black hole. 

In order to study thermodynamics of the stationary axisymmetric EMDA black hole 

we shall use general statistical physics methods. This new way has the aim of allowing 

one to consistently apply Feynman's path integral representation [5] of a statistical 
partition function in the presence of black hole solutions. The approach [6,7] takes 

explicit account of the significant radial variation of temperature and other thermody- 

namic quantities when thermal equilibrium exists in the presence of strong inhomoge- 
neous gravitational fields. 

The paper is organized as follows: The metric of the stationary axisymmetric EMDA 
black hole [2] is introduced in Section 2. In Section 3 we work out the Euclidean action 

for the present model, starting from the gravitational action appropriate canonical 
boundary. In Section 4 we first construct a statistical partition function and Helmoltz 

free energy by use of the Euclidean action, and then investigate the thermodynamics of 
the stationary axisymmetric EMDA black hole. We summarize and discuss our conclu- 
sions in the last section. 

2. Stat ionary ax i symmetr ic  E M D A  black hole  

[2] 

with 

The four-dimensional low-energy Lagrangian obtained from heterotic string theory is 

S =  
1 

16~r f dax f L - - g ( R -  2g~V~*V~do - ,^ ,~ ,_~rr  ~c ~ v~ KaV~ K ~ 

(2.1) 

i f 'v= - ½ f-Z- g e~v,~13 F '~  , 

where R is the scalar Riemann curvature, g¢~ is the metric four-dimensional tensor, dO 
is the massless dilaton field, F¢~ is the electromagnetic antisymmetric tensor field, and 
K a is the axion field dual to the three-index antisymmetric tensor field H =  
- exp(4do) * d Ka/4.  

The stationary axisymmetric EMDA black hole solution (we take the solution b = 0 
in Eq. (14) in Ref. [2]; the reason we use this solution is that the solution b ~ 0 carmot 
be interpreted properly as a black hole) is given by [2] 

]~ -- a 2 sin20 
ds 2 - dt  2 

A 
A 

+ ~ - d r  2 + A  d 0 2 + -  

2 a sin 20 

A 

sin20 [ ( r  2 + a 2 -  2 D r )  2 -  ~ a  2 sin20] dq~ '2 
h 

- -  [ ( r  2 + 0 2 -  2Dr)  - ~] dt d~', (2.2) 
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with 

and 

~, = r 2 --  2 m r  + a 2,  A = r 2 - -  2 D r  + a 2 COS20 (2.3) 

W (o 
e 2 .  . . . .  ( r 2 + a  2 cos 2 0) o o = e  2.°,  

A A 

2aD cos 0 
K a = K 0 + 

W 

1 
A t = - ~ ( a r - g a c o s  0),  A t = A 0 = 0  , 

1 

(2.4) 

(2.5) 

A,¢ = --a-~(-Qra2 sin 2 0 + g ( r  2 +a2)a cos 0). (2.6) 

The mass M, angular momentum J,  electric charge Q, and magnetic charge P of the 
black hole are given by 

M = m - D ,  J = a ( m - D ) ,  Q = ~ 2 t o D ( D - m ) ,  P=g.  (2.7) 

The above results show that the stationary axisymmetric EMDA black hole differs 
considerably from the Kerr-Newman black hole. As a result the stationary axisymmetric 

EMDA black hole shows several different properties as compared to the Kerr-Newman 
black hole: (a) Two horizons of the Kerr-Newman black hole are given by r± = M 

_ ~/M 2 _ Q2 _ a 2 ' whereas in the case of the stationary axisymmetric EMDA black 

hole we have r + =  ( M -  (Q2/2 toM))  + ~ / ( M -  ( Q 2 / 2 ~ M ) ) 2  - a 2 , (b) the Kerr-  
J 

Newman metric has singularities at r E + COS 2 0 = O, whereas the stationary axisymmet- 
tic EMDA black hole has singularities at r 2 -  2 D r + c o s 2  0 = 0. It is therefore 
worthwhile to investigate some new interesting features appearing in thermodynamics of 
the stationary axisymmetric EMDA black hole in order to see how these differ from the 
Kerr-Newman black hole. 

3. T h e  ac t ion  

The total action for the stationary axisymmetric EMDA black hole is given by the 
following volume integral: 

1 1 
16-tr r ,.~rnatter __ g ) vl-~ d x 4 W _~_~ jaE( g __ go  ) ~f-~ d x3 ' (3.1) I =  

with 

1 ̂ 4 0  ~lzv $'7 
-~matter = 2gP'VVpfI)Vvt~ + ~-~ g v ~ K a ~ v K  a + e  2*g~XgVPFv, vFxp 

"1- g aFp.vF p'v ( 3 . 2 )  
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where E is the spacetime region with metric g, K is the trace of the extrinsic curvature 
of the boundary 8 ~ ( r =  constant), K 0 is obtained by substituting into K the flat 
spacetime metric, h is the determinant of the metric induced on the boundary, and g is a 
formally Euclidean black hole metric, which can be obtained by setting t ~ i'r, q~' ~ iq~ 
in Eq. (2.2) and expressed as 

- - a  E sin E 0 A E 
d s 2  - A d'rE + -~dr  + Ad0  2 

sin E 
0 [ ( r  2 + 0 2 -  2Dr)2_ ~J~a 2 sin E 0] dq0 2 

A 

2a sin 2 0 
+ A [( r2 + az - 2Dr) - E] d~ dq~, (3.3) 

where -r has period [3 = 2~r/K, and K is the surface gravity given by 

K = - ½  • - - -  ( 3 . 4 )  gttg~',¢- g2,o' Or gtt g,¢,¢ 2Mr+ 
r ~  r h 

In order to get the expression of action 1, let us start with the definition of K, the 
trace of the extrinistic curvature of the hypersurface with a spacelike unit normal vector 
n ~. 

K = h¢~V¢nv. (3.5) 

where 

h¢,, = g~,, - n~n~, (3.6) 

is the induced metric on the hypersurface. For the stationary charged metric, setting 
n~ = (0, g ~ , ,  O, O) as Ref. [8], we find that 

 ¢ZTr  
K =  

2 g,rgoo( g ~ g ~ -  g~)  

( Ogoo Og,p,p Og~,p goo~'~} 
× (g'~'~g'~'°-g'r%)'-~-r +g~''g°° Or g"~g°°"'~-r+g'~'° 

(3.7) 

v/-h= ~/gT,~g,~,~- gEq ~ goo" (3.8) 

Substituting (2.2)-(2.7), (3.3)-(3.8) into (3.1) and noting the position of the spherical 
cavity wall 8E at infinity, we obtain 

13 M - - -  . (3.9) 
I = -~ 2o~M 

In the next section we shall use this quantity to study thermodynamics of the stationary 
axisymmetric EMDA black hole. 
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4. Thermodynamics of stationary axlsymmetric EMDA black hole 

As usual in the study of the thermodynamics of a statistical system, we first introduce 
a thermodynamic potential function and a Helmoltz free energy, and then derive some 
thermodynamic quantities form them. In the presence of a set of conserved charge Qi 
and their related potentials ix i it is convenient to work in the grand canonical ensemble, 
where the fundamental object is the grand partition function 

Z = Tr e- 13(n- ~o,), (4.1) 

and the thermodynamic potential function [9] 

W = E - TS - ix ia  i - ~ r ÷ J ,  (4.2) 

where l'~r+ and J are respectively the angular velocity and angular momentum of the 
stationary axisymmetric EMDA black hole, and 1"~÷ is given by ~ r .  = a / ( r  2 -  2Dr+ 

+ a 2 ) = J / 2 M 2 r + .  The thermodynamic potential function is related to the grand 
partition function by [9] 

e-f3W = z .  (4.3) 

As argued in [9], the partition function for the system can be defined by a Lagrangian 
path integral for the gravitational action coupled with matter fields, 

Z = e- i. (4.4) 

where I is the Euclidean action of the system, which is explicitly given by Eq. (3.9). 
From Eqs. (4.3), (4.4) and (3.9) we get 

1 , (  
W = - - - I n  Z = - - =  ± M - - -  . (4.5) 

13 13 2 2toM 

The chemical potential [10] for the charge is given by 

(0_~)  Q Qr + 
Ixo = - = , (4.6) 

13 2 toM ( o ( r 2 + + a 2 - 2 D r + )  

which is different from that in the Kerr-Newman black hole: i~o = Q r + / r  2 + a 2 [9]. 
Let us introduce the Helmoltz free energy [12] 

F=e-rs=w+ QQ+aj=½ M+ M2r--- ~ . (4.7) 

The total classical entropy of the stationary axisymmetric EMDA black hole can be 
calculated from the Helmoltz free energy [12] to be 

S=132 ~ 0=2"rrM M 2~-M + M 2-~--M - ~  . (4.8) 
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Noting the area of  the event horizon: 

A = dO dq~ = 4a'r(r2+ + a 2 - 2 Dr+ ) 

= 8 T r M ( M -  - -  

we have 

A 
S = -  

4 '  

2o~M 2~-'-M - ~  ' 
(4 .9)  

(4.10) 

which shows that the classical Bekenste in-Hawking entropy of the stationary axisym- 

metric EMDA black hole is proportional to the area of  the horizon as usual. We can 
show that the horizon area A 4 :0  in the case J v~ 0, but the horizon area A vanishes at 

M = Q1/-~-/2to in the case J = 0 (i.e., for a static black hole). The result in the case 
J = 0 is similar to that of  the static dilatonic black hole obtained by A. Ghosh and P. 
Mitra [4], By the method used in Ref. [13] we can prove that the total entropy never 
decreases in any physical process - -  the second law. 

The contribution of  the black hole to the energy E [14] is 

= M .  (4.11)  e = t -g f f -  j Q 

The temperature is 

[aE ,  1 r+- r_  1 r+- r_  K 
T . . . . . .  [ ~ ' )  (4.12) 

O 27r 2Mr+ 2~r r Z - 2 D r + + a  2 2~r 

from which we obtain that the surface gravity of  the stationary black hole (at equilib- 
rium) is constant on the entire surface of  the event horizon, i.e., the zeroth law. Using 
Eq. (4.12) we can prove the third law: it is impossible by any physical process to reduce 
K to zero by a finite sequence of operations. 

Differentiating (4.9) and using the above arguments we obtain 

K Q2 j 
dE= 8---~ d A +  2~oM d Q + 2 M 2 r  + dJ TdS+t~QdQ+Qr+dJ .  (4.13) 

which is just an expression of the first law of thermodynamics stating that in an isolated 
system the total energy of the system is conserved. Eq. (4.13) has the same form as the 
classical first law of the K e r r - N e w m a n  black hole, but we should note that IXQ, f~r., T 
and A have different forms. 

The heat capacity CQj [13] with constant charge is then given as 

_ T( O2F I 8MS3T 
CQj = ~ O2---~]O, J = j 2 - ~  8 ~ 2  , (4.141) 
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which differs from the Kerr-Newman black hole heat capacity [16] CQ.~ = 8 M S 3 T / j  2 ÷ 
l 2 ~ Q  - 8 S 3 T  2, but has the same form as the Kerr black hole CQj = 8 M S 3 T / ( J  2 -  

8S3T2) .  It is obvious that heat capacity of the stationary axisymmetric EMDA black 
hole has singularities at j 2  _ 8 S 3 T  2 = 0, i.e., 3M 8 - 8 M 6 Q  2 - 6 M 4 ( j  2 - Q4) _ ( j z  

_ Q 4 ) 2 =  0. At the same time, both F and S are continuous at the heat capacity's 

singularities. Thus, we have for this charged black hole second-order phase transitions 

just as for the Kerr-Newman black hole [15]. 

5. Conclusion and discussion 

We have studied the thermodynamics of a stationary axisymmetric EMDA black hole 
by use of general statistical physics methods. We have first worked out the action and 

then introduced the partition function, thermodynamic potential function and Helmoltz 

free energy. Some thermodynamic quantities were then derived from them. Eqs. (4.10) 
and (4.11) show that the entropy and the energy have the same form as for the 
Kerr-Newman black hole, but Eqs. (4.12), (4.14) and (4.6) show that temperature, heat 

capacity and chemical potential have a different form. However, the Bardeen-Carter-  
Hawking laws of black hole thermodynamics [17] are valid for the stationary axisym- 
metric EMDA black hole. Since heat capacity of the stationary axisymmetric EMDA 
black hole is divergent but both F and S are continuous at some value of J and Q, the 
black hole possesses second-order phase transitions as does the Kerr-Newman black 
hole. Comparing Eq. (3.9) with Eq. (4.8) we obtained another interesting result, namely 
that action (the boundary at infinity) for the stationary axisymmetric EMDA black holes 

can be expressed as S + 13~,hJ. This result is valid also for Kerr black hole [9] and 
Kerr-Newman black hole [9]. The result is also suitable for static black hole since static 
black hole is a special case of stationary black hole ( J  = 0). Examples include the 
Schwarzschild black hole [6], Reissner-Nordstrom black hole [9], Kal losh-Linde-  
Peet-Proeyen dilaton black hole [3] and black hole with global monopoles [18]. Since 
the thermodynamic potential function W = E - TS - f l J  - P'iQ.i is a formula for gen- 
eral stationary black holes [9] and we can obtain by means of Refs. [17,19] that for 

general stationary black holes E =  2 T S +  2 ~ r h J  + i, ziQ.i, using the thermodynamic 
potential W and energy E given here and the relation W = - (1 / [3 ) In  Z = I/[3 we can 
prove that I = S + 131-1, J is a universal relation for general stationary black holes in 
which the external material contribution to mass and angular momentum vanish. When 
J = 0, i.e., for static black holes, the action reduces to I = S, which is equivalent to the 
result obtained by R. Kallosh, T. Ortin and A. Peet [3]. 
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